Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 25, 2020

Automated driving for car manufacturers’ vehicle logistics

Fahrzeugautomatisierung in der Distributionslogistik
  • Marius Wenning

    Marius Wenning, M. Sc., graduated in Automation Engineering in 2017. He is a research associate at the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His main research interest is vehicle automation in factory environments.

    EMAIL logo
    , Sebastian Kawollek

    Sebastian Kawollek, M. Sc., graduated in Production Engineering in 2015. He is chief engineer at the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His main research interest is electric vehicles’ production systems.

    and Achim Kampker

    Prof. Dr.-Ing. Achim Kampker, is professor of the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His research is dedicated to the cost reduction of electric mobility. He is founder of StreetScooter, a manufacturer of electric delivery vehicles.

Abstract

Technical and legal challenges cause the implementation of Autonomous Driving in road traffic to still be a long way off. However, the introduction of driver assistance functions enables cars’ automation for low speeds already nowadays. The concept of Autonomous Transport (AT) combines automated driving with Automated Guided Vehicle’s technology. In this paper, we assess risks that emanate from AT and show fields of action for its implementation with respect to the standards for functional safety. We set up requirements for the reliability of cars’ electric power supply, actuators and sensors. Concepts for their cost-efficient fulfillment are derived. The realization of collision avoidance and navigation without additional attachments is discussed.

Zusammenfassung

Technische und rechtliche Herausforderungen erschweren die Umsetzung des Autonomen Fahrens im Straßenverkehr. Für geringe Geschwindigkeiten wird die Automatisierung der Fahrzeuge jedoch heute schon durch den Einzug diverser Fahrerassistenzfunktionen möglich. Das Konzept des Autonomen Transports (AT) kombiniert das automatisierte Fahren mit der Technologie fahrerloser Transportsysteme. In diesem Beitrag werden die von den Fahrzeugen ausgehenden Gefahren analysiert und Handlungsfelder zur Maschinenrichtlinien-konformen Umsetzung aufgezeigt. Es werden Anforderungen an die Zuverlässigkeit des Bordnetzes, der Aktuatoren und Sensoren formuliert. Konzepte zu deren wirtschaftlicher Erfüllung werden aufgezeigt. Es wird eine Hinderniserkennung und Navigation der Fahrzeuge ohne zusätzliche Anbauteile diskutiert.

Award Identifier / Grant number: 01MX15008D

Funding statement: The development and validation of the concept of Autonomous Transport is carried out within the research project low-cost assembly – investment minimal and highly efficient Electric vehicle assembly (promotion number 01MX15008D) and funded by the German Federal Ministry for Economic Affairs and Energy.

About the authors

Marius Wenning

Marius Wenning, M. Sc., graduated in Automation Engineering in 2017. He is a research associate at the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His main research interest is vehicle automation in factory environments.

Sebastian Kawollek

Sebastian Kawollek, M. Sc., graduated in Production Engineering in 2015. He is chief engineer at the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His main research interest is electric vehicles’ production systems.

Achim Kampker

Prof. Dr.-Ing. Achim Kampker, is professor of the Chair of Production Engineering of E-Mobility Components at RWTH Aachen University. His research is dedicated to the cost reduction of electric mobility. He is founder of StreetScooter, a manufacturer of electric delivery vehicles.

References

1. H. Winner, S. Hakuli, F. Lotz, C. Singer: Handbuch: Fahrerassistenzsysteme, Springer Vieweg, 2015.10.1007/978-3-658-05734-3Search in Google Scholar

2. C. Cheng, F. Diehl, G. Hinz, Y. Hamza, G. Nuehrenberg, M. Rickert, H. Ruess, M. Truong-Le: Neural Networks for Safety-Critical Applications – Challenges, Experiments and Perspectives, in Design, Automation And Test in Europe (DATE), 2018.10.23919/DATE.2018.8342158Search in Google Scholar

3. S. Bhattacharyya, D. Cofer, D. Musliner, J. Mueller, E. Engstrom: Certification Considerations for Adaptive Systems, in International Conference on Unmanned Aircraft Systems (ICUAS), 2015.10.1109/ICUAS.2015.7152300Search in Google Scholar

4. N. Kalra, S. M. Paddock: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? Driving to safety, Rand Corporation, 2016.10.7249/RR1478Search in Google Scholar

5. Volkswagen AG: Rekorde und Superlative aus der Volkswagen Welt, 2019, available at: https://www.volkswagen-newsroom.com/en/publications/more/mission-maximum-180/download (Jul. 2019).Search in Google Scholar

6. G. Ullrich: Automated Guided Vehicle Systems, 2nd edition, Springer Vieweg, 2014.10.1007/978-3-662-44814-4Search in Google Scholar

7. A. Hjalmarsson-Jordanius, N. Sundin, M. Romell, J. Isacson, C.-J. Alden: Disrupting Automotive Logistics through a Combined Intelligent and Autonomous Transport Solution, in ITS 2017 World Congress Montreal, 2017.Search in Google Scholar

8. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems (E/E/PE), IEC Standard 61508, 2010.Search in Google Scholar

9. Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems, IEC Standard 62061, 2005.Search in Google Scholar

10. Road vehicles – Functional safety, ISO Standard 26262, 2018.Search in Google Scholar

11. K. D. Kreisköther: Flexibilisierung der Elektrofahrzeugendmontage durch selbstfahrende Fahrzeugchassis, Dissertation, 2019.Search in Google Scholar

12. Safety of machinery – General principles for design – Risk assessment and risk reduction, ISO Standard 12100, 2010.Search in Google Scholar

13. Industrial trucks – Safety requirements and verification – Part 4: Driverless industrial trucks and their systems, ISO Standard 3691-4, 2018.Search in Google Scholar

14. Safety of machinery – Safety-related parts of control systems, ISO Standard 13849, 2015.Search in Google Scholar

15. J. Börcsök: Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme, VDE Verlag, 2015.Search in Google Scholar

16. R. Isermann, R. Schwarz, S. Stölzl: Fault-Tolerant Drive-by-Wire Systems, IEEE Control Systems Magazine, 2002.10.1007/BF03224555Search in Google Scholar

17. S. Schumi, A. Graf: Energy and Supply Concepts for Automated Driving, Automotive meets Electronics, 2018.10.1109/ESARS-ITEC.2018.8607776Search in Google Scholar

18. Transport information and control systems — Manoeuvring Aids for Low Speed Operation (MALSO) — Performance requirements and test procedures, ISO Standard 17386, 2010.Search in Google Scholar

19. F. Schuster, C. G. Keller, M. Rapp, M. Haueis, C. Curio: Landmark based Radar SLAM Using Graph Optimization, in IEEE 19th International Conference on Intelligent Transportation Systems, 2016.10.1109/ITSC.2016.7795967Search in Google Scholar

Received: 2019-07-25
Accepted: 2020-01-10
Published Online: 2020-02-25
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2019-0087/html
Scroll to top button