Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 2, 2020

Digital Twin of manufacturing systems: a case study on increasing the efficiency of reconfiguration

Digitaler Zwilling für Fertigungssysteme: Eine Fallstudie zur Effizienzsteigerung von Rekonfigurationen
  • Behrang Ashtari Talkhestani

    Behrang Ashtari, M.Sc., has worked since 2016 at the Institute of Industrial Automation and Software Engineering in the University of Stuttgart as a research assistant. His research focuses on the integrated modelling of the Digital Twin of an automated manufacturing system and on the synchronization of the Digital Twin’s models throughout the entire life cycle of the system.

    and Michael Weyrich

    Prof. Dr.-Ing. Dr. h. c. Michael Weyrich teaches at the University of Stuttgart and is head of the Institute of Industrial Automation and Software Engineering. His research focuses on intelligent automation systems, complexity control of cyber-physical systems and validation and verification of automation systems.

    EMAIL logo

Abstract

The added value of a Digital Twin for reconfiguring manufacturing systems promises an increase in system availability, a reduction in set-up and conversion times and enables the manufacturing of customer-specific products. To evaluate this claim, this paper selects an architecture of the Digital Twin and realizes it on the basis of an application scenario for a cyber-physical manufacturing system. A case study is used to test the reconfiguration of a manufacturing system by comparing two different methods, one without and one with use of the Digital Twin. In this paper, the process steps of both reconfigurations are described and discussed in detail and a qualitative and quantitative evaluation of the reconfiguration results is presented. Finally, this paper gives an outlook on future research on intelligent automation of manufacturing systems using the Digital Twin.

Zusammenfassung

Der Mehrwert eines synchronisierten Digitalen Zwillings zur Rekonfiguration eines Fertigungssystems verspricht eine Verkürzung der Rekonfigurationszeit und damit eine Erhöhung der Systemverfügbarkeit sowie die kurzfristige Herstellung kundenspezifischer Produkte. Zur Evaluierung dieser Aussage wird in diesem Beitrag eine Architektur des Digitalen Zwillings ausgewählt und innerhalb eines Anwendungsszenarios für ein cyber-physikalisches Fertigungssystem implementiert. Innerhalb einer Fallstudie erfolgt darüber hinaus die Rekonfiguration dieses Fertigungssystems mit zwei verschiedenen Methoden, zum einen ohne Verwendung des Digitalen Zwillings und zum anderen unter Verwendung des synchronisierten Digitalen Zwillings. Dabei werden in diesem Beitrag die Prozessschritte beider Rekonfigurationen detailliert beschrieben und verglichen sowie eine qualitative und quantitative Evaluierung der Rekonfigurationsergebnisse gegeben. Schließlich gibt dieser Beitrag einen Ausblick auf zukünftige Forschungen zur intelligenten Automatisierung und Autonomie von Produktionssystem unter Verwendung des Digitalen Zwillings.

About the authors

M. Sc. Behrang Ashtari Talkhestani

Behrang Ashtari, M.Sc., has worked since 2016 at the Institute of Industrial Automation and Software Engineering in the University of Stuttgart as a research assistant. His research focuses on the integrated modelling of the Digital Twin of an automated manufacturing system and on the synchronization of the Digital Twin’s models throughout the entire life cycle of the system.

Prof. Dr.-Ing. Dr. h. c. Michael Weyrich

Prof. Dr.-Ing. Dr. h. c. Michael Weyrich teaches at the University of Stuttgart and is head of the Institute of Industrial Automation and Software Engineering. His research focuses on intelligent automation systems, complexity control of cyber-physical systems and validation and verification of automation systems.

References

1. Ashtari Talkhestani, B., Jazdi, N., Schloegl, W. and Weyrich, M. (2018). Consistency check to synchronize the Digital Twin of manufacturing automation based on anchor points. Procedia CIRP, 72, 159–164. 10.1016/j.procir.2018.03.166.Search in Google Scholar

2. Ashtari Talkhestani, B., Jazdi, N., Schlögl, W. and Weyrich, M. (2018). A concept in synchronization of virtual production system with real factory based on anchor-point method. Procedia CIRP, 67(July), 13-–17. 10.1016/j.procir.2017.12.168.Search in Google Scholar

3. Ashtari Talkhestani, B., Jung, T., Lindemann, B., Sahlab, N., Jazdi, N., Schloegl, W. and Weyrich, M. (2019). An architecture of an Intelligent Digital Twin in a Cyber-Physical Production System. At – Automatisierungstechnik, 67(9), 762–782. 10.1515/auto-2019-0039.Search in Google Scholar

4. Ashtari Talkhestani, B., Schlögl, W. and Weyrich, M. (2017). Synchronisierung von digitalen Modellen. Atp Edition, 59(07–08), 62. 10.17560/atp.v59i07-08.1902.Search in Google Scholar

5. Bauer, A. and Günzel, H. (2013). Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung (4th ed.). Dpunkt.verlag.Search in Google Scholar

6. Bellalouna, F. (2009). Integrationsplattform für eine interdisziplinäre Entwicklung mechatronischer Produkte, Dissertation. Ruhr-Universität Bochum.Search in Google Scholar

7. BMWi. (2018). Details of the Asset Administration Shell- Part 1 – The exchange of information between partners in the value chain of Industrie 4.0, Version 1.0 (Vol. 0).Search in Google Scholar

8. CIMdata. (2019). The CIMdata 2019 PLM Market Analysis Report Series. Retrieved February 21, 2020, from https://www.cimdata.com/images/Research/PLM_MAR_Datasheet_Ltr.pdf.Search in Google Scholar

9. Costello, K. and Omale, G. (2019, February 20). Gartner Survey Reveals Digital Twins Are Entering Mainstream Use. Retrieved March 5, 2020, from https://www.gartner.com/en/newsroom/press-releases/2019-02-20-gartner-survey-reveals-digital-twins-are-entering-mai.Search in Google Scholar

10. Drath, R. (2010). Datenaustausch in der Anlagenplanung mit AutomationML. (R. Draht, Ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. 10.1007/978-3-642-04674-2.Search in Google Scholar

11. Drath, R., Fay, A. and Barth, M. (2011). Interoperabilität von Engineering-Werkzeugen: Konzepte und Empfehlungen für den Datenaustausch zwischen Engineering-Werkzeugen. At-Automatisierungstechnik, 59(7), 451–460. 10.1524/auto.2011.0938.Search in Google Scholar

12. Gaul, V. (2020). Simulation Software Market Size, Share & Trends | Industry Forecast 2025. Retrieved February 19, 2020, from https://www.alliedmarketresearch.com/simulation-and-analysis-software-market.Search in Google Scholar

13. Haag, S. and Anderl, R. (2018). Digital twin –- Proof of concept. Manufacturing Letters, 15, 64–66. 10.1016/j.mfglet.2018.02.006.Search in Google Scholar

14. Herbst, S. and Hoffmann, A. (2018). Product Lifecycle Management (PLM) mit Siemens Teamcenter. In Product Lifecycle Management (PLM) mit Siemens Teamcenter (pp. I-–XII). München: Carl Hanser Verlag GmbH & Co. KG. 10.3139/9783446446496.fm.Search in Google Scholar

15. Kagermann, H., Wahlster, W. and Helbig, J. (2013). Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative Iustrie 4.0. Final Report of the Industrie 4.0 Working Group, (April), 1–-84.Search in Google Scholar

16. Malakuti, S. and Grüner, S. (2018). Architectural aspects of digital twins in IIoT systems. In Proceedings of the 12th European Conference on Software Architecture Companion Proceedings – ECSA ’18 (pp. 1–2). New York, New York, USA: ACM Press. 10.1145/3241403.3241417.Search in Google Scholar

17. Rosen, R., Fischer, J. and Boschert, S. (2019). Next Generation Digital Twin: an Ecosystem for Mechatronic Systems? IFAC-PapersOnLine, 52(15), 265–270. 10.1016/j.ifacol.2019.11.685.Search in Google Scholar

18. Schmidt, N., Luder, A., Steininger, H. and Biffl, S. (2014). Analyzing requirements on software tools according to the functional engineering phase in the technical systems engineering process. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA) (pp. 1–8). IEEE. 10.1109/ETFA.2014.7005144.Search in Google Scholar

Received: 2020-01-06
Accepted: 2020-04-21
Published Online: 2020-06-02
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0003/html
Scroll to top button