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Abstract: This work describes an approach to calculate
pedological parameter maps using hyperspectral remote
sensing and soil sensors. Thesemaps serve as information
basis for automated and precise agricultural treatments by
tractors and field robots. Soil samples are recorded by a
handheld hyperspectral sensor and analyzed in the lab-
oratory for pedological parameters. The transfer of the
correlation between these two data sets to aerial hyper-
spectral images leads to 2D-parameter maps of the soil
surface. Additionally, rod-like soil sensors provide local
3D-information of pedological parameters under the soil
surface. The goal is to combine the area-covering 2D-
parameter maps with the local 3D-information to extrap-
olate large-scale 3D-parameter maps using AI approaches.

Keywords:Hyperspectral remote sensing, soil monitoring,
AI, 2D/3D pedological maps

Zusammenfassung: Diese Arbeit beschreibt einen An-
satz zur Erstellung bodenkundlicher Parameterkartenmit-
tels hyperspektraler Fernerkundung und Bodensensorik,
als Informationsgrundlage für automatisierte und präzise
landwirtschaftliche Anwendungen durch Traktoren und
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Feldroboter. DazuwerdenBodenprobenhyperspektral un-
tersucht und pedologische Parameter im Labor analy-
siert. Die Übertragung der Korrelation zwischen diesen
beiden Datensätzen auf hyperspektrale Luftbilder erzeugt
2D-Parameterkarten der Bodenoberfläche. Zusätzlich wer-
den stabähnliche Bodensensoren im Feld versenkt, die
lokal 3D-Information über pedologische Parameter lie-
fern. Ziel ist die Verknüpfung der flächendeckenden 2D-
Parameterkarten mit lokaler 3D-Information durch KI, um
flächendeckende 3D-Parameterkarten zu erstellen.

Schlagwörter: Hyperspektrale Fernerkundung, Boden-
überwachung, KI, 2D/3D pedologische Karten

1 Introduction

The vast industrialization in agriculture during the last
decades led to a significant increase in productivity. At the
same time, this progress also associates with negative ef-
fects on the biosphere like faunal and botanical species
decline, soil degradation, water consumption, and other
environmental damages due to the use of harmful chem-
icals and their spread in the environment. Organic farm-
ing tries to counteract these effects accepting losses in pro-
ductivity [1]. Precision farming as an alternative to conven-
tional and organic farming, exploits the increasing digital-
ization in agriculture and aims to balance economic and
ecological benefits. Autonomous and intelligent tractors,
field robots, and trailers try to increase the efficiency in
terms of time, the input of resources, and cost by enabling
individual treatments of field segments [2]. For this kind of
agriculture, the most essential basis is information about
the condition of soils and plants. Without the monitoring
of soils and plants with a high spatio-temporal resolution,
precise and automated cultivation like weed control, fer-
tilization, irrigation, and harvest is not possible. Since the
costs for traditional methods to gather soil properties (via
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grid sampling) increase exponentially as the spacing of
grids decreases, an alternative way to collect this infor-
mation is bio-monitoring by remote sensing [3]. The use
of visible to near-infrared (VNIR) and short-wave infrared
(SWIR) spectroscopy in soil science has a long history and
experienced a boom in the last decades [4]. After initial
studies on the relationship between soil properties and
soil spectra in a more qualitative way [5], other scientists
successfully introduced more quantitative approaches us-
ing tools of multivariate statistics [6]. Since then, numer-
ous studies have been based on these quantitative ap-
proaches tomapping soil properties, such asmineral com-
posites [7], soil salinity [8], texture [9], moisture [10] or
chemical soil properties like carbon, nitrogen, pH, etc. [11].

This work describes an approach, which derives soil
properties by producing pedological parameter maps of
soil surfaces from hyperspectral (HS) remote sensing data.
Correlations between the parameters nitrogen (N), phos-
phorus (P), calcium (Ca), magnesium (Mg), potassium (K),
total organic carbon (TOC), humus, and spectral data are
examined and applied to spectral airborne and space-
borne images. This endeavor is an ongoing process and
will be further refined in the future. Bio-monitoring by re-
mote sensing only enables the analysis ofmaterials or soils
on the surface due to the recorded electro-magnetic spec-
trum. However, in agriculture, various decisions require
sub-surface 3D-information of the soil. After a rain, nitrate
concentrations on the soil surface can be low and induce
the farmer to fertilize nitrate. If the nitrate concentrations
below the surface were actually high, the excess nitrate
seeps into the groundwater [12].

Therefore, information about the variability of soil nu-
trients below the surface within a specific field is of fun-
damental importance for precision farming. Rod-like soil
sensors provide local and frequently sampled below the
surface data as deep as 60 cm. The presented approach
studies the dependency between electrical conductivity
(EC) of the soil, acquired by sensors in the soil, and soil pa-
rameters at different soil depths, determined in the labora-
tory. In addition, the proposed concept aims to combine
hyperspectral remotely sensed 2D-soil-parameter maps
pertinent to the field of interest with the local sub-surface
data to create large-scale 3D-parameter maps using state-
of-the-art machine learning approaches [13, 14, 15, 16, 17].

2 Proposed approach

Figure 1 visualizes the following description of our pro-
posed approach as a flowchart. The structure of this pa-

Figure 1: Flowchart of the proposed approach. Steps highlighted in
green have been tested successfully, while parts in orange show
current and future experiments. Main parts of the approach are
marked in bold.

per and its sections are based on this workflow. Steps
highlighted in greenhave already been tested successfully.
Orange highlighted steps are part of current and future
experiments. Main parts of the approach are marked in
bold.

The corpus of data used in our study pertains to soil
samples (see Section 3.1), which are (hyper-)spectroscopi-
cally examined and wet-chemically analyzed in a labora-
tory. Usually, soil samples are sieved, ground, and dried
for the spectroscopic analysis to minimize noisy signals.
Our approach, however, relies on a spectroscopic sur-
vey, which was performed directly in the field (in-situ) to
represent a more realistic and implementable scenario.
A FieldSpec 4 handheld spectroradiometer from Analyti-
cal Spectral Devices Inc.wasused to record the soil spectra
(see Section 3.2) in the field. Soil samples of the same
area were collected and sent to a laboratory for pedolog-
ical analysis. Subsequently, for each parameter and each
soil sample, the Fieldspec 4 soil spectrum was processed
(see Section 4.1) and labeled with the corresponding pa-
rameter value. As a multivariate statistic method, Partial
Least-Square Regression (PLSR) was then used to create
models able to estimate the parameter values based solely
on hyperspectral data (see Section 4.2). In case of a signif-
icant correlation (see Section 5.1) between the model es-
timates and the data collected by sampling, these mod-
els of relationship between pedological parameters and
spectral information can finally be used to estimate the
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value of the parameters for each pixel of an aerial or space-
borne hyperspectral image (see Section 4.3). The results
are 2D-parameter maps consisting of the parameter values
for each pixel (see Section 5.2).

As part of our efforts to extend this information below
the soil surface, we are planning a newfield study. In order
to obtain pedological information at six soil depths, SEN-
TEK Drill & Drop TRISCAN soil sensors will be installed
and EC signal recorded (see Section 3.3). At the same
time, soil samples are taken at different depths along-
side the soil sensor (see Section 3.1) and analyzed in a
soil laboratory. These data will first be used to train ma-
chine learning models, such as simple neural nets and
PLSR models, to derive local soil parameter values cor-
responding to the sub-surface readings of each soil sen-
sor (see Section 4.4). Since the concentration of nutri-
ents at different depths is the result of complex propaga-
tion processes in the soil and their extraction by plants
over time, we need more complex approaches to create a
model of these dynamics. Therefore, we will use a state-
of-the-art machine learning approach for time series mod-
eling (a class of deep recursive neural networks called
Long Short-Term Memory – LSTM, see Section 4.4) to es-
timate the value of each sensor reading below the sur-
face, based solely on data that can be obtained for the
surface. The underlying data of the surface include hy-
perspectral images, our own surface 2D-soil-parameter
maps, as well as meteorological and fertilization data. Us-
ing the simpler models created based on our soil sam-
pling campaign, we intend then to convert these esti-
mates of sensors reading to parameter values in real-
time, in order to create 3D-soil-parameter maps stretch-
ing from the soil surface to the depth of our deepest sen-
sor.

3 Data basis

3.1 Pedological data

A sufficient amount of soil samples is required to build re-
liable spectroscopic-chemometric models. Robust correla-
tions have been found with 50 to 150 samples. As the lab-
oratory analysis of soil samples is expensive, the number
of soil samples is often limited. Due to these costs, there
is always a trade-off between the desire to create a uni-
versally valid model and the number of analyzed pedo-
logical parameters. Based on the essential plant nutri-
ents, nitrate (N), phosphorus (P), calcium (Ca), magne-
sium (Mg), and potassium (K) were chosen for this study

Table 1: Statistics of the soil samples by mean, minimum and maxi-
mum value of seven soil parameters. Data basis are 55 soil samples
of a field in Brandenburg, Germany.

Mean SD Min Max

N [%] 0.18 0.03 0.11 0.26
P [mg/100 g] 1.92 0.68 1.0 4.5
Ca [cmol+/kg] 4.97 1.08 2.4 9.0
Mg [mg/100 g] 5.59 1.52 3.1 9.8
K [cmol+/kg] 0.34 0.13 0.2 0.7
TOC [%] 0.83 0.23 0.32 1.33
Humus [%] 1.45 0.4 0.6 2.3

and analyzed in the laboratory. Other pedological param-
eters like total organic carbon (TOC) and humus were also
determined. Finally, laboratory results were checked for
outliers. Table 1 shows the statistics by mean, standard
deviation, minimum, and maximum value of the seven
pedological parameters in order to obtain an overview
of typical value ranges. While the unit of TOC, humus,
and nitrogen is a percentage, phosphorus and magne-
sium are described in mg/100 g. Calcium and potassium
in cmol+/kg provide plant available (cation exchangeable)
nutrient amounts.

For a reliable soil-sensor/-parameter model, another
experiment will be performed in June 2021. Soil samples
will be taken by a hand sampling toolset from Arts Ma-
chine Shop Inc. at three different depths alongside the in-
stalled soil sensor. Following the parameter selection of
the spectroscopic-chemometric model approach, samples
are laboratory analyzed for total nitrogen, organic carbon,
phosphorus, potassium, and calcium. Additionally, avail-
able nitrogen, pH, cation exchange capacity (CEC), and
electrolytic conductivity (EC1:5) are determined. In order
to investigate the relation between volumetric ion concen-
tration of the soil sensor and different level of N, P and
K in different level of soil depth, one soil sample is go-
ing to be collected for each of the three depths (0–10 cm,
10–20 cm, and 20–40 cm) and each of nine soil sensors
installed in the experiment field. The current experimen-
tal design enables five fertilization iterations with sub-
sequently soil sampling that will result in 135 soil sam-
ples.

3.2 Spectral data

The principle functionality of (hyperspectral) remote sens-
ing is as follows: Sunlight in the form of electro-magnetic
radiation enters the atmosphere and reacts with the
earth’s surface, where each material transmits, absorbs
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Figure 2: Soil spectra of 55 soil samples surveyed by an ASD Field-
Spec 4. The wavelengths (350–2500nm) of each band are plotted
on the x-axis and the reflectivity [0,1] of the soil sample at this wave-
length on the y-axis. Due to interaction with the atmosphere, noisy
signals between 1349–1449nm, 1789–1969 nm, and 2449–2500nm
were deleted.

and reflects a certain amount of radiation depending on its
specific properties.While thehumaneye and conventional
digital cameras only record the colors red, green, and blue
(RGB), hyperspectral sensors can capture the whole wave-
length range of the reflected light from the visible to the
near and shortwave infrared [11]. After passing the con-
verging lens, the light is collimated and split by a diffrac-
tion grating. Depending on thewavelength, the light beam
is deflected in a specific angle and incidents upon a pho-
tosensitive chip. Thus, hyperspectral sensors divide and
capture the reflected light in hundreds of narrow wave-
lengths (bands or channels) [18]. The resulting measure-
ments are visualized by plotting the spectral signature as
reflectance over the wavelengths. Band numbers or the
corresponding wavelengths are plotted on the x-axis and
the reflectivity of the surveyed object at this wavelength
on the y-axis (see Figure 2).

Handheld hyperspectral sensors like the FieldSpec 4
of Analytical Spectral Devices Inc. have the highest spec-
tral resolution of over 2150 bands, which generally cover
the wavelength range from 350–2500nm. Those sensors
are well suited to collect spectral ground truth data of one
single point using lenses of different aperture. With a sen-
sor distance of 20 cm above the ground, each area of the
soil sampling (5 by 5 cm) was captured.

In contrast to single-point hyperspectral sensors, the
most common hyperspectral sensors are imaging sensors
based on the push-broom principle. They record a single

spatial line with full spectral resolution. An image can
then be created bymoving the sensor relative to the scene.
For remote sensing, the sensor is installed on a carrier plat-
form such that it records data perpendicular to the flight
direction and records subsequent frames of adjacent ar-
eas on the ground due to the movement of the platform.
Choosing the right number of frames per second according
to the speed of the carrier platform is essential to acquire
2D-images without gaps.

Possible carrier platforms are UAVs, planes, and satel-
lites. For agricultural and precision farming applications,
a high spatial resolution and mobile sensor system are
required. The Headwall VNIR-SWIR Co-Aligned hyper-
spectral sensor covers the wavelength range from 400–
2500nm with 537 bands and only weights 2.83 kg, which
makes this sensor well suited for drones. Mounted on a
DJI Matrice 600 Pro and flying at an altitude above ground
level (AGL) of 80m, one battery-set lasts approximately
12–18 minutes. During this time and in autonomous flight
mode, an area in the range of 4.2 ha is covered. An effec-
tively continuous flight is possible with several battery-
sets.

The development of several hyperspectral satellites
by different countries started years ago (i. e., EnMAP-
Mission). It is planned to provide hyperspectral satellite
data covering large areas. Satellites and their periodic cov-
erage guarantee a reliable data source. The disadvantage
compared to sensors that are mounted on aerial platforms
is the decrease in spatial resolution (for EnMAP: 30m
ground sampling distance (GSD)).

Other issues with space-borne passive sensors are the
difficult atmospheric correction process and the occlusion
by clouds, especially in German winters, when fields lie
dormant and arewell suitable for remote sensing soil anal-
ysis. Nevertheless, hyperspectral satellite images will be a
valuable data source, especially for extensive farms and
fields. Table 2 illustrates an overview of a selection of hy-
perspectral sensor system specifications.

3.3 Soil sensors

In June 2021, nine 60 cm long SENTEK Drill & Drop
TRISCAN probes will be installed in an experimental field.
These probes consist of six capacitance sensors (one every
10 cm, starting at 10 cmdepth) formeasuring the soilmois-
ture, the electrical conductivity (salinity), and the (probe
internal) temperature. More specifically, the capacitance
sensors monitor changes in the dielectric properties of
soils and return two outputs: the first is a signal that is con-
verted via a normalized equation and then via default cali-
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Table 2: Specifications of hyperspectral sensor systems.

ASD FieldSpec 4 (handheld sensor) Headwall VNIR-SWIR Co-Aligned (UAV) EnMAP (satellite)

Wavelength range [nm] 350–2500 400–2500 420–2450
No. of bands 2151 537 242
Spatial Pixel 1 640 1024
GSD [m] (m AGL) 0.05 (0.2) 0.2 (80) 30

bration into volumetric water content (VWC). VWC is given
in millimeters of water per 100mm of soil depth. The nor-
malized equation and the default calibration is adaptable
by the user. The second output is a signal that is elabo-
rated together with the first signal in a manufacturer data
model and provides the volumetric ion content (VIC). This
VIC value will be correlated with the soil EC and other spe-
cific pedological parameters of the soil sample laboratory
analysis. The probe measurement of VIC ranges between
0 and 17 deciSiemens/m in sand, loamy sand, and sandy
loam textures. The resolution of the VWC electronic sen-
sors is as low as 1 microSiemens/cm (0.001 mS/cm) in dry
soil condition and as high as 14 microSiemens/cm (0.014
mS/cm) in water-saturated soil conditions.

The resolution of this probe for moisture (VWC) is
1:10000, for salinity (VIC) 1:6000 and for temperature
0.3 °C.Moisture precision is±0.03%vol.,while the temper-
ature accuracy is ±2 °C at 25 °C. The operating temperature
ranges between −20 °C and 60 °C.

The VWC and VIC data are downloaded and analyzed
with the IRRIMAX Live software to access moisture, salin-
ity, and temperature data and combine multiple probes to
observe two-dimensional data dynamics. This software al-
lows the user to visualize the movement dynamics of salt
and water through the soil. By adding data on fertilizer in-
put to the surface, it will be possible to get a better under-
standing of soil drainage characteristics of nutrients.

4 Data processing and analysis

4.1 Processing of spectral data

During data acquisitions with an aerial platform, the sen-
sor is subjected to undesired pitch, roll, and yaw move-
ments, which need to be corrected. Therefore, an inte-
grated Inertial Measurement Unit (IMU) tracks these three
angles continuouslywith a highly accurate timestamp and
frequency. In a preprocessing step, called georeferencing,
the tracked sensormovement is combinedwith theGPS lo-
cation to correct the distortion and projects each recorded
spectrum onto its correct location on a reference ellipsoid.

If the test area shows significant height differences, a pre-
cise digital elevation model helps to correct this inaccu-
racy. Since the internal GPS always tracks the exact posi-
tion of the drone and sensor, geo-coordinates are assigned
to every pixel of the corrected image.

When light is detected by a photosensitive chip, the
sensor translates the resulting signal into a digital number
with a typical range of values in 12 bit. This raw format is
converted into radiance using internal and sensor-specific
configuration and calibration files. Radiance depends on
the intensity and direction of the illumination, the posi-
tion and orientation of the target, and atmospheric con-
ditions. These effects restrict radiance to a difficult physi-
cal quantity for the comparison of data sets. Reflectance,
as the ratio between the amount of incident and reflected
light, describes the properties of the materials more reli-
ably and regardless of the effects listed. In order to convert
the radiance into the reflectance, a reference panel with
known reflectivity must be recorded over the entire wave-
length range and set in relation to the corresponding radi-
ance values.

Soil spectra collected by the handheld HS-sensor
(FieldSpec 4) are used to carry out the correlation analy-
sis with the pedological parameters. The goal is to trans-
fer this correlation to airborne or space-borne hyperspec-
tral data. Since the spectral resolution of the handheldHS-
sensor is much higher, its spectral resolution has to be
adapted to match the airborne or space-borne HS-sensors.
Therefore, the nearest handheld HS-sensor bands are se-
lected so that they correspond to the bandwidth of the cor-
responding air- and space-borne HS-sensors. This step is
called spectral resampling.

For this approach, continuum removal (CR)was tested
to improve the signal-to-noise ratio. CR is a tool for am-
plifying reflection features and especially for amplifying
absorption bands in a spectrum. CR is performed by fit-
ting a convex hull to the spectrum and dividing the re-
flectance values for each wavelength by the reflectance
of the continuum line (convex hull) at the corresponding
wavelength. This pre-processing returns a CR value of 1 to
all parts of the spectrum that lie on the convex hull (i. e.,
wavelength regions that are not in an absorption band).
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Figure 3: PLSR of magnesium. Relative cross validated RMSE (relRM-
SEcv) as a function of the number of latent variables, best model at
six latent variables.

Values between 0 and 1 return to regions inside absorption
bands. CR thus accentuates the absorption bands in the
spectra while minimizing differences in brightness [19].

4.2 Correlation analysis – PLSR

Partial Least-Square Regression (PLSR) was chosen as an
algorithm of multivariate statistics to find correlations be-
tween soil parameter values and their spectral signature
values. PLSR, according toWold et al. [20] is a widely used
approach for quantitative analysis in chemometrics and
hyperspectral remote sensing [21]. Closely related to prin-
cipal components regression (PCR), PLSR combines fea-
tures from PCR andmultiple regression [22]. PLSR projects
the data (chemical concentrations and reflective proper-
ties with a high number of correlated variables) into a
lower-dimensional space, formed by a set of orthogonal
latent variables, that maximizes the covariance between X
and Y by a simultaneous decomposition of X (spectral ma-
trix) and Y (chemical matrix) [23]. This projection reduces
a large number of measured collinear spectral variables to
a few non-correlated latent variables, which also implies
a reduction of the data volume and the subsequent calcu-
lation time. The method is well suited for the calibration
of a small number of samples with experimental noise in
both chemical and spectral data, even if the number of ob-
servations is smaller than the number of wavelengths [24].
A detailed explanation of the application using PSLR on
hyperspectral data can be found in [11].

For each pedological parameter analyzed, PLSR mod-
els with up to 15 latent variables were calculated in order

Figure 4: PLSR of magnesium. Measured versus estimated magne-
sium values using the model with six latent variables and the 1:1
line.

to determine the optimumnumber of latent variables. This
calculation was performed separately in-/excluding con-
tinuum removal and considering the un-/resampled data.
Five-fold cross-validation and a 100-fold Monte Carlo rep-
etition were applied to each model run to avoid overfit-
ting. The cross-validated relative root-mean-square error
(relRMSEcv) was calculated to evaluate each model run.
Figure 3 illustrates the relationship between the number
of latent variables and relRMSEcv. The number of latent
variableswith the lowest relRMSEcvwas selected. Figure 3
presents a PLSR formagnesiumwith the lowest relRMSEcv
using six latent variables. As there is the relRMSE of the
cross-validation plotted, the relRMSEcv can also increase
with an increasing number of latent variables. With the
optimal number of latent variables, a final PLSR and its
errors were calculated. Figure 4 shows the resulting esti-
mates compared to the laboratory measurements for mag-
nesium.

4.3 Transfer to airborne/space-borne
spectral images

The result of eachparametermodel calibrationusingPLSR
is a correlation coefficient file. These files each contain one
factor βi (∈ ℝ) for band i and one scalar offset α, which
describes the correlation between the pedological param-
eter value and its reflection values. For each pixel of a hy-
perspectral image and each pedological parameter, these
weighting factors βi were multiplied by their correspond-
ing sensor band values ρi. The resulting values were sum-
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marized. After adding the offset value to this sum, the re-
sulting amount was the final pedological parameter esti-
mate ŷ of the HS-image pixel.

ŷ = α +
nBands
∑
i=1 ρi ∗ βi (1)

A complete pedological parameter map can be calcu-
lated by applying this approach to every pixel of the air-
borne/space-borne HS-image.

4.4 Concept of a 3D-soil-parameter
estimation using AI-approaches

While the PLSR approach proposed in the previous sec-
tion should enable us to generate high-resolution spatio-
temporal continuous 2D products (see also Figure 1, green
boxes), we further aim to utilize the data collected by the
SENTEK Drill & Drop TRISCAN sensors and deep learning
to derive a detailed local 3D profile of nutrient distribution
(see Figure 1, orange boxes).

State-of-the-art studies have demonstrated that esti-
mating the nutrients’ concentrations in soil-less cultiva-
tion conditions [13], based on electro-conductivity, is fea-
sible. Whether and how this can be achieved in the soil
remains an open research problem. The study of Moon
et al. [13] shows that the best performance can be expected
when using state-of-the-art recurrent neural networks, in
particular, Long Short-Term Memory (LSTM) [14, 15, 17].
LSTMs are a favorite tool in the deep learning arsenal
when it comes to modeling time series data and are able
to learn both short-term dependencies, as well as long-
term relationships. When it comes to remote sensing, they
have recently been successfully employed toproducehigh-
resolution spatio-temporal continuous soil moisture data
from daily satellite images and more frequently sampled
meteorological data at surface level [15].

We want to use LSTMs to estimate nutrient and soil
moisture information at various depths based on hyper-
spectral images of the crops and soil surface, PLSR esti-
mated nutrient values of the soil surface, and meteorolog-
ical, irrigation, and fertilizationdata.Moonet al. [20] show
that information about the development stage of the crop
has a profound influence on the ability of their models to
estimate the nutrients available in the substrate correctly.
In our application scenario, we need additional informa-
tion on the soil composition and soil moisture fluctuations
at the surface level, as well as precipitation, in order to be
able to estimate the flow of the nutrients through the soil.

Hyperspectral imagery should allow our models to infer
the development stage of the crops and their influence on
nutrient concentration at a certain depth due to the uptake
of nutrients. In contrast, land surfacemeteorological data,
irrigation, fertilization, and PLSR-derived surface nutrient
concentration maps should enable our models to account
for the propagation of the nutrients through the soil from
the surface.

The downside of all deep learning approaches is the
fact that they require significant amounts of training data.
Since our soil-sampling campaign does not provide suffi-
cient ground truth data concerning nutrients at a certain
depth to train the LSTMs, we aim to train deep networks
to predict the readings of the SENTEK sensors at different
depths using the input data from the surface. These net-
works will output estimates of Volumetric Water Content
(VWC), Volumetric Ion Content (VIC), and temperature for
the spatial resolution of hyperspectral images and the tem-
poral resolution of meteorological data from the ground
surface.

The actual data from the soil sampling campaign
will be used to train more conventional machine learn-
ing models, such as simple neural nets and PLSR mod-
els, to estimate the nutrient content based on real and es-
timated VWC, VIC and temperature values to provide de-
tailed 3D information of nutrient distribution at each time
step.

5 First results & discussion

5.1 Correlation analysis – PLSR

Table 3 shows the results of the correlations analysis be-
tween spectral and pedological data using PLSR. We com-
pare results with the full number of bands of the Field-
Spec 4 sensor (no resampling) and those with spectral
resampling to emulate Headwall Co-Aligned and EnMAP
data.Without resampling, TOC,humus, andpotassiumare
reliably detected with an R² of 0.82–0.94. Magnesium (R²
= 0.72) and nitrogen (R² = 0.62) present a less strong cor-
relation. Phosphorus and calcium indicate the worst cor-
relation among the parameters with R² of 0.29–0.39. The
resampling to the Headwall spectral resolution led to sim-
ilar results, only the quality of potassium decreased to
an R² of 0.51. The resampling to the EnMAP spectral res-
olution increased the quality of the correlation for TOC,
humus, and potassium to R² over 0.95. In the case of
potassium, this increase is especially visible in compari-
son to the relRMSE, which indicates the error in percent-
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age (RMSE normalized by the range of parameter). With
errors of approximately 13% for nitrogen andmagnesium,
a qualitative assumption can be considered possible. The
spectral resampling to EnMAP improves the R² of calcium
to 0.52, while phosphorus remains the worst correlation
among the parameters with an R² of 0.28. The reduction
in the number of bands taken into account (resampling
to aerial/space-borne HS-sensors) had no negative impact
on the result in most cases (except potassium resampled
to Headwall resolution). In contrast, the results for TOC,
humus, potassium (EnMAP), and especially calcium even
improved. This fact can be explained by the improvement
of the signal to noise ratio by the binning of adjacent
bands.

Overall, without the need of a preprocessing, PLSR is
robust even under variable and naturally occurring illu-
mination conditions and shadow effects during the spec-
tral data acquisition in the field. Continuum Removal (CR)
only leads to slightly better results for some PLSR mod-
els, e. g., for potassium (no resampling), calcium (EnMAP
resampling) as well as TOC and humus (Headwall resam-
pling).

5.2 2D-soil-parameter maps

Due to the lack of real EnMAP hyperspectral satellite im-
ages, the German Aerospace Center simulated EnMAP im-
ages by adapting the sensor specifications of an airborne
hyperspectral image to those of the planned EnMAP sen-
sor [25]. As the spectral resolution of our ASD FieldSpec 4
was resampled to the resolution of EnMAP, corresponding
PLSR models were ready to be applied to a simulated En-
MAP image.

Figure 5 shows on the left a section of the im-
age presenting an arable field and a beach section in
Mecklenburg-Western-Pomerania in a true color compos-
ite. PLSR models were applied to pure soil pixels in
the image (field and beach section), resulting in 2D-soil-
parameter maps. The figure in the middle represents the
potassium content. Humus is shown on the right. While
the qualitative value distribution seems reasonable after a
visual reviewof the exemplarymaps, theunderlyingquan-
titative parameter value ranges do not match with the ex-
pected values in Table 1. Themost likely reason is different
parameter value ranges due to different soil types of the
experimental field (Brandenburg) and the EnMAP field in
Mecklenburg-Western-Pomerania. However, as soil data of
the EnMAPfield soil are not available, a reliable validation
process is not possible.

Figure 5: Simulated EnMAP image as true color image (left) and 2D-
soil-parameter maps of Potassium (middle) and Humus (right). The
database consists simulated EnMAP images provided by the DLR,
Germany.

6 Conclusion & outlook

We proposed an approach to deriving detailed 2D-/3D-
soil-parameter maps that cover the whole root zone of
crops. For this purpose, we use hyperspectral remote sens-
ing, underground soil sensors, and state-of-the-art ma-
chine learning algorithms to create computational models
able to estimate the values that can currently only be de-
termined using prohibitively expensive soil-sampling and
underground sensing.

Fundamental steps of the 2D-soil-parameter map ap-
proach have been realized, and results indicate that our
approach is promising. To continue our work, especially
the test of the 3D-soil-parameter-maps concept using ma-
chine learning, we need to collect more data. In the fu-
ture, we plan to conduct extensive field experiments in-
volving soil sampling, underground sensing, as well as
aerial sensing using a hyperspectral Headwall UAV sys-
tem. In this way, we can validate our approach to gener-
ating high-resolution 2D-surface-soil-parametermaps and
further complete our pipeline. If we are able to transfer the
results obtained from soil samples and data collected with
our handheld spectrometers to UAV hyperspectral images,
we will eliminate the need for future soil sampling and
handheld spectroscopic data acquisition. This makes the
proposed 2D-surface-soil-parametermaps approachmuch
more likely to become a feasible method of agricultural
practice.

Several potential issues can be expected when apply-
ing our approach to real hyperspectral remotely sensed im-
ages. With UAV-acquired images, we are currently trying
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Table 3: Statistical comparison of the PLSR models. The best statistical results (R² and relRMSE) and the corresponding number of latent
variables (LV) are listed for each parameter. If the best result was achieved including CR, it is referred with “CR”.

No resampling (2151 bands) Headwall resampling (537 bands) EnMAP resampling (242 bands)
R² relRMSE [%] #LV CR R² relRMSE [%] #LV CR R² relRMSE [%] #LV CR

N 0.62 12.54 5 – 0.60 12.88 6 – 0.59 13.09 6 –
P 0.29 16.1 2 – 0.30 16.06 2 – 0.28 16.25 2 –
Ca 0.39 12.69 2 – 0.34 12.76 2 – 0.52 11.23 5 CR
Mg 0.72 11.83 6 – 0.70 12.46 6 – 0.67 12.85 6 –
K 0.82 11.07 8 CR 0.51 18.38 6 – 0.95 6.15 12 –
TOC 0.94 5.67 10 – 0.92 6.35 10 CR 0.98 3.37 12 –
Humus 0.93 5.94 10 – 0.93 5.99 11 CR 0.97 3.76 12 –

to determine whether the model needs to be adapted to be
effective in neighboring fields and soils. When it comes to
using satellite data, the quality of the results is likely to de-
crease due to the noise introduced by the atmosphere, and
the reduced spectral and spatial resolution. Feedback from
farmers indicate, that even data of lower accuracy would
be a benefit.Whether the quality of our described results is
sufficient for high-precision treatments remains to be de-
termined.

The main limitation of our 3D-soil-parameter estima-
tion concept using machine learning is the relative data
scarcity that can be obtained using soil sampling and
underground sensors. This limits our ability to address
the problem using state-of-the-art machine learning tech-
niques, which require large amounts of data to train deep
neural nets. Until more such data become available, a
prospective workaround is to create ways to synthesize
data using simulators.

Acknowledgment: The authors would like to thank the
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