Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 30, 2021

Model based optimization of a novel ventricular assist device

Iterative parameter estimation and optimal control of physiological variables of a novel dual pump setup for left ventricular assist devices

Modelbasierte Optimierung eines neuartigen Herzunterstützungssystems
Iterative Parameterschätzung und optimale physiologische Regelung eines neuartigen Zwei-Pumpen-Herzunterstützungssystems
  • Tobias Salesch

    Tobias Salesch, M.Sc., is a research associate and group manager of the biomedical systems group at the Institute of Automatic Control, RWTH Aachen University. His main research focus is the development of advanced control methods for the physiologic control of the technically supported cardiovascular system. He also researches on supportive nursing robotics, design and control of test benches mimicking the cardiovascular system, and innovative smart health devices.

    EMAIL logo
    , Jonas Gesenhues

    Dr.-Ing. Jonas Gesenhues is head of the biomedical systems group at the Institute of Automatic Control, RWTH Aachen University. Amongst creating novel technical solutions for medical applications based on advanced control methods, his research focus is on promoting digitization in healthcare by developing new concepts and strategies to stimulate innovation and to simplify the transfer of new ideas and technologies into products.

    , Moriz Habigt

    Dr. med. Moriz Habigt is a physician and a research associate at the Anaesthesiology Clinic of the University Hospital of Aachen. The focus of his research lies on the interaction of cardiac autoregulation mechanisms and on the development of physiological control algorithms for Ventricular Assist Devices (VADs).

    , Mare Mechelinck

    mmechelinck@ukaachen.de

    , Marc Hein and Dirk Abel

    Univ.-Prof. Dr.-Ing. Dirk Abel is head of the Institute of Automatic Control, RWTH Aachen University. Main fields of activity: model-predictive-control, robust control, nonlinear control, identification and simulation of dynamic systems, analysis and synthesis of discretely controlled systems, and rapid control prototyping.

Abstract

This paper presents an optimization-based control scheme for a novel left ventricular assist device. This cardiac support system consists of two pumps connected in series and a buffer reservoir in between them. This novel concept for relieving the left ventricle is designed to allow the pre- and afterload on the heart to be explicitly adjusted and independently of each other. The first pump controls the preload of the heart with a known physiological controller. With an iterative model-based optimization, the afterload is minimized by the second pump while complying with all constraints. The proof of the control concept and a comparison to the classical single pump left-sided cardiac support is performed on a hardware-in-the-loop test bench. The results show that with the new left ventricular assist device concept, the afterload can be reduced compared to the classical cardiac support.

Zusammenfassung

Dieser Beitrag präsentiert eine optimierungsbasierte Regelung für ein neuartiges linksseitiges Herzunterstützungssystem. Das System besteht aus zwei in Reihe geschalteten Pumpen mit einem zwischen die Pumpen geschalteten Pufferreservoir. Dieses neuartige Entlastungskonzept wurde entwickelt, um die Vor- und Nachlast des linken Ventrikels gezielt und unabhängig voneinander einstellen zu können. Die Vorlast des Herzens wird durch die erste Pumpe und einen bekannten physiologischen Vorlastregler eingestellt. Mit einer iterativ modellbasierten Optimierung wird die Nachlast durch die zweite Pumpe minimiert und gleichzeitig werden alle im System vorhandenen Beschränkungen berücksichtigt. Es werden ein Proof-of-Concept und ein Vergleich mit dem aktuellen Stand der Technik aus der linksseitigen Herzunterstützung auf einem Hardware-in-the-Loop Prüfstand erbracht. Die Ergebnisse zeigen, dass mit dem neuartigen Konzept zur Herzunterstützung die Nachlast im Vergleich zur klassischen Herzunterstützung verringert werden kann.

Funding source: European Commission

Award Identifier / Grant number: EFRE-0400147

Funding statement: This work was supported by the European Union and the state North-Rhine Westphalia during the EFRE (Europäische Fonds für regionale Entwicklung) project „Validierung eines Herzunterstützungssystems zur gezielten Lasteinstellung“ (LastVAD, EFRE-0400147). Parts of the presented dual LVAD concept are published in patent number DE102017112437.

About the authors

Tobias Salesch

Tobias Salesch, M.Sc., is a research associate and group manager of the biomedical systems group at the Institute of Automatic Control, RWTH Aachen University. His main research focus is the development of advanced control methods for the physiologic control of the technically supported cardiovascular system. He also researches on supportive nursing robotics, design and control of test benches mimicking the cardiovascular system, and innovative smart health devices.

Jonas Gesenhues

Dr.-Ing. Jonas Gesenhues is head of the biomedical systems group at the Institute of Automatic Control, RWTH Aachen University. Amongst creating novel technical solutions for medical applications based on advanced control methods, his research focus is on promoting digitization in healthcare by developing new concepts and strategies to stimulate innovation and to simplify the transfer of new ideas and technologies into products.

Moriz Habigt

Dr. med. Moriz Habigt is a physician and a research associate at the Anaesthesiology Clinic of the University Hospital of Aachen. The focus of his research lies on the interaction of cardiac autoregulation mechanisms and on the development of physiological control algorithms for Ventricular Assist Devices (VADs).

Mare Mechelinck

Dirk Abel

Univ.-Prof. Dr.-Ing. Dirk Abel is head of the Institute of Automatic Control, RWTH Aachen University. Main fields of activity: model-predictive-control, robust control, nonlinear control, identification and simulation of dynamic systems, analysis and synthesis of discretely controlled systems, and rapid control prototyping.

References

1. B. Schmack, A. Weymann, A.-F. Popov, N. P. Patil, A. Sabashnikov, J. Kremer, M. Farag, A. Brcic, C. Lichtenstern, M. Karck and A. Ruhparwar, “Concurrent left ventricular assist device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist protek-duo TandemHeart to preempt right heart failure,” Medical Science Monitor Basic Research, vol. 22, pp. 53–57, 2016.10.12659/MSMBR.898897Search in Google Scholar

2. A. Prinzing, U. Herold, A. Berkefeld, M. Krane, R. Lange and B. Voss, “Left ventricular assist devices—current state and perspectives,” Journal of Thoracic Disease, vol. 8, no. 8, pp. E660–E666, aug 2016.10.21037/jtd.2016.07.13Search in Google Scholar

3. J. J. Han, M. A. Acker and P. Atluri, “Left ventricular assist devices,” Circulation, vol. 138, no. 24, pp. 2841–2851, dec 2018.10.1161/CIRCULATIONAHA.118.035566Search in Google Scholar

4. D. Mancini and P. C. Colombo, “Left ventricular assist devices,” Journal of the American College of Cardiology, vol. 65, no. 23, pp. 2542–2555, jun 2015.10.1016/j.jacc.2015.04.039Search in Google Scholar

5. G. Savarese and L. H. Lund, “Global public health burden of heart failure,” Cardiac Failure Review, vol. 03, no. 01, p. 7, 2017.10.15420/cfr.2016:25:2Search in Google Scholar

6. J. K. Kirklin and D. C. Naftel, “Mechanical circulatory support,” Circulation: Heart Failure, vol. 1, no. 3, pp. 200–205, sep 2008.10.1161/CIRCHEARTFAILURE.108.782599Search in Google Scholar PubMed PubMed Central

7. H. S. Lim, N. Howell and A. Ranasinghe, “The physiology of continuous-flow left ventricular assist devices,” Journal of Cardiac Failure, vol. 23, no. 2, pp. 169–180, feb 2017.10.1016/j.cardfail.2016.10.015Search in Google Scholar PubMed

8. A. N. Rosenbaum, A. L. Clavell, J. M. Stulak and A. Behfar, “Correction of high afterload improves low cardiac output in patients supported on left ventricular assist device therapy,” ASAIO Journal, vol. 67, no. 1, pp. 32–38, mar 2020.10.1097/MAT.0000000000001159Search in Google Scholar PubMed

9. G. Ochsner, M. J. Wilhelm, R. Amacher, A. Petrou, N. Cesarovic, S. Staufert, B. Röhrnbauer, F. Maisano, C. Hierold, M. Meboldt and M. S. Daners, “In vivo evaluation of physiologic control algorithms for left ventricular assist devices based on left ventricular volume or pressure,” ASAIO Journal, vol. 63, no. 5, pp. 568–577, 2017.10.1097/MAT.0000000000000533Search in Google Scholar PubMed

10. A. H. AlOmari, A. V. Savkin, M. Stevens, D. G. Mason, D. L. Timms, R. F. Salamonsen and N. H. Lovell, “Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review,” Physiol Meas, vol. 34, no. 1, pp. R1-27, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/23242235.10.1088/0967-3334/34/1/R1Search in Google Scholar PubMed

11. R. F. Salamonsen, D. G. Mason and P. J. Ayre, “Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart,” Artificial Organs, vol. 35, no. 3, pp. E47–E53, mar 2011.10.1111/j.1525-1594.2010.01168.xSearch in Google Scholar PubMed

12. J. Andersson, J. Åkessona, F. Casellad and M. Diehl, “Integration of CasADi and JModelica.org,” in Proceedings from the 8th International Modelica Conference, Technical Univeristy, Dresden, Germany. Linköping University Electronic Press, jun 2011.10.3384/ecp11063218Search in Google Scholar

13. J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl and H. Tummescheit, “Modeling and optimization with optimica and JModelica.org—languages and tools for solving large-scale dynamic optimization problems,” Computers & Chemical Engineering, vol. 34, no. 11, pp. 1737–1749, nov 2010.10.1016/j.compchemeng.2009.11.011Search in Google Scholar

14. J. Gesenhues, M. Hein, M. Habigt, M. Mechelinck, T. Albin and D. Abel, “Nonlinear object-oriented modeling based optimal control of the heart: Performing precise preload manipulation maneuvers using a ventricular assist device,” in 2016 European Control Conference (ECC). IEEE, jun 2016.10.1109/ECC.2016.7810603Search in Google Scholar

15. J. F.-H. Gesenhues, “Object-oriented model-based characterization, monitoring and control of the technically assisted cardiovascular system,” Ph.D. dissertation, 2019.Search in Google Scholar

16. M. Habigt, M. Ketelhut, J. Gesenhues, F. Schrödel, M. Hein, M. Mechelinck, T. Schmitz-Rode, D. Abel and R. Rossaint, “Comparison of novel physiological load-adaptive control strategies for ventricular assist devices,” Biomedical Engineering / Biomedizinische Technik, vol. 62, no. 2, jan 2017.10.1515/bmt-2016-0073Search in Google Scholar PubMed

17. T. Salesch, J. Gesenhues, M. Habigt, M. Mechelinck, M. Hein and D. Abel, “Parameter optimization and validation of a cost efficient hybrid mockloop of the cardiovascular system,” Submitted for publication. Currently under review.Search in Google Scholar

18. G. Ochsner, R. Amacher, A. Amstutz, A. Plass, M. S. Daners, H. Tevaearai, S. Vandenberghe, M. J. Wilhelm and L. Guzzella, “A novel interface for hybrid mock circulations to evaluate ventricular assist devices,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 507–516, feb 2013.10.1109/TBME.2012.2230000Search in Google Scholar PubMed

19. J. Cowger, F. D. Pagani, J. W. Haft, M. A. Romano, K. D. Aaronson and T. J. Kolias, “The development of aortic insufficiency in left ventricular assist device-supported patients,” Circulation: Heart Failure, vol. 3, no. 6, pp. 668–674, nov 2010.10.1161/CIRCHEARTFAILURE.109.917765Search in Google Scholar PubMed PubMed Central

20. E. L. Wu, M. Kleinheyer and A. Ündar, “Pulsatile vs. continuous flow,” in Mechanical Circulatory and Respiratory Support. Elsevier, 2018, pp. 379–406.10.1016/B978-0-12-810491-0.00012-6Search in Google Scholar

Received: 2021-02-01
Accepted: 2021-05-17
Published Online: 2021-06-30
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0031/html
Scroll to top button