Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 12, 2022

Review of pose estimation within European ship-automation projects using GNSS-based navigation

Review von GNSS-basierten Navigationsalgorithmen zur Bestimmung der Pose in europäischen Schiffsautomatisierungsprojekten
  • Shuchen Liu

    Shuchen Liu received his B. Sc. degree from Shanghai Jiao Tong University in 2014 and his M. Sc. degree from RWTH Aachen University in 2017, both in automation engineering. Since 2017, he has been a research associate and pursuing his Ph.D. degree at the Institute of Automatic Control, RWTH Aachen University. His research activities focus on robust state estimation and integrity monitoring of GNSS-based navigation systems for different applications, such as automobiles and vessels.

    EMAIL logo
    , Jan-Jöran Gehrt

    Jan-Jöran Gehrt received his M. Sc. degree in mechanical engineering in 2015 and the Dr.-Ing. degree in 2021 from RWTH Aachen University. His research interests cover Galileo-based localization using different estimation methods and their applications to railway vehicles and vessels.

    and Dirk Abel

    Dirk Abel received the Dipl.-Ing degree in mechanical engineering in 1983 and the Dr.-Ing. degree in 1987 from RWTH Aachen University. There, in 2001, he became full professor and head of the Institute of Automatic Control. From 2009 to 2017, he was a member of the supervisory board of KUKA AG, Germany. Professor Abel’s main research area covers model predictive control, nonlinear and robust control, and rapid control prototyping in different application areas.

Abstract

Accurate and reliable navigation systems are necessary to deploy autonomous shipping. For this purpose, georeferenced vehicle-pose information is often generated using sensor data fusion consisting of GNSS data, inertial measurement, and other applicable aiding sensors. This technical overview summarizes current European projects and international work in the field of GNSS-based maritime navigation and introduces and discusses the sensors and methods involved. The review focuses on approaches with proprioceptive sensor technology. Therefore, as a limitation, environment sensing algorithms (e. g., SLAM) are explicitly not included. It is concluded that highly accurate and reliable sensor fusion should include complementary and redundant onboard sensors, which are tightly coupled.

Zusammenfassung

Für die zukünftige Realisierung autonomer Schifffahrt sind genaue und zuverlässige Navigationssysteme erforderlich. Zu diesem Zweck werden georeferenzierte Navigationsinformationen häufig durch Sensordatenfusion erzeugt, wobei GNSS-Informationen und Trägheitsmessungen und gegebenenfalls weitere Sensordaten fusioniert werden. Dieser technische Überblick fasst aktuelle europäische Projekte und internationale Arbeiten auf dem Gebiet der GNSS-basierten maritimen Navigation zusammen, stellt die beteiligten Sensoren und Methoden vor und diskutiert diese. Der Artikel konzentriert sich auf Ansätze mit propriozeptiver Sensorik. Daher werden Ansätze der Umgebungswahrnehumg (z. B. SLAM) ausdrücklich nicht berücksichtigt. Die Diskussion zeigt, dass eine hochpräzise und zuverlässige Sensorfusion komplementäre und redundante Onboard-Sensoren umfassen sollte, die eng miteinander gekoppelt sind.

About the authors

Shuchen Liu

Shuchen Liu received his B. Sc. degree from Shanghai Jiao Tong University in 2014 and his M. Sc. degree from RWTH Aachen University in 2017, both in automation engineering. Since 2017, he has been a research associate and pursuing his Ph.D. degree at the Institute of Automatic Control, RWTH Aachen University. His research activities focus on robust state estimation and integrity monitoring of GNSS-based navigation systems for different applications, such as automobiles and vessels.

Jan-Jöran Gehrt

Jan-Jöran Gehrt received his M. Sc. degree in mechanical engineering in 2015 and the Dr.-Ing. degree in 2021 from RWTH Aachen University. His research interests cover Galileo-based localization using different estimation methods and their applications to railway vehicles and vessels.

Dirk Abel

Dirk Abel received the Dipl.-Ing degree in mechanical engineering in 1983 and the Dr.-Ing. degree in 1987 from RWTH Aachen University. There, in 2001, he became full professor and head of the Institute of Automatic Control. From 2009 to 2017, he was a member of the supervisory board of KUKA AG, Germany. Professor Abel’s main research area covers model predictive control, nonlinear and robust control, and rapid control prototyping in different application areas.

References

1. International Maritime Organization (IMO). 2002. IMO Resolution A.915(22) Revised Maritime Policy and Requirements for a Future GNSS. Tech. Rep., IMO, London.Search in Google Scholar

2. IMO. 2000. Performance Standards For Marine Transmitting Heading Devices (THDs). Tech. Rep., IMO, London.Search in Google Scholar

3. Klepsvik, J. O., P. B. Ober and M. Baldauf. 2007. A Critical Look at the IMO Requirements for GNSS. In: Proc. of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), pp. 1931–1942.Search in Google Scholar

4. Bolbot, V., G. Theotokatos, E. Boulougouris, L. Wennersberg, H. Nordahl, Ø. J. Rødseth, J. Faivre and M. M. Colella. 2020. Paving The Way Toward Autonomous Shipping Development for European Waters – The AUTOSHIP Project. In: Autonomous Ships, pp. 1–6.Search in Google Scholar

5. Sandler, M., R. Ziebold, A. Hesselbarth, J. Alberding, M. Uhlemann and M. Hoppe. 2018. Verbundprojekt “Leit- und Assistenzsysteme zur Erhöhung der Sicherheit der Schifffahrt auf Inlandwasserstraßen” (LAESSI), Teilvorhaben: Landseitige Dienste und Datenübertragung: Schlussbericht. Tech. Rep., Wildau.Search in Google Scholar

6. Medina, D., A. Heßelbarth, R. Büscher, R. Ziebold and J. Garcíıa. 2018. On the Kalman Filtering Formulation for RTK Joint Positioning and Attitude Quaternion Determination. In: Proc. of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, pp. 597–604.10.1109/PLANS.2018.8373432Search in Google Scholar

7. Yaylaa, G., S. V. Baelena, G. Peetersa, M. R. Afzala, T. Catoora, Y. Sing and P. Slaets. Accuracy Benchmark of Galileo and EGNOS for Inland Waterways. 2020. In: Proc. of the International Ship Control Systems Symposium (iSCSS), pp. 1–10.10.24868/issn.2631-8741.2020.009Search in Google Scholar

8. Kotzé, M., A. B. Junaid, M. R. Afzal, G. Peeters and P. Slaets. 2019. Use of Uncertainty Zones for Vessel Operation in Inland Waterways. J. of Physics: Conf. Series 1357: 1–11.10.1088/1742-6596/1357/1/012031Search in Google Scholar

9. Ziebold, R., A. Heßelbarth, C. Lass, A. Lutz, A. Lachmayer, M. Sandler, M. Hoppe, J. Zimmermann, M. Uhlemann, J. Alberding, T. Höfler, J. Zimmermann, R. Raulefs and M. Wirsing. 2020. First Steps towards Automatic Entering of Inland Waterway Locks using Precise Point Positioning and Nearfield Sensors [abstract]. In: Proc. of European Navigation Conference 2020 (ENC 2020).Search in Google Scholar

10. Lass, C. and R. Ziebold. 2021. Development of Precise Point Positioning Algorithm to Support Advanced Driver Assistant Functions for Inland Vessel Navigation. TransNav the International Journal on Marine Navigation and Safety of Sea Transportation 15(4): 781–789.10.12716/1001.15.04.09Search in Google Scholar

11. Wang, W., T. Shan, P. Leoni, D. Fernandez-Gutierrez, D. Meyers, C. Ratti and D. Rus. 2020. Roboat II: A Novel Autonomous Surface Vessel for Urban Environments. In: Proc. of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1740–1747.10.1109/IROS45743.2020.9340712Search in Google Scholar

12. Johnson, G. and P. Swaszek. 2014. Feasibility Study of R-Mode using MF DGPS Transmissions. Tech. Rep., German Federal Waterways and Shipping Administration, Federal Waterways and Shipping Agency, Northern Region Office.Search in Google Scholar

13. Gehrt, J.-J., R. Zweigel, S. Roy, C. Büskens, M. Kurowski, T. Jeinsch, A. Schubert, M. Gluch, O. Simanski, E. Pairet-Garcia, W. Bruhn, F. Diegel and D. Abel. 2019. Optimal Maneuvering and Control of Cooperative Vessels within Harbors. In J. of Physics: Conference Series, International Maritime and Port Technology and Development Conference and International Conference on Maritime Autonomous Surface Ships, 13–14 November 2019, Trondheim, Norway, vol. 1357. IOP Publishing, pp. 1–12.10.1088/1742-6596/1357/1/012019Search in Google Scholar

14. Hüffmeier, J., L. Sanchez-Heres, R. Rylander, S. Nord, S. Alissa, A. Bagge, P. Bergljung, P. Henkel, A. Rydlinger and P. Hansen. 2020. PREParE SHIPS for Automated Ship Passages by Modern Decision Support Tools by Exchanging Future Positions. IOP Conference Series: Materials Science and Engineering 929: 1–12.10.1088/1757-899X/929/1/012001Search in Google Scholar

15. International Maritime Organization (IMO). 2002. SOLAS Chapter V: Safety of Navigation. Tech. Rep., IMO, London.Search in Google Scholar

16. Ziebold, R., D. Medina, M. Romanovas, C. Lass and S. Gewies. 2018. Performance Characterization of GNSS/IMU/DVL Integration under Real Maritime Jamming Conditions. Sensors 18: 1–20.10.3390/s18092954Search in Google Scholar PubMed PubMed Central

17. Kealy, A. and T. Moore. 2017. Land and Maritime Applications. In: (P. J. Teunissen and O. Montenbruck, eds) Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing, pp. 841–875.10.1007/978-3-319-42928-1_29Search in Google Scholar

18. Wübbena, G., A. Bagge and M. Schmitz. 2001. Network-Based Techniques for RTK Applications. In: Proc. of the GPS Symposium, GPS JIN 2001. GPS Society, Japan Institute of Navigation, pp. 14–16.Search in Google Scholar

19. Grant, A., P. Williams, N. Ward and S. Basker. 2009. GPS Jamming and the Impact on Maritime Navigation. J. of Navigation 62(2): 173–187.10.1017/S0373463308005213Search in Google Scholar

20. Marcos, E. P., A. Konovaltsev, S. Caizzone, M. Cuntz, K. Yinusa, W. Elmarissi and M. Meurer. 2018. Interference and Spoofing Detection for GNSS Maritime Applications using Direction of Arrival and Conformal Antenna Array. In: Proc. of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). Institute of Navigation, pp. 2907–2922.10.33012/2018.15901Search in Google Scholar

21. Gehrt, J.-J., R. Zweigel, T. Konrad and D. Abel. 2018. DVL-aided Navigation Filter for Maritime Applications. Proc. of 11th IFAC CAMS 2018 51(29): 418–423. Elsevier BV.10.1016/j.ifacol.2018.09.451Search in Google Scholar

22. Groves, P. D. 2013. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 2nd edition. Artech House. ISBN 978-1-60807-005-3.Search in Google Scholar

23. Farrell, J. A. and J. Wendel. 2017. GNSS/INS Integration. In: (P. J. Teunissen and O. Montenbruck, eds) Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing, pp. 811–840.10.1007/978-3-319-42928-1_28Search in Google Scholar

24. Bhatti, U. I. and W. Y. Ochieng. 2007. Failure Modes and Models for Integrated GPS/INS Systems. J. of Navigation 60(2): 327–348.10.1017/S0373463307004237Search in Google Scholar

25. Rudolph, D. and T. A. Wilson. 2012. Doppler Velocity Log Theory and Preliminary Considerations for Design and Construction. In: 2012 Proc. of IEEE Southeastcon. IEEE, pp. 1–7.10.1109/SECon.2012.6196918Search in Google Scholar

26. Rigby, P., O. Pizarro and S. Williams. 2006. Towards Geo-Referenced AUV Navigation Through Fusion of USBL and DVL Measurements. In: Proc. of OCEANS 2006. IEEE, pp. 1–6.10.1109/OCEANS.2006.306898Search in Google Scholar

27. Liu, S., J.-J. Gehrt, R. Zweigel and D. Abel. 2021. Filter-Bank Approach within Tightly-Coupled Navigation System for Integrity Enhancement in Maritime Applications. In: Proc. of 2021 European Control Conference. IEEE, pp. 1845–1850.10.23919/ECC54610.2021.9655098Search in Google Scholar

28. Titterton, D. and J. L. Weston. 2004. Strapdown Inertial Navigation Technology, ser. Electromagnetics and Radar Series. Institution of Engineering and Technology, ISBN 9780863413582.10.1049/PBRA017ESearch in Google Scholar

29. Konrad, T., J.-J. Gehrt, J. Lin, R. Zweigel and D. Abel. 2018. Advanced State Estimation for Navigation of Automated Vehicles. Annual Reviews in Control 46: 181–195.10.1016/j.arcontrol.2018.09.002Search in Google Scholar

30. Kaplan, E. D. and C. J. Hegarty. 2006. Understanding GPS. 2nd edition. Artech House. ISBN 978-1630810580.Search in Google Scholar

31. Julier, S. J. and J. K. Uhlman. 2004. Unscented Filtering and Nonlinear Estimation. Proc of the IEEE 92(3): 401–422. Institute of Electrical and Electronics Engineers (IEEE).10.1109/JPROC.2003.823141Search in Google Scholar

32. Gehrt, J.-J., S. Liu, M. Nitsch, W. Bruhn, S. Rohde, D. Abel and R. Zweigel. 2020. Robust and Reliable Multi-Sensor Navigation Filter for Maritime Application. Proc. of IFAC World Congress 2020 53(2): 14 482–14 487. Elsevier BV.10.1016/j.ifacol.2020.12.1450Search in Google Scholar

33. Wen, W., T. Pfeifer, X. Bai and L.-T. Hsu. 2021. Factor Graph Optimization for GNSS/INS Integration: A Comparison with the Extended Kalman Filter. J. of the Institute of Navigation 68(2): 315–331.10.1002/navi.421Search in Google Scholar

34. Brown, R. G. 1992. A Baseline GPS RAIM Scheme and a Note on the Equivalence of Three RAIM Methods. Journal of The Insititute of Navigation 39(3): 301–316.10.1002/j.2161-4296.1992.tb02278.xSearch in Google Scholar

35. Liu, S., J.-J. Gehrt, D. Abel and R. Zweigel. 2019. Dual-Constellation Aided High Integrity and High Accuracy Navigation Filter for Maritime Applications. In: Proc. of the 2019 International Technical Meeting of The Institute of Navigation. Institute of Navigation, pp. 762–774.10.33012/2019.16723Search in Google Scholar

36. Zhu, N., J. Marais, D. Betaille and M. Berbineau. 2018. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Transactions on Intelligent Transportation Systems 19(9): 2762–2778.10.1109/TITS.2017.2766768Search in Google Scholar

37. Drevelle, V. and P. Bonnifait. 2010. A Set-Membership Approach for High Integrity Height-Aided Satellite Positioning. GPS Solutions 15(4): 357–368.10.1007/s10291-010-0195-3Search in Google Scholar

38. Liu, S., J.-J. Gehrt, D. Abel and R. Zweigel. 2021. Identification of Multi-Faults in GNSS Signals using RSIVIA under Dual Constellation. Acta Cybernetica 25(1): 69–84.10.14232/actacyb.285315Search in Google Scholar

39. Brenner, M. 1996. Integrated GPS/Inertial Fault Detection Availability. Navigation 43(2): 111–130.10.1002/j.2161-4296.1996.tb01920.xSearch in Google Scholar

40. Wendel, J., O. Meister and R. Mönikes. 2008. GPS/INS Integrity Monitoring Using a Modified GPB1 Filter Bank. In: Proc. of the 21st International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GNSS 2008), pp. 1589–1595.Search in Google Scholar

41. Dorn, M., J. O. Filwarny and M. Wieser. 2017. Inertially-Aided RTK Based on Tightly-Coupled integration using Low-Cost GNSS Receivers. In: 2017 European Navigation Conference (ENC). IEEE, pp. 186–197.10.1109/EURONAV.2017.7954208Search in Google Scholar

42. Bronk, K., P. Koncicki, A. Lipka, R. Niski and B. Wereszko. 2021. Concept, Signal Design, and Measurement Studies of the R-mode Baltic system. NAVIGATION, J. of the Institute of Navigation 68(3): 465–483.10.1002/navi.443Search in Google Scholar

43. Gehrt, J.-J., R. Zweigel and D. Abel. 2021. Fast GNSS Ambiguity Resolution under Frequent and Persistent Outages of Differential Data for Vessel Navigation. In: Proc. of 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021). Institute of Navigation, pp. 4116–4127.10.33012/2021.18071Search in Google Scholar

44. Gehrt, J.-J. 2021. Robuste und hochgenaue Zustandsschätzung für die autonome Schifffahrt. Ph.D. dissertation, Rheinisch-Westfälisch Technische Hochschue (RWTH), Aachen.Search in Google Scholar

45. Nitsch, M., J.-J. Gehrt, R. Zweigel and D. Abel. 2021. Embedded Tightly Coupled INS/DGPS-DGAL Navigation Filter on a Mass-Market Single-Board Computer. In: Proc. of 2021 International Conference on Localization and GNSS (ICL-GNSS). IEEE, pp. 1–7.10.1109/ICL-GNSS51451.2021.9452196Search in Google Scholar

46. Henkel, P. and A. Sperl. 2016. Precise RTK positioning with GPS/INS Tight Coupling and Multipath Estimation. In: Proceedings of the International Technical Meeting (ION ITM). Institute of Navigation, pp. 1015–1023.10.33012/2016.13480Search in Google Scholar

47. Henkel, P. and M. Iafrancesco. 2014. Tightly Coupled Position and Attitude Determination with Two Low-Cost GNSS Receivers. In: 11th International Symposium on Wireless Communications Systems (ISWCS). IEEE, pp. 895–900.10.1109/ISWCS.2014.6933480Search in Google Scholar

Received: 2021-12-09
Accepted: 2022-04-01
Published Online: 2022-05-12
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0169/html
Scroll to top button