Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 28, 2022

Intuitive and immersive teleoperation of robot manipulators for remote decontamination

Intuitive und immersive Teleoperation von Robotermanipulatoren für die Dekontamination aus der Ferne

  • Michael Fennel

    Michael Fennel is a researcher and PhD student at the Intelligent Sensor-Actuator-Systems Laboratory of the Karlsruhe Institute of Technology. His research interests include robotics, autonomous systems, haptic systems, and human machine interaction.

    EMAIL logo
    , Antonio Zea

    Dr.-Ing. Antonio Zea is a researcher at the Intelligent Sensor-Actuator-Systems Laboratory of the Karlsruhe Institute of Technology. His research interests include robot teleoperation with VR/AR and human machine interaction.

    and Uwe D. Hanebeck

    Prof. Dr.-Ing. Uwe D. Hanebeck is a chaired professor of Computer Science at the Karlsruhe Institute of Technology in Germany and director of the Intelligent Sensor-Actuator-Systems Laboratory. His research interests include information fusion, nonlinear state estimation, and stochastic modeling.

Abstract

Worker safety is one of the most important aspects of decontamination tasks in hazardous environments. This motivates the development of (semi-) autonomous robotic systems that can be teleoperated from a safe distance using simple commands such as ‘move the manipulator over there and grab’. In this paper, we introduce a new control station concept called Digital Twin Control System aimed at robots with manipulator arms. It consists of three components: (1) A unified communication interface that abstracts the remote robot’s functionalities into easy-to-use interaction modes, (2) an immersive visualization and assistant system to operate the interface, and (3) a haptic rendering system that can simulate arbitrary robot arms. We demonstrate how the proposed system can be used by untrained operators to pick up contaminated objects remotely in a test scenario.

Zusammenfassung

Bei Dekontaminationsaufgaben ist der Schutz der Arbeiter in gefährlichen Umgebungen von zentraler Bedeutung. Dies motiviert die Entwicklung von (semi-)autonomen Robotersystemen, die sich aus sicherer Entfernung mit einfachen Befehlen wie ,,bewege den Manipulator nach dort und greife“ teleoperieren lassen. Diese Arbeit stellt ein neues Leitstandkonzept für Roboter mit Manipulatorarmen im Sinne eines ,,Digital Twin Control System“ vor. Es besteht aus drei Komponenten: (1) einer einheitlichen Kommunikationsschnittstelle, welche die gesamte Funktionalität des Roboters mit einfach zu bedienenden Interaktionsmoden abstrahiert, (2) einem immersiven Assistenz- und Visualisierungssystem, um die Schnittstelle zu bedienen, und (3) einem haptischen Renderingsystem, das beliebige Roboterarme simulieren kann. Ein Testszenario zeigt, wie ein Operator kontaminierte Objekte ohne Vorabtraining aus der Ferne vom Boden aufheben kann.

Keywords: AR; haptics; teleoperation; VR
Schlagwörter: AR; Haptik; Teleoperation; VR

Corresponding author: Michael Fennel, Intelligent Sensor-Actuator-Systems Laboratory, Karlsruhe Institute of Technology, Karlsruhe, Germany, e-mail:

About the authors

Michael Fennel

Michael Fennel is a researcher and PhD student at the Intelligent Sensor-Actuator-Systems Laboratory of the Karlsruhe Institute of Technology. His research interests include robotics, autonomous systems, haptic systems, and human machine interaction.

Antonio Zea

Dr.-Ing. Antonio Zea is a researcher at the Intelligent Sensor-Actuator-Systems Laboratory of the Karlsruhe Institute of Technology. His research interests include robot teleoperation with VR/AR and human machine interaction.

Uwe D. Hanebeck

Prof. Dr.-Ing. Uwe D. Hanebeck is a chaired professor of Computer Science at the Karlsruhe Institute of Technology in Germany and director of the Intelligent Sensor-Actuator-Systems Laboratory. His research interests include information fusion, nonlinear state estimation, and stochastic modeling.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the ROBDEKON project (grant No. 13N14675) of the German Federal Ministry of Education and Research.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. Rönnau, G. Liebel, T. Schamm, et al.., “Robust 3D scan segmentation for teleoperation tasks in areas contaminated by radiation,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2010, pp. 2419–2424.10.1109/IROS.2010.5648926Search in Google Scholar

[2] A. Montazeri and J. Ekotuyo, “Development of dynamic model of a 7DOF hydraulically actuated tele-operated robot for decommissioning applications,” in 2016 American Control Conference (ACC), IEEE, 2016, pp. 1209–1214.10.1109/ACC.2016.7525082Search in Google Scholar

[3] P. Besset and C. J. Taylor, “Inverse kinematics for a redundant robotic manipulator used for nuclear decommissioning,” in 2014 UKACC International Conference on Control (CONTROL), IEEE, 2014, pp. 56–61.10.1109/CONTROL.2014.6915115Search in Google Scholar

[4] M. Mende, S. Notheis, D. Stogl, et al.., “Environment modeling and path planning for a semi-autonomous manipulator system for decontamination and release measurement,” in 2014 World Automation Congress (WAC), IEEE, 2014, pp. 54–59.10.1109/WAC.2014.6935654Search in Google Scholar

[5] W. Lee, M. Hirai, and S. Hirose, “Gunryu III: reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor,” Adv. Robot., vol. 27, no. 14, pp. 1099–1111, 2013. https://doi.org/10.1080/01691864.2013.812174.Search in Google Scholar

[6] J. Petereit, J. Beyerer, T. Asfour, et al.., “ROBDEKON: robotic systems for decontamination in hazardous environments,” in 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), IEEE, 2019, pp. 249–255.10.1109/SSRR.2019.8848969Search in Google Scholar

[7] T. Emter, C. Frese, A. Zube, et al.., “Algorithm toolbox for autonomous mobile robotic systems,” ATZheavyduty Worldwide, vol. 10, no. 3, pp. 48–53, 2017. https://doi.org/10.1007/s41321-017-0037-0.Search in Google Scholar

[8] T. Asfour, L. Kaul, M. Wachter, et al.., “Armar-6: a collaborative humanoid robot for industrial environments,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), IEEE, 2018, pp. 447–454.10.1109/HUMANOIDS.2018.8624966Search in Google Scholar

[9] L. C. Danter, S. Planthaber, A. Dettmann, et al.., “Lightweight and framework-independent communication library to support cross-plattform robotic applications and high-latency connections,” in 15th International Symposium on Systems, Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS), 2020.Search in Google Scholar

[10] S. Fabian and O. von Stryk, “Open-source tools for efficient ROS and ROS2-based 2D human-robot interface development,” in 2021 European Conference on Mobile Robots (ECMR), 2021, pp. 1–6.10.1109/ECMR50962.2021.9568801Search in Google Scholar

[11] I. Kruijff-Korbayová, R. Grafe, N. Heidemann, et al.., “German rescue robotics center (DRZ): a holistic approach for robotic systems assisting in emergency response,” in 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2021, pp. 138–145.10.1109/SSRR53300.2021.9597869Search in Google Scholar

[12] A. Zea and U. D. Hanebeck, “iviz: a ROS visualization app for mobile devices,” Software Impacts, vol. 8, 2021, Art. no. 100057. https://doi.org/10.1016/j.simpa.2021.100057.Search in Google Scholar

[13] M. Fennel, A. Zea, J. Mangler, et al.., “Haptic rendering of arbitrary serial manipulators for robot programming,” IEEE Contr. Sys. Lett., vol. 6, pp. 716–721, 2021. https://doi.org/10.1109/lcsys.2021.3086059.Search in Google Scholar

[14] R. Featherstone, Robot Dynamics Algorithms, Boston, Dordrecht, Lancester, Kluwer Academic Publishers, 1987.10.1007/978-0-387-74315-8Search in Google Scholar

[15] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom., vol. 9, no. 5, pp. 624–637, 1993. https://doi.org/10.1109/70.258054.Search in Google Scholar

Received: 2022-04-26
Accepted: 2022-09-17
Published Online: 2022-10-28
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2022-0057/html
Scroll to top button