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Abstract: Robots show impressiveflexibility and reliability
in various applications. This makes them suitable to help
and support humans in hazardous environments. They
can handle dangerous, unknown objects with no risk for
the operator’s health. In this work we present a shared
operation approach for the identification and localization
of unknown hazardous objects as well as a 3D mapping
approach for mobile robots in challenging environments.
A shared control force-based grasping approach complete
these two components and makes it easy for a human
operator to graspand retrieveunknownhazardousobjects.
Including thehumanexpertise in theoperationandcontrol
is additionally supported by providing intuitive visual-
ization on different levels of abstraction. The presented
approach was successfully evaluated with two different
mobile robots within a field test.

Keywords: AI-enabled robotics; field robots; human-
robot-interaction; mapping; robotics in hazardous fields.

1 Introduction
1.1 Motivation
Manipulators in industrial production as well as mobile
transport platforms in logistics are robust and mature.
Hence, robot arms andmobile robots account for an impor-
tant and big part of the value creation in many countries
by moving, transporting and manipulation goods. The
ability to move and handle objects reliably has been
the most important ability of robots for many years.
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Recently, a change in value creation is taking place, away
from mechatronics and towards more intelligence and
autonomy based on advanced algorithms. The robot skills
are improving and new applications are made possible
outside industry and logistics.

In these new application fields like health care,
public and private assistance and inspection the ability
to quickly adapt to dynamic, changing environments and
new tasks is essential. Therefore, reusable, modular and
adaptive architectures are needed to comply with these
requirements. Within this work, the focus is to help
and support humans in hazardous environment or with
hazardous objects and reduce environmental and health
risks by applying intelligent mobile manipulators. Most
otherworks are dedicated to a subset of the challenges that
have to be addressed. Many works focus on grasping and
handling of known or unknown objects. Others are more
dedicated to advanced image or sensor data processing
and interpretation. And there are works enabling robots
to map unknown environments and enable them to safely
navigate. Within this work it is necessary to address all
challenges. The resulting issues require a shift in thinking
– shared perception and control to reach the desired
robustness und reliability.

This work presents a modular, reusable hardware and
software approach that is based on standard off-the-shelf
components together with Open Source libraries, machine
learningmodelsand frameworks likeGoogleCartographer,
PyTorch and ROS. The use of powerful established imple-
mentations in combinationwithnewsoftware components
is the basis of this work. These new components like
the 3D mapping framework OpenVBD_Mapping are made
available to the Community as Open Source repositories.
The combination of easy to train instance segmentation
networks with powerful 3D mapping and path planning
functions makes this system highly flexible. On the other
hand, the consequent integration of human expertise
throughout the whole pipeline put a strong focus on the
development to intuitive visualizations, operation and
control concepts makes it easy to interact with the robot
on all levels. Consequently, this contributes to a reusable
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and transferable shared grasping and retrieving approach
for unknown, hazardous objects with a mobile robot
platform.

1.2 Related work
The variety of autonomous mobile safety robots is large.
Some of the robots enhance human safety by searching
for landmines [1] or performing bridge inspections to
detect cracks [2]. In the field of hazardous or nuclear
objects the robot systems are almost exclusively tele-
operated [3, 4]. Mapping the environment is one of the
fundamental challenges in the use of autonomous mobile
robots. Sensor-based sensing for mobile robots is typically
performed using laser scanners, RGB (Red Green Blue)
and RGB-D (Red Green Blue -Depth) sensors [5–8]. While
simultaneous localization and mapping (SLAM) methods
in two dimensional structured environments, such as
office buildings, have been established for some time
[9], three dimensional unstructured environments, e.g.,
outdoors, pose a particular challenge and are the subject
of current research [10–12]. For the navigation of the
robot, adistinction ismadebetweenglobalnavigationwith
information about the environment, which can e.g. consist
of a map, and local navigation without information about
the environment [5]. One possibility for planning paths
in unknown environments are so-called bug algorithms
[13]. These move the robot in the direction of the target
and react to too close objects by short path changes. Other
workdealswith the identificationofdangerousspotsbased
on images, e.g. to avoid rocks or soft terrain on a Mars
expedition [14]. To support faster path finding, multiple
robots can be used to share the acquired information
with each other [15]. Grasping and handling objects in
unknown environments based on visual and partly also
haptic perception is an essential part of different domains,
especially in the handling of hazardous materials. This
is also an important topic in current research [16–20].
For the detection of obstacles and manipulable objects,
segmentation and identification of related objects [21]
plays an important role. Recent work uses e.g. well-known
object models [22] or Deep Learning to narrow down the
grasp selection [23].

1.3 Challenges within the context of
ROBDEKON

Within the National Competence Center on Robotic Sys-
tems for Decontamination in Hazardous Environments –
ROBDEKON – the research is evaluated in different
application-oriented scenarios. Each of the scenarios

was intensively discussed with industrial stakeholders
from industry dealing with nuclear decommissioning and
emergencyon-call serviceexperts fornuclear facilities. The
handling and retrieval of unknown hazardous objects is a
keyuse case inoneof the scenarios. It comeswithanumber
of challenges that have to be addressed:
1. Develop a mobile robot with robot arm and required

sensor setup.
2. Create an online 3D map of the environment with no

GPS localisation information.
3. Localise the mobile robot within this 3d Map with no

GPS localisation information.
4. Identify and localise hazardous objectswith only little

information about the objects.
5. Navigate autonomously in the 3D Environment to

desired goals.
6. Grasp and retrieve the objects in a shared operation

and control approach.

All these functions are presented as follows. In Section 2.1
the development of the multi-purpose robot Husky is
described. Section 2.2 outlines the shared force-based
grasping approach for hazardous objects. Then Section 2.3
further describes the developed object identification
and localisation concept. The highly efficient online 3D
mapping component for mobile robots is explained in
Section 2.4. Section 3 provides details on the experiments
and evaluation of the previously presented components.
In contrast to the other parts, the navigation and path
planning component is only described briefly within the
Section 3. Finally, in the last Section 4 the contributions of
this work are summarized and discussed.

2 Approach

2.1 Hardware- and software-architecture
The work on grasping and recovering hazardous goods
was executed and evaluated on the mobile robot Husky, a
UGV (UnmannedGroundVehicle) fromClearpath Robotics
(see Figure 1). The robot was initially equipped with a 6
DOF (Degrees Of Freedom) robot arm (Universal Robots
UR5) with a payload capacity of 5 kg as well as a Velodyne
HDL-32E LIDAR (LIght DetectionAndRanging) and aDGPS
(Differential Global Positioning System) from NovAtel
(SMART6-L GPS). The LIDAR is used together with an addi-
tionalMicroStrain 3DM-GX3-25 IMU (InertialMeasurement
Unit) for the 3D livemapping of the environment and at the
same time localization within this map (SLAM).
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Figure 1: Mobile robot husky with 6 DOF arm (left) and mobile ground-station with six monitors (right).

Up to now, the DGPS system has not been used,
as the availability of GPS signals cannot be guaranteed
in the foreseen scenarios. The official supported ROS
interface fromClearpathRobotics to all componentsmakes
it possible to easily access and add new components.

First, a force-torque sensor (Schunk FTN-Delta Sl-660-
60) and a highly flexible three finger-gripper (Robotiq
3-Finger Adaptive Robot Gripper) were mounted on the
robot arm. Moreover, a 3D camera (Intel RealSense d435i)
was connected to the endof the armgiving anoptimal view
to potential objects close to the gripper. A second camera
was mounted on the top of the platform. This 360◦ camera
(Ricoh Theta V) provides a high-resolution panorama of
the surroundings of the robot. It helps the operator to get a
better overview of the current environment but is also used
by the instance segmentation network to automatically
detect potentially hazardous goods. Some hardware modi-
fications improve the overall performance of the platform.
The new LiPo (Lithium-Polymer) batteries improved the
runtime of the robot, now allowing autonomous operation
of up to 6 h. The off-road tires were changed to tires with
less profile that create a smoothermotion on hard surfaced
like concrete or asphalt. If needed the tires can be switched
withina fewminutes,making itpossible toadapt tospecific
mission requirements. Storage bins have been added to the
robot platform to safely retrieve itemsduring amission. For
this purpose, a general storage container in the form of an
open-top box and for special (simulated) hazardous goods
and an extra metal container have been mounted on top
and front of the robot. In order to detect objects under
insufficient external illumination, two high power LEDs
were mounted on the front of the robot.

In addition, a mobile ground station was built to
facilitate field tests. A stable, transportable box was
constructedandequippedwith twopowerful PCs (onewith

GPU), six full-HDscreens andaLiPobattery charger.Due to
the large number of screens, different views, sensor data,
3D maps and status reports can be displayed in parallel.
In the future, it is planned to expand the system to include
internal batteries that can be used to operate the control
centrewithout anexternal power supply, at least for a short
time. The wireless network setup was improved regarding
bandwidth by adding a high-performance IEEE 802.11ac
accesspoint to thegroundstationandantenna to the robot.

The built hardware does not claim to be used in a real
scenario with radiating sources or a nuclear environment
in general. The hardware was built to develop and test
various software components and assistance functions.
For the use in e.g. nuclear environments there are special
robot systems e.g. fromTelerobGmbH,which are not really
useful for scientific development and evaluation.

The software architecture regarding the interaction
with the human operator, the interaction between the
components as well as the shared control and operation
modes is visualized in Figure 2.

All skills described later in this work, the shared
manipulation strategy, instance-based object detected, 3D
mapping and path planning, were fully integrated and
evaluated on this mobile husky platform.

2.2 Shared force-based grasping of
unknown objects

Thesharedautonomyapproachhas thegoal to increase the
speed and success rate of complex robotic manipulation
tasks with hazardous objects or in hazardous environ-
ments. Even in dark environments, humans have no
problems grasping objects for which the positions are only
roughly known. By touching the objects, these inaccurate
positions are instantaneously corrected and it is possible
to find a stable grasp. The grasping strategy follows this
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Figure 2: Software architecture with shared operation and control
approach.

concept by combining information from a human operator
and a force-torque sensor on the robot. The operator takes
over the object detection and the selection of a suitable
grasping strategy. This strategy consists of a grippermode,
a graspmode and the position as well as the orientation of
thegripper (gripper pose)with respect to theobject. Agood
gripper pose for the object is essential. In literature, there
are many solutions to find suitable grasps for all kinds of
objects. In the industrial environment, this challenge is
typically called bin picking and has been solved in many
applications. Nevertheless, the calculation and selection
of suitable positions and orientations of the gripper for
a successful grasp of objects is still a challenge if these
objects are unknown, deformable or with sparse sensor
data. Therefore, this task is highly dependent on visibility
and lighting conditions. A deterioration of the sensor data
quality directly leads to a more difficult object recognition
and thus to worse grasping results. On the other hand, this
task is trivial for a human. Even little information about
the object is sufficient for a human to select and perform a
successful grasp.

Two different grasp modes were implemented for
grasping objects. The first grasp mode was developed for
unknown objects of all kinds. Within this grasp mode,
the gripper is first moved close to the target pose. Then
the gripper is moved to the desired target pose using a
force-sensitive compliance controller. If a physical contact
is detected, a set of different reactions is automatically
triggered.Dependingon the triggeredsituation, thegripper
pose is automatically correctedor the gripper is closed. The
position correction compensates for inaccurate operator
inputs and ensures that the gripper is positioned in a way
that the object can be grasped and picked up successfully.
If the fingers are touched by the object, the gripper target

pose is shifted in a positive or negative direction along
the X-axis of the gripper. This process is repeated multiple
times, if further contacts are detected. The first graspmode
is visualized in a flow chart (see Figure 3).

A second grasp mode was developed for grasping
objects with handles. For this purpose, additional steps
were introduced into the algorithm and existing ones were
modified to enable the touching of handles. More grasp
modeswere introduced for the easy handling of valves and
picking up objects, but not further discussed in this work.

A gravity compensation of the gripper was imple-
mented and subtracted from the measured values. The
resulting forces and torques are only the contact forces
acting on thewrist. The gripping force of the fingers cannot
be adaptedwith the gripper used in this setup. The applied
adaptive compliance control is based on previous work
from Scherzinger et al. [24].

The shared manipulation tasks are operated via a
graphical interface. The graphical interface displays the
current environment close to the robot by means of a 3D
point cloud from a RGB-D camera. The current position
and kinematic configuration are also displayed using a
3D model of the robot. A virtual representation of the
gripper is used to simply define the target gripper pose.
The grasp mode is selected via a context menu. The grasp
is then executed autonomously by the robot. Besides this
shared control approach, the operator has a variety of
assistance functions, in order to perform a wide range
of tasks (see Figure 4). For the search-and-recovery tasks,
for example, the following assistance functions are made
available to the operator: 3Dmapping of the environment,
visual recognitionofpredefinedobjects, collision-freepath
planning on the 3D map, detailed images in colour and
precise 3D point clouds, shared grasping of objects and
supported picking and placing of objects.

2.3 Instance segmentation for object
identification and localisation

The challenge regarding the recovery of unknown, haz-
ardous objects is about recognizing hazardous objects in
an unknown, cluttered environment and localize these
objectswith amobile robot. Thiswork is based onan initial
visual detection using the camera data with deep neural
networks. The robot is equipped with different cameras:
one RGB-D camera on the robot arm and one 360◦ camera
on the sensor frame on the back of the modified Husky
robot. The camera on the robot armprovides colored depth
information and has great flexibility in terms of its orien-
tation. It is mainly intended for the perception of objects
close to the robot, which can be inspected from different
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Figure 3: Flow chart for the grasp mode for unknown objects. The user inputs are shown in the top blue box. The user initially selects the
object and grasping strategy. The robot in the bottom orange box then automatically executes the force-adaptive grasping process.

Figure 4: Intuitive and fast parametrization directly in rviz where also the RGBD sensor data are visualized.

perspectives and to parametrize the force-based grasping
strategy. The camera on the sensor frame, is a statically
mounted 360◦ camera to provide a fast overview during
the exploration phase. It can provide initial indications

of where potentially hazardous objects are located (see
Figure 5).

Many state-of-the-art works in object detection rely
on artificial deep neural networks. But usually large data
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Figure 5: Masked 360◦ image with the hazardous goods container detected by the mask R-CNN. Without the masking of the robot, false
detections could occur on the robot itself.

sets are required to detect arbitrary objects using such
approaches. However, the requirements for the scenario of
retrieval of hazardousmaterials are special. In most cases,
no large data sets are available for the target objects to be
detected, e.g. specific barrel types or other rare hazardous
material containers. In addition,many false detections can
occur if the corresponding operational environment is not
known to the model.

A Mask R-CNN architecture is used for this purpose.
Pre-trained on the comprehensive MS-COCO dataset, a
fine-tuning of the detection components in the higher-
level layers with a few annotated images of the specific
categories is sufficient to enable an accurate detection or
segmentation of the objects. The Mask R-CNN architecture
for neural networks, first presented in Mask R-CNN [25], is
an extension of Faster R-CNN [26]. Parallel to the bounding
box prediction of the objects, an exact mask representing
all pixels that belong to the respective object is predicted.
Thismask providesmore information about the pose of the
object,but in return thecomputationaleffort forprocessing
the images increases.

Once a small data set has been created for the
hazardous material to be detected, it can be augmented
as desired and is then suitable for training the designed
neural detection architectures (see Figure 6). In addition,
the background of the training images can be replaced
by background images that are expected in the mission

scenario.However, augmentationstrategiesalsohave their
limitationswhen it comes to augmenting smaller data sets.
There is a danger of overfitting. This refers to the process
when the model parameters are optimized too much for
the existing training data, so that the system’s detection
capabilities degrade. In order to prevent this, a transfer
learning method is applied on the model parameters of
the network architecture, which was pre-trained on large
open available data sets (e.g. MS-COCO). These large data
sets enable basic capabilities in the model with respect
to image recognition and visual information processing.
Subsequently, the parameters are adapted to the concrete,
veryspecifichazardousgoods in thesecondtrainingphase,
the so-called fine-tuning. The task-oriented adaptation
takes place in the higher, more abstract layers of the
network architecture and requires significantly less data.

Two neural network architectures are currently appli-
cable in this work: Mask-R-CNN and CenterMask2-Lite [27].
Both perform very well in the COCO benchmark and show
robust capabilities, also compared to many approaches
in the literature. For example, the CenterMask2-Lite, a
one-stagemodel, has beendesigned to be as lightweight as
possible to be suitable for mobile computing devices. The
Mask-R-CNN, a two-stage model, is designed for detection
quality and requiresmore computational effort. More com-
mon architectures usually only provide bounding boxes
for each detection. However, masking provides additional
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Figure 6: Object identification and localization pipeline based on instance segmentation architectures and 3D maps.

information about the orientation and the exact position,
which is of great importance in roboticmanipulation tasks.
The two currently used architectures (Mask-R-CNN and
CenterMask2-Lite) differ particularly in their complexity
and the computational requirements on the hardware.
As default, the images are processed on the ground
station, where sufficiently powerful hardware is available.
For missions, where no continuous communication with
the ground station can be guaranteed, the lightweight
CenterMask2-Lite architecture could serve as an onboard
fallback. Then the image processing can take place locally
on the mobile robot Husky. But in general, the Mask
R-CNNhasproven tobe significantlymore robust regarding
the generalization capabilities with respect to unknown
lighting conditions and new unseen instances of known
categories.

A further challenge is to extract the 3D position of the
target objects. Other classical vision or image processing
approaches are able to recognize the 6D pose of an object
in addition to the object category [28–30]. TheMaskR-CNN
approach as well as the CenterMask2-Lite do not provide
any spatial information of the detected objects except the
pixel coordinates. There are new NN architectures such as
MeshR-CNN[31] thataddress this lack.Thisapproach isnot
used, because it requires a very large amount of training
data and still does not provide the accuracy required for
mobile manipulation tasks.

In this work, the robot platform autonomously nav-
igates to the area where objects are initially detected
in the 360◦ camera image. The target coordinates are
determined by raycasting on the 3D map captured by
the 3D LiDAR. This requires a transformation of the pixel

coordinates to a ray in the global reference coordinates.
The intersection point with the voxels in the 3D map
are found by raycasting in the temporary position of the
object, which is sufficiently accurate for rough navigation.
The RGB-D camera on the robot arm is then used in
the target area to re-localize the hazardous object. With
this camera, the object can be localized with a higher
precision and provide the desired depth information.
A DBSCAN clustering algorithm (Density-Based Spatial
ClusteringofApplicationswithNoise) isused topreprocess
the detections, which filters inaccuracies and prevents
incorrect information frombeing entered into themap. The
filter approach checks if the detections are occasional false
detections or continuous detections with high confidence
at the same or a nearby position. In this case, the detected
and localized objects are additionally added to the 3D
map as interactive markers to enable the operator to easily
manage the found potentially hazardous objects.

2.4 Online 3D mapping for mobile robots
The 3D mapping approach is based on Google’s Cartog-
rapher, which was already successfully used in various
works [32]. This is an open source software that is able
to perform a real-time SLAM on the basis of laser scans or
point clouds. In previousworks the authors have only used
Cartographer for 2D indoor navigation. In this work, a 3D
mapping approachwas developed enhancing the previous
functionality. For this purpose, different sensor setups
were tested and evaluated. In contrast to the 2D case, the
3D SLAM requires the values of an inertial measurement
unit (IMU) in addition to the 3D point cloud data. The
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IMU provides information about the orientation, as well
as the linear and angular accelerations. These are used
by Cartographer to transform the input point cloud into
the ground plane in order to reduce the problem of scan
matching by 2 dimensions (roll andpitch angles), resulting
in ahigher processing speedof the individual point clouds.
In addition to pure scanmatching, Cartographer offers the
possibility of feeding various other localization sources
into the algorithm, such as pre-calculated odometry or the
coordinates of a global navigation satellite system (e.g.
GPS). In this work, thewheel-based odometry of theHusky
was used as additional input. Although the odometry has
a high slip, it nevertheless brings an enormous advantage
in certain scenarios compared to a setup without this
information.

After establishing a stable SLAM system, the goal was
to create a 3D map from all the input data. In general,
the Velodyne LiDaR point clouds are rather sparse, at least
vertically.Despite this sparse initial scandata, the resulting
total point clouds are very dense due to the continuous
movement of the robot. On average, the Velodyne Puck
accumulates about 14 million points per minute. A naive
approach raises several problems. On the one hand, the
map occupies a huge part of the system’s memory, which
must also be kept available during the entire navigation.
Ontheotherhand, it isvery time-consumingand inefficient
to plan on the entire point cloud. Therefore, it is better to
introduce an abstraction layer of the map representation
instead of using the full point clouds.

For this purpose, the environment is first divided into
a uniform 3D grid in which each cell covers a defined area
depending on the spatial resolution and storeswhether the
corresponding cell is occupied or free. However, this level
of abstraction is not yet sufficient because the grid grows
too quickly due to its three dimensions. The main reason
for this is thatmemory consumptiondoesnot scale directly
with the number of relevant grid cells. Instead, the data
structure grows proportionally to the space that embeds
the data. A prominent example of this is the mapping of
free areas on the map. These take up a large part of all
cells, but provide relatively little information about the
surrounding area.

To counteract this problem, instead of a regular com-
plete 3Dgrid,more efficient tree structures are increasingly
used as data management in such cases. A frequently
used implementation for this is the ROS implementation
OctoMap [33], which is based on octrees. This is a 3D data
representation that discretises the space similar to occu-
pancy grids and also offers efficientmemorymanagement.
To insert new data into the octree, a ray casting beam is

projected from the sensor to the data point through the
entire data structure for each new point in a sensor scan.
All traversed grid cells are classified as free or occupied
with the help of a probability distribution. The result is
a probabilistic occupancy map, similar to the occupancy
grid maps used in the 2D case. However, one problemwith
the OctoMap is that the insertion of new data points and
ray casting is too slow due to the data structure in relation
to the sensor data rate. Since the mapping cannot insert
new data fast enough, newmeasurements from the sensor
are often ignored, resulting in a sometimes inaccurate and
incomplete map.

Therefore, a new 3D mapping framework was devel-
oped that focuses on the fast and efficient integration of
new data points. In this approach OpenVDB is used as an
efficient data storage layer for the volumetric data [34].
OpenVDB has its origins in computer animation and is
mainly used for volumetricmodelling in animatedmovies.
In this field of application, it is essential to render data
structures efficiently together with optimised ray casting
algorithms. However, this property can also be applied to
the ray casting operations during the mapping process,
which makes the OpenVDB much faster than OctoMap,
see Figure 7. OpenVDB has also been optimised in terms of
memory consumption. It also encodes the free space over
low-resolution voxels in a memory-efficient way, similar
to the described octree approach. In addition, it provides
built-in compression algorithms to keep the data structure
as small as possible.

In addition to replacing the entire mapping data
storage layer, the way in which new sensor data is
integratedhasbeen fundamentally revised.The raycasting
of all points was divided into two steps. First, all rays are
projected through the data structure as usual. However,
instead of directly updating the probabilities, a temporary
grid is first created in which it is noted whether a cell
needs to be updated or not. As soon as this has been
done for all points, the second step begins. The temporary
grid is compared with the actual map in order to update
all necessary grid occupancy probabilities. This new 3D
mapping approach showed an up to ten times faster
mapping speed, depending on the map resolution and
maximum sensor range. Figure 7 shows in detail how
the two data structures behave with respect to different
resolutions and ray casting distances.

Due to these good results, this newmapping approach
was made available to a larger community by publishing
the open source software package vdb_mapping [35].
In addition, all algorithms like the path planning for
mobile robots, which were previously based on OctoMap,
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Figure 7: Comparison of the calculation time for datapoint insertion between OctoMap and our OpenVDB implementation with respect to
different resolutions and raycasting distances [10].

were ported to the new map format. An example of a
dense VDB map of the FZI lab building that was created
with a flying drone equipped with a LIDAR is shown in
Figure 8.

In many situations multiple robots are applied for a
difficult task. Moreover, that map should also be available
at the base station. Therefore, the maps have to be
synchronised between the individual robot systems aswell
as the base station over the network for an effective use.
This generates large, impracticable amounts of data. To
counteract this effect,wehave extended the approachwith
a remote mapping function. The idea here is to transmit
only new parts of the environment that are currently
detected by the lidar sensors over the wireless network
instead of the whole map. For this purpose, we exploit
the already existing data integration of VDB-Mapping.
Once a new point cloud is acquired, ray casting through
the map structure is performed for each data point to
determinewhichcellsareoccupiedandwhichare free.This
information is stored in an efficient bit structurewithin the
activemaskofaVDBtree.Theseso-calledupdategridsonly
cover the area of themap currently perceivedby the LIDAR.
In the approach the update grids are used to determine
which occupancy probabilities in the map need to be
updated to represent the current LIDAR data. As a result, it
is only necessary to check within the update grid whether
an update must be carried out on the corresponding cells
of the map. Since the update grids do not contain any data
except for the bit flag, they are relatively small and can
therefore be sent over the network with a high update rate.
To further reduce the size, the sparsely filled VDB tree is
compressed, serialised andmade available to other remote

Figure 8: OpenVDB map of the backyard between the FZI lab
buildings [10].

mapping nodes as a ROS topic. These nodes then unpack
the data and perform the same update step as the robot in
order to obtain the same map of the environment without
having to send it over the network.

3 Experiments and evaluation
The evaluation concept was developed together with the
partners of the German national competence center on
robotic systems for decontamination in hazardous envi-
ronments – ROBDEKON. Especially, the definition of the
evaluation scenario as well as the identification of the
requirements were an important part, where feedback and
input were needed from industrial application partners
from the field of nuclear decommissioning and emergency
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Figure 9: Illustration of the scenario during the evaluation (left), robot team with husky and ANYmal retrieving a metal object (right).

forces for a nuclear incident. The evaluation scenario can
bedescribedas follows:A trafficaccidentoccursduring the
transport of a medical radiation source (e.g. Iridium 192).
The protective container is destroyed and a radioactive
object is exposed. Shared autonomy robots are requested
to find, grasp and safely retrieve the radioactive object.
Two different robots should be deployed via a remote
command and control center (ground station). One robot
is supposed to quickly scan the area and perform a search
for the radioactive object. As soon as it finds potentially
hazardous objects, the first robot sends the position of
these objects to the second robot with a manipulator and
protective container. The second robot can then check and
confirm the found hazardous objects. The operator uses
the shared control approach to handle and safely store
the objects with the manipulator. Both robots should be
managed simultaneously by only one operator.

The scenario described was successfully demon-
strated during a ROBDEKON project field test evaluation
at the Fraunhofer IOSB. Figure 9 (left) shows the setup
and shows the scenario sequence that was evaluated. On
the right side of this Figure, the robot team, composed of
the Husky and the walking robot ANYmal found a metal
object.

The first task was to explore the area and locate
hazardous objects. This task was performed by ANYmal
because of its ability tomove quickly and highly flexible in
unknown environments. The second task involved grasp-
ing and retrieving the hazardous objects. This task was
carriedout by theHusky robot system.During thefield test,
the area was explored by ANYmal with a pattern defined
by the operator. As soon as a hazardous material was
identified and localised, the ground station was informed
about the potential object. The position was automatically
set as target way point for Husky. Both robots used the

3D VDB map to plan collision free paths in this previously
unknown environment. The successful arrival of Husky in
front of the hazardous object was visualised at the base
station. Then the operator did a close inspection of the
potential object with different views with the integrated
RGB-D camera on the robot arm. After approval, the
operator selected andparameterized the force-based grasp
strategy. The object was not grasped on the first attempt.
But the operator was able to readjust the grasp strategy
and the hazardous object was successfully recovered.
After confirmation by the operator, Husky automatically
navigated to thenext potentially hazardousobject thatwas
found by ANYmal. All hazardous objects were collected
with thepresented sharedoperationandcontrol approach.
By deploying the robot team, the search and recovery
could be performed in parallel with only one operator.
This proved to be robust and highly efficient and showed
great potential for further applications with multi-robot
teams.

4 Discussion and summary
The challenges in handling hazardous unknown objects
have been addressed by developing an efficient 3D map-
ping, an object segmentation and localisation as well as
a force-based manipulation approach. All three compo-
nents have been integrated in a shared operation and
control architecture. Moreover, they were evaluated on the
modified Husky and ANYmal robot in a field test with a
reviewing external jury. The 3D mapping is based on the
integration of the powerful OpenVDB data storage layer
into a 3D grid map approach based on the robust and
reliable Cartagrapher SLAM stack. The object segmenta-
tion and localisation combine a pre-trained 2D instance
segmentation approach with a data augmentation and 3D
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grid map-based object localisation to make it a flexible
and easy to adapt system for mobile robots. Currently,
this approach is only abled to identify previously trained
objects. Unknown objects are not addressed here, but
could be highlighted by an anomaly detection based on
the reconstruction error with an autoencoder NN. The
shared force-based grasping strategies make it possible to
include intelligent assistance functions with the expertise
end experience of human operators.

The 3D mapping approach outperforms other SoA
grid based-mapping implementations regarding the per-
formanceofonlinemappingwithhighresolution3Dsensor
data. The VDB_mapping framework is available as open
source stack and has been successfully tested on various
mobile robots and sensor setups. The object detection and
localisation is basedonapowerfulMaskR-CNN thatmakes
it possible to detect previously unknown objects with only
a small (5–10) number of sample pictures with very high
confidences despite partial occlusions. In combination
with the 3D grid map it is possible to use these good
segmentation results to roughly localise the hazardous
objects. The force-based shared grasping strategy has
been evaluated on a high number of different objects
with an overall success rate of approx. 90%. In combi-
nation with the intuitive visualization of the environment,
found objects and interaction control interfaces this works
provides a powerful toolset for grasping and handling
hazardous, unknown objects with a mobile robot like the
presented Husky robot. Within the field test the shared
operation and control architecture convinced the expert
jury regarding its performance, robustness and flexibility.
Therefore, this work contributes to make the work with
hazardous materials and objects safer for humans, by
including their expertise from a safe distance. In the
future, we plan to extend this work by enhancing the 3D
path mapping and planning capabilities as well as further
improve the manipulation strategies by adding learning
from experience.
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