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Abstract: Cyber-Physical Production Modules (CPPMs)

must be described by vendor-independent and machine-

readable standardized information models. Standards

make CPPMs adaptable and interchangeable at different

company levels to enable flexible production. We present

an OPC UA information model for CPPMs based on the

relevant OPC UA Companion Specifications. Combined with

the skill concept, a transport system is controlled in an

order-driven production. Additionally, we link different

state machines to facilitate utilization functions for mission

distribution between transport units.

Keywords: flexible transport system; OPC UA; skill-based

engineering.

Zusammenfassung: Für eine flexible Produktion müssen

Cyber-Physische-Produktionsmodule (CPPM) durch herst-

ellerunabhängige und maschinenlesbare standardisierte

Informationsmodelle beschrieben werden. Hierdurch

werden CPPMs anpassbar und austauschbar. Wir stellen

ein OPC UA-Informationsmodell für CPPMs vor, welches

auf den relevanten OPC UA Companion Specifications

aufsetzt. Kombiniert mit dem Skill-Konzept wird dieses

zur Steuerung eines Transportsystems implementiert.

Zusätzlich verlinken wir mehrere Zustandsmaschinen, um

die Missionensverteilung zwischen Transporteinheiten zu

vereinfachen.
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1 Introduction

Globalization and the increasing customization of products

induce major challenges for manufacturers resulting in

ever shorter lifecycles [1]. To realize this vision, production

resources are no longer regarded as fixed units, instead,

they are designed as interchangeable modules. These are

referred to as Cyber-Physical Production Modules (CPPMs).

CPPMs are defined as autonomous elements that interact

with their environment in a context-related manner, have

standardized interfaces and interactions as well as self-

contained functionality [2].

One solution for the self-contained functionality and

standardized interface developed by the automation com-

munity is referred to as skill-based engineering [3]. A skill

is a semantic and vendor-independent description of the

functionalities of a resource provided via command func-

tions, function blocks or interfaces. Skills always belong

to resources and are described from the point of view of

an abstracted resource [4]. Although skill interfaces can be

realized by different communication technologies, OPC UA

has proven itself in automation technology and machine

access for years. The skill interface allows invocation and

parameterization. That enables a fast reconfiguration of

CPPMs, the adaption to new product variants and shorter

commissioning of new CPPMs.

To take advantage of the skill concept, it must be

embedded in a standardized information model and inter-

face of the CPPM. The authors in refs. [5, 6] empha-

size the need for standardization of skills or properties.

Nevertheless, the OPC UA Foundation provides opportu-

nities to build a custom module interface in the form

of a companion specification like in refs. [7–9], while

the work of ref. [10] demonstrates an extension consid-

ering skills. However, no approach illustrates the CPPM’s

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2022-0115
mailto:simon.jungbluth@smartfactory.de


164 — S. Jungbluth et al.: Developing a skill-based flexible transport system

interface relying on reasoned design decisions. Therefore,

our first contribution is to collect the requirements of

future production systems and develop a nodeset for a

CPPM interface that satisfies the determined needs. Fur-

thermore, the skill-based community, such as in refs.

[5, 6], demonstrates that skills can be deployed at different

levels of granularity and a complex system may be realized

by hierarchies of skills. Conventionally, an orchestrator is

used to aggregate the skills and provide composite skills

based on the client/server model of OPC UA. The authors in

ref. [6] summarize the limitations of possible applications

due to the lack of real-time synchronization. In this sense

to parallelize processes, the orchestrator needs to deal with

much more complex queries considering the knowledge of

what atomic units allow parallelism based on operational

data. Moreover, for non-value-adding processes realized

by completely automatic systems with different transport

units, it makes sense to distribute themissions in the highest

layer of abstraction. Currently, the related work in refs. [5,

6, 11] does not satisfy this requirement because the com-

position logic of skills is characterized by a state machine

preventing parallel execution servers sided until the skill

finishes. More precisely, the related work forces the skill

consumer (end-user) to implement the missions’ distribu-

tion as the assignment and execution cannot be represented

in one state machine. For centralized modules, meaning

having the access to all relevant sensor data, we propose to

implement this logic in the server itselfwhich also addresses

the problem of synchronization of the components. There-

fore, our second contribution is to integrate this mechanism

into our module interface to facilitate utilization functions

for mission assignment andmodule-to-module communica-

tion that are especially needed in transport systems that use

multiple individually controllable transport units.

Both contributions are implemented in the transporta-

tion system ACOPOStrak of the real-world highly adapt-

able multi-vendor and modularized production system of

the SmartFactoryKL. The scope of the paper is limited

to the internal process of one CPPM.Module-to-module com-

munications and interactions can be found in refs. [12] or

[13].

The publication is organized as follows. Section 2 out-

lines the state of the art of the skill community and

OPC UA implementation. In Section 3, the OPC UA module

nodeset is outlined and a model for the distribution of the

tasks inside the OPC UA server is developed. The implemen-

tation of both approaches is described in Section 4. Section 5

concludes the work and gives an outlook for future work.

2 State of the art

2.1 Requirements of future production
systems

The SmartFactoryKL emphasizes future-proof and reli-

able production with the terminology Production Level

4. Thereby, four requirements are mentioned that have

to be fulfilled to make the vision come true. First, the

system architecture needs to be flexible, distributed and

homogenous with defined vendor-independent interfaces.

Second, an adaptable continuous deployment is necessary.

Third, autonomous behavior allows components to act

and make decisions independently. Fourth, sustainability is

enabled by the transparency of data and flexible processes

[14].

This paper focuses on the vendor-independent inter-

face as a core requirement for working toward the factory

of the future. The interface needs to describe the module

providing a defined structure to store information (R1). The

interaction elements of the interface must be conformant

with standards to enable reusability (R2). To encapsulate

the complexity of themodules, it must provide interface ele-

ments for planning and execution systems (R3). This leads to

the need tomap the internal behavior of the CPPM in a stan-

dardized manner, e.g., a state machine (R4). Although the

interface stands for itself, the module belongs to a dynamic

environment defining the context of the CPPM. Therefore,

CPPMsneed to recognize, interpret and adjust to their neigh-

borhood (R5).

2.2 CPPMmodel

Realizing the CPPMs’ full potential, a standardized struc-

ture is necessary. A CPPM with a standardized interface

offers skills and makes CPPMs interchangeable at the

shop-floor level and allows different methods of planning,

control, maintenance andmonitoring to be used at the com-

pany level. Since OPC UA is a manufacturer- and platform-

independent communication architecture that is supported

by a large number of end device manufacturers and dif-

ferent platforms, it becomes a great candidate for imple-

menting the vendor-independent interface. Furthermore,

the wide availability of OPC UA libraries for popular pro-

gramming languages, e.g., C1 and Python,2 but also the

1 open62541: OPC UA in C (https://github.com/open62541/open62541).

2 opcua-asyncio: OPC UA implementation in Python (https://github

.com/FreeOpcUa/opcua-asyncio).

https://github.com/open62541/open62541
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/FreeOpcUa/opcua-asyncio
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support of many embedded devices, enables the develop-

ment of OPC UA interfaces for CPPMs [5, 6, 11].

OPC UA uses the XML-format to share standardized

nodesets and build customized models based on funda-

mental building blocks. For this purpose, the OPC UA for

Devices Specification (DI) offers a way to reveal the struc-

ture of a device and configure a device without prior knowl-

edge. The DI’s relevant elements include the TopologyEle-

ment, the ComponentType and the DeviceType to describe

parts of the modules according to the respective needs [9].

The OPC UAMachine Tools Specification describes an infor-

mation model for a machine tool providing a common

interface to IT systems [8]. The specification references

and inherits the basic building blocks defined in OPC UA

Machinery [7]. The entire machine tool interface is defined

by the MachineToolType that aggregates all information

related to one machine tool. The MachineToolType is struc-

tured by five objects (identification, equipment, monitor-

ing, notification, production) related to the respective types.

The MachineToolIdentificationType uniquely identifies the

machine tool with static data. The EquipmentType contains

all the tools and magazines the machine tool has access.

Process and safety information about active parts of the

machining process (e.g., spindle laser) and the machine

tool state is stored in the MonitoringType. Additionally, the

NotificationType displays messages, alerts and prognoses

for the machining operation. The ProductionType groups

information about the production plan containing job

elements running or planned for execution and appropriate

statistics.

2.3 Skill model

In ref. [3], skill-based engineering is discussed as an

approach that aims to implement a standardized interface

into production resources to encapsulate the CPPMs’ func-

tionality. A skill is characterized by stateful behavior, mean-

ing the implementation needs a so-called skill model that

defines the structure and the corresponding state machine.

In ref. [15], elements of a skill are presented (see Figure 1).

The structure is represented as OPC UA objects, which are

organized as an information model within the OPC UA

address space. According to Figure 1, the skill can be divided

into:

– the StateMachine reflecting the current state and meth-

ods initiating state transitions,

– the ParameterSet to specify the skill,

– the FinalResultData to retrieve the result,

– the FeasibilityCheck determines whether a CPPM

is generally capable of executing a skill with

the given parameters and provides information

about the execution of the skill (energy, duration,

etc.),

– theContextCheck is used as a kind of precondition check

to validate if a skill can be executed with the given

parameters shortly before the execution.

The skill’s statemachine is not standardized and differs

across different organizations and developers. For example,

in ref. [5], a state machine based on OPC UA Programs [16] is

used. In refs. [6, 15], a slightly different state machine devel-

oped by the department for Integrated Assembly Solutions

(IAS) within the German VDMA is presented. Moreover, the

OPC 30050 defines an information model that conforms to

the PackML objectmodel [17]. To standardize the implemen-

tation of skills across a multitude of industrial sectors and

to simplify the machines’ connection, it would be advanta-

geous to have a state machine that meets the requirements

of even the most diverse applications.

2.4 Skills for flexible transport systems

In a modular production environment consisting of inter-

communicating production modules, the transport system

is one of the most important components. There is a need to

provide a flexible material flow where products are routed

individually to themodules without limiting the availability

depending on the current positions. Flexible Transport Sys-

tems (FTS) consisting of Automated Guided Vehicles (AGV)

or conveying facilities are suitable for this.

The integration of different vehicles emphasizes a need

for standardization. Standardization measures were devel-

oped, for example, in the VDA5050 [18] and the VDI/VDMA

5100 [19]. While the VDA5050 describes the communica-

tion between the master control system and various vehi-

cles, the VDI/VDMA 5100 describes a System Architecture

for Intralogistics (SAIL) considering the components, func-

tions and principal interface. The highest level of abstrac-

tion in the SAIL architecture is the conveying area respon-

sible for the core functionality resource utilization. The

resource utilization transfers transport orders to missions

according to appropriate strategies. While considering the

topology, current utilization and system status, a decision

is made which transport unit is allowed to process the job.

According to SAIL, this encapsulating leads to the system

configuration of Type A, a completely automatic transport

system, where the distribution of missions to the vehicles

and the routing are included. On the other hand, a trans-

port system that handles the mission management but not

the resource utilization can be seen as Type B. Regarding

conveying facilities, skills might be a candidate for realizing

the conveying area’s control interface, whereas, for AGVs,
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Figure 1: Suggestion for an OPC UA skill model with feasibility-check AddIn and ContextCheck by [15].

skills can be an alternative candidate to provide the self-

description of the transport unit to be integrated into a

larger system context.

Considering the related work, there are only a few

applications that demonstrate how skills can simplify intral-

ogistics dealing with concurrency and utilization. Ref. [20]

presents a generic framework for the generation of the

control logic for intralogistics applications. Conveyor belts’

skills allow individual components of the transport sys-

tem to send (introducing material) or receive a material

flow. This results in the transport realized by a sequence of

receive skills of the next node of the transport graph until

the load reaches its destination node. A similar contribu-

tion is outlined in ref. [21], where skills are applied in a

production system and delivery services are composed by

the activation of different conveyor belts. In this sense, the

described systems do not deal with controllable transport

units as well as multiple triggering of the destination node

is avoided. Another approach in ref. [22] deals with a trans-

portation network of seven controllable transport units.

AGVs are guided by an introduced devicemanagement layer

allowing multiple control. However, the interface descrip-

tion of the management layer is not highlighted. The pre-

ceding works emphasize a need for further investigations

containing the current trends of the skill-based community

as well as showing a detailed view of the self-description

and implementation of an FTS composed of different con-

trollable transport units.

3 Modeling

In the following section, we describe the underlying OPC UA

information model and the associated object types as well

as state machines. Furthermore, we want to highlight how

we use the structure to distribute the orders within a skill

interface on the server side.

3.1 OPC UA information model

An OPC UA information model, represented as a nodeset,

is implementable in a multitude of different systems. To

satisfy the needs of a wide range of system integrators,

similarity to published specifications is required. We use

the SiOME software tool3 to import nodesets provided by

3 Siemens OPC UA Modeling Editor (SiOME) for implementing OPC

UA companion specifications (https://support.industry.siemens.com/cs/

document/109755133).

https://support.industry.siemens.com/cs/document/109755133
https://support.industry.siemens.com/cs/document/109755133
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the OPC Foundation and to export our customized Smart-

FactoryKL nodeset in the NodeSet2.xml format. Therefore,

the DI Specification [9] is used and the assets’ structure in

the Machine Tools Companion Specification is considered

[8]. For more skill-related information the works of [5, 6, 15]

and the OPC UA Companion Specification for PackML [17]

are taken into account. This procedure leads to compliance

with known standards and Requirement R2.

The general structure of the information model is

shown in Figure 2. Origin is a general-purpose asset, con-

taining a general-purpose state machine. The CPPMs most

relevant requirement is unambiguous identification. This

is resolved using the AssetId node introduced by the DI

Specification. The AssetId node and the ComponentName

node are the two mandatory nodes of the ITagNameplate-

Type interface, as presented in Figure 2. Folders organize

the asset. The folders’ structure is modeled after the OPC

UA for Machine Tools Companion Specification. A general

asset expects to provide at least a few folders to collect cor-

responding information. Supplementing the Machine Tools

structure with more folders, the following are implemented

as optional subnodes into the AssetType:

– Identification for the general information about the

asset,

– Monitoring to expose safety states and operational data,

– Resources to consider process material needed for the

designated operations,

– ParameterSet as arbitrarily writable and fixed

information,

– FinalResultData to retrieve results.

To avoid overpopulating the information model with

unnecessary nodes, the AssetType is modeled as a sub-

type of the OPC UA BaseObjectType, since no optional or

mandatory nodes are contained. The Identification folder

contains the interfaces IVendorNameplateType and ISup-

portInfoType, all containing several optional nodes. Part of

this interface information regarding, e.g., DeviceClass,Man-

ufacturer, Model, SerialNumber, or SoftwareRevision. The

Monitoring is assigned to the IDeviceHealthType containing

optional nodes about the current device’s health.

Figure 2: The information model of the AssetType.
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Four predetermined sub-assets are supposed to inherit

from that asset to satisfy the needs of the Requirements R1,

R3 and R5:

– theModule as the information model representation of

a CPPM (R1),

– different Gates as the connection points between

CPPMs (R5),

– the Skill interface to communicate with (R3),

– the FeasibilityCheck introduced in ref. [15] (R3).

The first two object types describe the physical and

digital topology of a CPPM, while the latter two are used

in modeling, parametrizing and executing skills. Each of

the AssetTypes’ subtypes has a mandatory ParameterSet

and StateMachine, while the other objects become optional.

Additional object types for the four created sub-assets are

described in the subsections below.

3.1.1 ModuleType

Considering the ModuleType, the Monitoring folder and

the added subnodes ModuleSkillSet and Topology become

mandatory. The ModuleSkillSet contains all skill objects

assigned to the CPPM,while the Topology organizes allGates

of the CPPM as well as network information. As presented

in the MachineTool Specification, an optional Components

folder includes hardware from further OPC UA Companion

Specifications or custom assets. These three folders are the

most relevant for our work and for realizing the adapt-

able ecosystem inside the SmartFactoryKL. Taking the pre-

viously presented notes into account, an instantiated Mod-

uleType is visualized in Figure 3 as the implementation of

Requirement R1.

Figure 3: Overview of a hosted instantiatedModuleType in an OPC UA

server.

3.1.2 SkillType and FeasibilityCheckType

The SkillType and the FeasibilityCheckType have obligated

FinalResultData, while the SkillType has an optional Feasi-

bilityCheck and a PreconditionCheck. The skill is structured

inside the ModuleSkillSet as the execution control inter-

face (R3). On the other hand, the feasibility check plugin

calculates data in the planning domain and provides cus-

tomized results like duration, costs and energy to make a

thoughtful decision (R3). Figure 4 visualizes a generic skill

representation.

To facilitate ordered starts and shutdowns of CPPMs,

the StartupSkill and ShutdownSkill are mandatory parts of

the ModuleSkillSet folder. We use these two base skills to

fulfill safety-relevant aspects with or without human help.

The purpose is to execute functionality checks, brake tests

or initialization procedures before allowing the execution

of other skills.

3.1.3 GateType

Each of the CPPMs inside the SmartFactoryKL ecosystemcon-

tains at least one Gate, organized inside the Topology folder

of the CPPM, as seen in Figure 5. The Gates are possible con-

nection or coupling points to combine two or more CPPMs

into a more complex module. A Gate can be either active,

being able to lock onto another module, or passive, only

being able to get locked to another CPPM. This is defined

on a Gate-to-Gate basis using the ActiveGate property of

Figure 4: Visualization of the skill interfaces in an OPC UA server.
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the Gates ParameterSet. This approach follows the separa-

tion of concerns and modularity while building new behav-

iors and capacities by plugging and unplugging different

CPPMs. Each Gate equips an RFID tag with a corresponding

sensor for detecting the environment and an actuator to

physically mate two gates. The mandatory PartnerRFIDTag

exposes information about the neighboring CPPM and how

to get access to necessary methods or values. Thus, fulfilling

Requirement R5.

The mating procedure is initiated by appropriate skills

that are a mandatory part of the GateType. TheMasterMat-

ingSkill forces and feedbacks the actor’s activationwhile the

gate state is exposed to the StateMachine. Finally, the sec-

ond CPPM’s SlaveMatingSkill is called. This process encom-

passes each CPPM reading out certain information, e.g., the

available skills and current state of the other CPPM and

activating magnetic locks between them. The state of each

gate state machine is set to executing, indicating an active

connection on that coupling point. The SlaveMatingSkill and

theMasterMatingSkill also read out a multitude of informa-

tion from the partner CPPM, e.g., to enable the execution of

skills needing information from both modules. Therefore,

the connectedmodules can dynamically interact and realize

new skills.

At this point, we want to indicate how CPPMs can be

coupled and detect their physical neighbors since it is a

mandatory Requirement R5. However, the paper focuses on

the internal view of one CPPM and the mechanism is not

presented further.

Figure 5: Demonstration of the Gates inside an OPC UA server as

physical connection points to CPPMs.

3.2 General-purpose state machine

As explained in Section 3.1, each subtype of the Asset-

Type, namely, the ModuleType, SkillType, FeasibilityCheck-

Type and the GateType, mandatorily has a state machine.

Each sub-asset has specifically required states that need to

bemet to execute themethods successfully. Tominimize the

increase of complexity due to multiple state machines and

to be compliant with Requirement R4, each state machine is

derived from the same generic state machine. Through this,

the different state machines share as many names of states,

methods and transitions as possible. If a state is not strictly

necessary, or even not permitted, for one of the sub-assets,

it is given the OPC UA modeling rule optional.

For prototyping, we used the state machine in ref.

[6] and added a complete state in loose adherence to the

PackML specification, as seen in Figure 6. In the authors’

opinion, the state machines can be interchangeable by fol-

lowing known specifications like OPC UA Programs, the

VDMA or PackML and describe the kind of state machine

inside the server. Nevertheless, we prefer using a state

machine characterized by a defined final state after the

execution. Thus, there is no internal state change to the

idle state. The reasons are the reading and retrieving of

results inside of FinalResultData or latency in subscribing

and observing the state.

This state machine is adapted into the OPC UA nodeset

as a subtype of the FiniteStateMachineType and a manda-

tory part of the AssetType. To determine mandatory and

optional states, the requirements of the other subtypes’ state

machines are considered. These requirements are grouped

Figure 6: States, actions and transitions of the skill state machine.
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Table 1: Required states per asset subtype.

Asset subtype Mandatory states

Module Locked, idle, executing, suspended

Gate Locked, idle, executing

FeasibilityCheck Locked, idle, executing, complete

Skill Locked, idle, executing, suspended, complete

asmandatory states according to the respective subtype and

are shown in Table 1.

The least commondenominator of these statemachines

is the gate state machine. It only contains the states Locked,

Idle and Executing as mandatory, because it is neither

intended for the connection of two modules to be paused

nor can a gates task be considered complete at any point.

Thus the basic AssetStateMachineType contains Locked, Idle

and Executing as mandatory states and Suspended and

Complete as optional states. Similar to the gate, the mod-

ule also does not feature a complete state, as a CPPM’s

operation is not supposed to be considered complete. Skill

and FeasibilityCheck on the other hand are set to always

finish execution in the complete state. While a skill may

potentially be suspended, this is not intended for the Fea-

sibilityCheck. The subtypes inheriting the StateMachine

add the mandatory attribute to the states according to

Table 1.

3.3 Resource utilization

As mentioned in Section 1, skills can be exposed at different

layers of granularity, where hierarchies of skills can be used

to createmore complex composite skills. In refs. [6, 11], skills

are considered for machines, components, (sub-)stations

and cells intending to expose one specific function, e.g.,

drilling or assembly. However, CPPMs can be composed of

different independent controllable components encapsulat-

ing the same functions where resource utilization functions

need to be considered. An example is an FTSwith associated

transport units related as components. In this sense, each

transport unit is a custom asset inside the module’s Com-

ponents folder according to Section 3.1.1. Therefore, each

component provides a transport function. As explained in

the SAIL architecture, the conveying area with the asso-

ciated resource utilization describes a core functionality

when encapsulating the whole system. Thus, the convey-

ing area represents a station that needs to deal with mis-

sion assignments to available transport units if it should

be called a completely automatic transport system of Type

A [19].

Conventionally, the skill-based approach would use the

instantiating of skills. The skill is replicated several times

according to the components that can provide the function,

e.g., a MoveSkill for each shuttle. In this case, the end-user

(client) has access to various skills where the characteristics

are related to the component’s operational data, i.e., the cur-

rent position, available resources and current movements

influence the execution. Thus, the choice of the required

skill is associated with appropriate predictions of real-time

operational datawhere components’ synchronization needs

to be taken into account. Instead, we use a reference to

the required component without replicating the skill. This

scenario implies no knowledge of the operational data since

the CPPM’s offered skill acts as a master control that assigns

the orders to the components based on the current state and

underlying algorithms. For an FTS, this scenario realizes the

encapsulating of a conveying area according to VDI/VDMA

5100 [19] as a skill, meeting Requirement R2.

We offer a GetComponentSkill that implements the

required function and encapsulates all components capable

of execution. The GetComponentSkill includes algorithms

for retrieving an appropriate unit based on the Parameter-

Set. The CPPM communicates to the underlying component

to check the current state and assigns the job. In this case,

the ParameterSet describes the process and the final state is

used to get a suitable component. The GetComponentSkill’s

FinalResultData references and locks the chosen compo-

nent. The reference is a node id that uniquely identifies

the component. The respective component intents to have

its state machine that provides process information. While

the component has all the process knowledge, the GetCom-

ponentSkill can be triggered again to find another suit-

able component. The component remains locked until the

received node id of the GetComponentSkill is used to trigger

the complementary ReleaseComponentSkill.

An instantiated sequence of this scenario is presented

in Figure 10. We ensure the control of the same pro-

cesses with two skills without prior knowledge of which

operational data to consider. However, choosing a specific

component is still possible by specifying the component’s

id. This reallocates the resource utilization function to the

client’s side switching from a Type A to a Type B system con-

figuration [19]. We provide a demonstration use-case inside

the SmartFactoryKL. In Section 4, we implement an FTS that

provides transport skills realized by different shuttles.

4 Implementation

This section describes the FTS’s implementation based on

the nodeset and concepts presented in Section 3. First, we
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want to give an overview of the demonstrator setup and

the challenges needed to be solved. Second, we want to

demonstrate the skills’ implementation based on the pro-

vided nodeset.

Before we demonstrate our use-case, we want to

emphasize that developing and hosting a customized XML-

nodeset can be a sensitive issue considering the context

of Programmable Logic Controllers (PLC) and the need for

standardization. Depending on the vendor’s PLC software

and OPC UA version, it is not always possible to import XML-

files directly into the PLC. Nevertheless, several options are

available for deploying the nodeset on the controller:

– using a PLC system that provides the functionality to

import nodesets and link OPC UA nodes with the local

and global variables of the PLC, e.g., Siemens S7 F-CPU

(software PLC) on the IPC427E,

– developing apps (e.g., an OPC UA Server app to import

nodesets) and using the vendor’s interface to directly

integrate the app with the variables of the PLC system.

An example is the ctrlX Platform4 which allows the

development of customized apps. The apps communi-

cate with a data layer to access real-time and non-real-

time information,

– applying high-level programming languages and well-

established software development toolkits to reformat

the PLC’s released values. In this case, an adapter acts as

a client to retrieve values of the PLC and as a server to

expose the values like in ref. [11]. Open-source libraries

like open62541 (c)1 and opcua-asyncio (Python)2 are

tested and allow the import of XML-files.

Our implementation is based on the third option, using

the opcua-asyncio library to provide a standardized skill

interface for the controlling software system.

4.1 Demonstrator setup

The FTS is realized by B&R’s ACOPOStrak5 system. The sys-

tem allows the developer to design the track according to

the customer’s needs, routes transport units individually

and combines lot size one and mass production. Our trans-

port CPPM consists of ten shuttles to transport products

4 CtrlX Automation Platform (https://apps.boschrexroth.com/

microsites/ctrlx-automation/en/news-stories/story/the-new-freedom-

in-engineering/).

5 B & R: Dimensioning and programming for ACOPOStrak (https://

www.br-automation.com/en/academy/classroom-learning/training-

modules/motion-control-mechatronic-systems/mechatronic-systems/

tm1415-acopostrak-dimensioning-and-programming/).

Figure 7: The layout of the ACOPOStrak as part of the SmartFactoryKL

demonstrator.

to individual target gates. We use two ovals to create an

assembly linewithfivedefineddocking interfaces described

by gates to plug CPPMs depending on the required setup (see

Figure 7).

The gates represent positions to interact with the prod-

ucts, e.g., to transfer or process the product. To be part

of the production line, a CPPM needs to be mated to the

transport system. The CPPMs use the PartnerRFIDTag

to retrieve information on how to communicate with

the complementary part. In the SmartFactoryKL, an RFID

tag contains the CPPM’s AssetId to find the appropriate

self-description to access the OPC UA server or event

channels. Thus, connected CPPMs can request transport

skills to dynamically ensure the right product is at the right

place at the right time. The mating mechanism is realized

by PILZ’s Safety Device Diagnostics to detect neighbors6

and a magnet to lock the CPPMs to consider safety-relevant

aspects.

As mentioned in Section 3.3, the transport system pro-

vides components (shuttles) with similar functions. These

are related to the current context, e.g., the position and the

shuttle’s load. Since the assembly represents all shuttles, we

have to ensure mission assignment to the transport units

and transport execution to route each shuttle at a time. The

handling ofmultiple shuttles can lead to difficulties in terms

of potential congestion, collisions and synchronization, so

the following assumptions have been made:

– collision avoidance is ensured by a software component

integrated by B&R,5

– all shuttles are in motion,

– all shuttles have the same direction of rotation,

6 PILZ: Safety Device Diagnostics – Simple diagnostics for reduced

service operations (https://www.pilz.com/de-DE/produkte/netzwerke/

device-diagnostics-system/safety-device-diagnostics).

https://apps.boschrexroth.com/microsites/ctrlx-automation/en/news-stories/story/the-new-freedom-in-engineering/
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https://www.br-automation.com/en/academy/classroom-learning/training-modules/motion-control-mechatronic-systems/mechatronic-systems/tm1415-acopostrak-dimensioning-and-programming/
https://www.br-automation.com/en/academy/classroom-learning/training-modules/motion-control-mechatronic-systems/mechatronic-systems/tm1415-acopostrak-dimensioning-and-programming/
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– when traffic results in blocking all shuttles, the direc-

tion of circulation changes.

4.2 CPPM interface

Specifying the CPPM’s interface, we need to consider the

previous Sections 3.1 and 3.3 as well as Requirements R1

and R2. Section 3.1 claims that our CPPM needs at least the

StateMachine, the Monitoring, the ModuleSkillSet and the

Topology. Considering the notes of Section 3.3, we also need

the Components to model the shuttles with an appropriate

state machine that is compliant with R4. Figure 3 presents

the CPPM’s overall structure.

For the Topology, theGateType is instantiated five times

as shown in Figure 5 fulfilling R5. The transport units are

described inside the Components folder (see Figure 8). The

shuttle’s data includes operational data (velocity, accelera-

tion and deceleration, current position), lifecycle data (abso-

lute distance) and the load. Additionally, each shuttle has

a state machine identical to the skill state machine, but no

Figure 8: Components of the ACOPOStrak system consist of shuttles and

the assembly itself.

OPC UA methods are defined inside the Components folder.

In Figure 9, the different skills are instantiated. We offer a

skill named GetTransporter for requesting and blocking a

shuttle and a ReleaseSpecificShuttle skill to unlock a shuttle

inside the ModuleSkillSet. These skills control the orders to

the transport units and act as the master control. The Get-

Transporter has a customized ParameterSet containing the

target position (Gate) and the needed product (Partnumber)

so that the CPPM can choose the required shuttle. The Final-

ResultData includes a RecycleCount (counts skill execution)

and the NodeRef (node id to the selected shuttle).

4.3 Skill implementation

In this section, we want to demonstrate how the execu-

tion and the planning are performed based on the pre-

sented SkillType. From a planning perspective, we need to

ensure that the skill request is executable with the present

Figure 9: Overview of the ACOPOStrak’s provided skills highlighted by

the GetTransporter skill.
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parameters. Therefore, information about the product and

the target position is required. For long-term planning, the

FeasibilityCheck of the GetTransporter can be used to verify

a general execution. Transferring the product’s dimensions

and weight, the executability is determined. It is a matter of

the characteristics of the parameters that allow execution.

For more distributed CPPMs, the FinalResultData should

return the conditions associated with the parameters, like

costs, duration and energy, to make a well-founded deci-

sion. Since we consider one CPPM, we only get informa-

tion about the executability. For a short-term validation, the

PreconditionCheck verifies the callability at the specific

moment of execution. More precisely, it is checked if the

needed part (Partnumber) is at the assembly, if the required

shuttle is unlocked and if the shuttle can be routed to

the destination. Both the FeasibilityCheck and the Precon-

ditionCheck are fulfilling R3, encapsulating the complexity

and providing interface elements for planning. When all

checks are performed successfully, the GetTransport skill is

started.

Figure 10 visualizes the skill execution scenario with

a minimal subset of OPC UA objects compliant with R3

(providing an interface element for execution). In the

GetTransporter’s Executing state, the skill verifies the cur-

rent states of the shuttles, communicates with the shuttles

and assigns the transport job to a shuttle based on theunder-

lying algorithm. Since the ACOPOStrak represents a central

module, the CPPM loads the movement command directly

into the selected shuttle with an appropriate function block

on the PLC. Nevertheless, the mechanism of how the order

is transferred to the transport unit does not matter. For

AGVs, the underlying communication can rely on MQTT in

accordancewith the VDA5050 [18]. After the communication

with the shuttle is completed successfully, the state changes

to Complete and the corresponding shuttle reference can be

retrieved as node id (Figure 10, step 1). After retrieving the

results, the reset method is used to clear the data and make

the GetTransporter skill callable again. The node id is used

to observe the state of the shuttle inside the Components

folder (Figure 10, step 2). The shuttle state changes from Idle

to Executing after receiving the order. The shuttle remains

lockeduntil the node id is used to release the shuttlewith the

ReleaseSpecificShuttle skill (Figure 10, step 3). Executing the

ReleaseSpecificShuttle skill results in changing the state of

the appropriate shuttle from Executing or Complete to Idle.

The state machine is implemented according to Section 3.2

fulfilling R4.

Furthermore, ignoring the resourceutilization function

in the GetTransporter skill is possible. The optional param-

eter Shuttle in the GetTransporter skill allows choosing a

specific shuttle by pointing to the required node. There-

fore, each shuttle can be routed individually. The reasons

for this optional node are outsourcing computational effort

and changing the algorithms. Through the realization of

Figure 10: Relationships between skills, parameters and components for mission distribution and execution.
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FeasibilityCheck, PreconditionCheck and an order-driven

transport, the intralogistics of the SmartFactoryKL ecosys-

tem are capable of handling customer-related requests and

enabling flexibility caused by encapsulation.

5 Conclusion and future work

In this paper, we demonstrate the need to establish vendor-

independent standards as a core requirement to realize

interchangeable autonomous units. Therefore, we use the

DI Specification, consider the Machine Tools and PackML

Companion Specification and take inspiration from skill-

related work in refs. [5, 6, 11, 15] to present an OPC UA Infor-

mationModel for CPPMs fulfillingR1 andR2. We implement

the nodeset in the SmartFactoryKL demonstrator ecosys-

tem and show how skills, feasibility checks and precondi-

tion checks handle customer-related requests and flexibility

ensuring the encapsulation of complexity compliant with

R3. Further, we demonstrate how one state machine can be

used tomap internal behaviors (R4) and how a physical and

virtual standardized topology can be used to couple CPPMs

(R5) to realize more complex behavior.

Although we successfully implemented the approach,

this is only the first step. We focus on the control interface

of field-level devices. Nevertheless, the syntax, semantics

and technology need a description. The Asset Administra-

tion Shell (AAS) provides such a technology-independent

description [23]. The skill-based approach and the AAS do

not exclude each other, instead, decoupled technologies pro-

vide more performant and clear interfaces. Data can be

decoupled depending on the context. For example, data

that is not needed to control the CPPM can be detached to

offer a self-contained and closed system. This should ensure

that the field-level devices handle time-critical tasks with-

out overloading the controller. The CPPM interface and the

AAS can be combined to develop a more active behavior.

Our CPPM interface can be integrated with the approaches

of refs. [12, 24]. Ref. [24] demonstrates applying an active

AAS with a skill execution interaction protocol to use the

skill more cooperatively. Ref. [12] combines skills, AASs and

agents to handle uncertainties autonomously. This method

extends further research to develop the required autonomy

and flexibility.
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