Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 26, 2016

Shortening and dispersion of single-walled carbon nanotubes upon interaction with mixed supramolecular compounds

  • Anna Jagusiak EMAIL logo , Barbara Piekarska , Katarzyna Chłopaś , Elzbieta Bielańska and Tomasz Pańczyk

Abstract

Congo red (CR) dye molecules self-associate in water solutions creating ribbon-like supramolecular structures that can bind various aromatic compounds by intercalation, forming mixed supramolecular systems. Mixed supramolecular systems, such as CR-doxorubicin and CR-Evans blue, interact with the surface of carbon nanotubes, leading to their stiffening and ultimately to their breaking and shortening. This work presents a simple method of obtaining short and straight carbon nanotubes with significantly better dispersion in aqueous solutions and consequently improved usability in biological systems.

Acknowledgments

The authors thank LabSoft company for providing AFM analysis and Dr. Magdalena Jarosz (Laboratory of Scanning Electron Microscopy of Biological and Geological Sciences, Faculty of Biology and Earth Sciences, Jagiellonian University) for providing SEM analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support from the project Interdisciplinary PhD Studies “Molecular Sciences for Medicine” (cofinanced by the European Social Fund within the Human Capital Operational Programme) and the Ministry of Science and Higher Education (grant no. K/DSC/001370).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B, et al. An approach to understand the complexation of supramolecular dye Congo red with immunoglobulin L chain λ. Biopolymers 2005;77:155–62.10.1002/bip.20197Search in Google Scholar

2. Stopa B, Piekarska B, Konieczny L, Rybarska J, Spólnik P, Zemanek G, et al. The structure and protein binding of amyloid-specific dye reagents. Acta Biochim Pol 2003;50:1213–27.10.18388/abp.2003_3645Search in Google Scholar

3. Hu Ch, Chen Z, Shen A, Shen X, Li J, Hu S. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon 2006;44:428–34.10.1016/j.carbon.2005.09.003Search in Google Scholar

4. Szlachta M, Wójtowicz P. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci Technol 2013;68:2240–8.10.2166/wst.2013.487Search in Google Scholar

5. Chatterjee S, Chatterjee T, Lim S-R, Woo SH. Effect of the addition mode of carbon nanotubes for the production of chitosan. Bioresour Technol 2011;102:4402–9.10.1016/j.biortech.2010.12.117Search in Google Scholar

6. Skowronek M, Stopa B, Konieczny L, Rybarska J, Piekarska B, Szneler E, et al. Self-assembly of Congo Red – a theoretical and experimental approach to identify its supramolecular organization in water and salt solutions. Biopolymers 1998;46:267–81.10.1002/(SICI)1097-0282(19981015)46:5<267::AID-BIP1>3.0.CO;2-NSearch in Google Scholar

7. Roterman I, No KT, Piekarska B, Kaszuba J, Pawlicki R, Rybarska J, et al. Bis azo dyes – studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J Physiol Pharmacol 1993;44:213–32.Search in Google Scholar

8. Spólnik P, Król M, Stopa B, Konieczny L, Piekarska B, Rybarska J, et al. Influence of the electric field on supramolecular structure and properties of amyloid-specific reagent Congo red. Eur Biophys J 2011;40:1187–96.10.1007/s00249-011-0750-zSearch in Google Scholar

9. Stopa B, Górny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, et al. Supramolecular ligands: monomer structure and protein ligation capability. Biochimie 1998;80:963–8.10.1016/S0300-9084(99)80001-7Search in Google Scholar

10. Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 2007;53:135–60.10.1016/j.brainresrev.2006.08.001Search in Google Scholar

11. Rudyk H, Knaggs MH, Vasiljevic S, Hope J, Birkett C, Gilbert IH. Synthesis and evaluation of analogues of Congo red as potential compounds against transmissible spongiform encephalopathies. Eur J Med Chem 2003;38:567–79.10.1016/S0223-5234(03)00081-3Search in Google Scholar

12. Crooke AC, Morris CJ. The determination of plasma volume by the Evans blue method. J Physiol 1942;101:217–23.10.1113/jphysiol.1942.sp003976Search in Google Scholar

13. Wallace JE. Diagnosis of amyloid disease by the intravenous injection of Congo-red. Lancet 1932;219:391–3.10.1016/S0140-6736(00)57589-8Search in Google Scholar

14. Rybarska J, Piekarska B, Stopa B, Spólnik P, Zemanek G, Konieczny L, et al. In vivo accumulation of self-assembling dye Congo red in an area marked by specific immune complexes: possible relevance to chemotherapy. Fol Histochem Cytobiol 2004;42:101–10.Search in Google Scholar

15. Rybarska J, Piekarska B, Stopa B, Zemanek G, Konieczny L, Nowak M, et al. Evidence that supramolecular Congo red is the sole ligation form of this dye for L chain λ derived amyloid proteins. Fol Histochem Cytobiol 2001;39:307–14.Search in Google Scholar

16. Konieczny L, Piekarska B, Rybarska J, Stopa B, Krzykwa B, Noworolski J, et al. Bis azo dye liquid crystalline micelles as possible drug carriers in immunotargeting technique. J Physiol Pharmacol 1994;45:441–54.Search in Google Scholar

17. Stopa B, Piekarska B, Jagusiak A, Kusior D, Zemanek G, Konieczny L, et al. Supramolecular Congo red as a potential drug carrier. Properties of Congo red-doxorubicin complexes. Acta Biochim Pol 2011;58:282, abstract P282.Search in Google Scholar

18. Pastorin G. Carbon nanotubes: from bench chemistry to promising biomedical applications. Singapore: Pan Stanford Publishing, 2011.10.1201/b11122Search in Google Scholar

19. Liu Z, Sun X, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ASC Nano 2007;1:50–6.10.1021/nn700040tSearch in Google Scholar PubMed

20. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106:1105–36.10.1021/cr050569oSearch in Google Scholar PubMed

21. Kostarelos K, Lacerda L, Pastorin G, Wu W, Więckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2:108–13.10.1038/nnano.2006.209Search in Google Scholar PubMed

22. Kam NW, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126:6850–1.10.1021/ja0486059Search in Google Scholar PubMed

23. Quaresi SR, Sahni YP, Singh SK, Bhat MA, Dar AA, Quadri SA. Nanotechnology based drug delivery system. J Pharm Res Opin 2011;1:161–5.Search in Google Scholar

24. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004;10:16–7.10.1039/b311254cSearch in Google Scholar PubMed

25. Raffa V, Ciofani G, Nitodas S, Karachalios T, Alessandro D, Masini M, et al. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008;46:1600–10.10.1016/j.carbon.2008.06.053Search in Google Scholar

26. Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 2012;33:3334–3343.10.1016/j.biomaterials.2012.01.024Search in Google Scholar PubMed

27. Chen X, Kis A, Zettl A, Bertozzi CR. A cell nanoinjector based on carbon naotubes. Proc Natl Acad Sci USA 2007;104:8218–22.10.1073/pnas.0700567104Search in Google Scholar PubMed PubMed Central

28. Pantarotto D, Singh R, Mc Carty D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004;43:5242–6.10.1002/anie.200460437Search in Google Scholar PubMed

29. Chłopaś K, Jagusiak A, Konieczny L, Piekarska B, Roterman I, Rybarska J, et al. The use of titan yellow dye as a metal ion binding marker for studies on the formation of specific complexes by supramolecular Congo red. Bio-Algorithms Med-Syst 2015;11:9–17.10.1515/bams-2015-0001Search in Google Scholar

30. Bottini M, Magrini A, Rosato N, Bergamaschi A, Mustelin T. Dispersion of pristine single-walled carbon nanotubes in water by a thiolated organosilane: application in supramolecular nanoassemblies. J Phys Chem B 2006;110:13685–8.10.1021/jp062668rSearch in Google Scholar PubMed PubMed Central

31. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 2005;1:176–82.10.1039/b502429cSearch in Google Scholar PubMed

Received: 2016-7-18
Accepted: 2016-8-1
Published Online: 2016-8-26
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2016-0015/html
Scroll to top button