Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 20, 2020

Feature selection for classification in Steady state visually evoked potentials (SSVEP)-based brain-computer interfaces with genetic algorithm

  • Stanisław Karkosz EMAIL logo and Marcin Jukiewicz

Abstract

Objectives

Optimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.

Methods

System of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).

Results

The designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.

Conclusions

It is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


Corresponding author: Stanisław Karkosz, SWPS University of Social Sciences and Humanities, Warszawa, Poland, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Conflict of interest: The authors declare that they have no conflict of interest.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

1. Wolpaw J, Birbaumer N, Heetderks WJ, Mcfarland D, Hunter Peckham P, Schalk G, et al. Brain-Computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng: A Publication IEEE Eng Med Biol Soc 2000;8:164–73. https://doi.org/10.1109/TRE.2000.847807.confproc.Search in Google Scholar

2. Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948;27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.Search in Google Scholar

3. Leuthardt EC, Miller KJ, Schalk G, Rao RP, Ojemann JG. Electrocorticography-based brain computer interface-the Seattle experience. IEEE Trans Neural Syst Rehabil Eng 2006;14:194–8. https://doi.org/10.1109/TNSRE.2006.875536.Search in Google Scholar

4. Guger C, Schlogl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G. Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 2001;9:49–58. https://doi.org/10.1109/7333.918276.Search in Google Scholar

5. Regan D. A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 1968;25:231–7. https://doi.org/10.1016/0013-4694(68)90020-5.Search in Google Scholar

6. Oikonomou VP, Liaros G, Georgiadis K, Chatzilari E, Adam K, Nikolopoulos S, et al. Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs. arXiv preprint arXiv:1602.00904; 2016.Search in Google Scholar

7. Hakvoort G, Reuderink B, Obbink M. Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system. Netherlands: Centre for Telematics & Information Technology University of Twente; 2011.Search in Google Scholar

8. Lin Z, Zhang C, Wu W, Gao X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 2006;53:2610–4. https://doi.org/10.1109/TBME.2006.886577.Search in Google Scholar

9. Nakanishi M, Wang Y, Wang YT, Jung, TP. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PloS One 2015;10:e0140703. https://doi.org/10.1371/journal.pone.0140703.Search in Google Scholar

10. Bhattacharyya S, Khasnobish A, Chatterjee S, Konar A, Tibarewala DN. Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. In: 2010 international conference on systems in medicine and biology. IEEE, New Jersey; 2010, 126–31 pp.10.1109/ICSMB.2010.5735358Search in Google Scholar

11. Kwak NS, Muller KR, Lee SW. A convolutional neural network for steady state visualevoked potential classification under ambulatory environment. PloS One 2017;12:e0172578. 10.1371/journal.pone.0172578.10.1371/journal.pone.0172578Search in Google Scholar PubMed PubMed Central

12. Lal TN, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Scholkopf B. Support vector channel selection in BCI. IEEE Trans Biomed Eng 2004;51:1003–10. https://doi.org/10.1109/TBME.2004.827827.Search in Google Scholar

13. Bakardjian H. Optimization of steady-state visual responses for robust brain-computer interfaces. Tokyo: Department of Electronic and Information Engineering Tokyo University of Agriculture and Technology; 2010.Search in Google Scholar

14. Martinez P, Bakardjian H, Cichocki A. Fully online multi-command brain-computer interface with visual neurofeedback using SSVEP paradigm. London: Hindawi Publishing Corporation; 2007, vol. 2007.10.1155/2007/94561Search in Google Scholar

15. Bakardjian H, Tanaka T, Cichocki A. Optimization of SSVEP brain responses with application to eight-command brain–computer interface. Neurosci Lett 2010;469:34–8.10.1016/j.neulet.2009.11.039Search in Google Scholar

16. Abootalebi V, Moradi MH, Khalilzadehc MA. A new approach for EEG feature extraction in P300-based lie detection. Comput Methods Progr Biomed 2009;94:48–57.10.1016/j.cmpb.2008.10.001Search in Google Scholar

17. Kołodziej M. Przetwarzanie, analia i klasyfikacja sygnału EEG na użytek interfejsu mózg-komputer. Warszawa, Poland: Wydział Elektryczny Uniwersytetu Warszawskiego; 2011.Search in Google Scholar

18. Sewell M. Feature selection; 2007. Available from: https://machine-learning.martinsewell.com/feature-selection.Search in Google Scholar

19. del R Millan J, Mouriño J, Franzé M, Cincotti F, Varsta M, Heikkonen J, Babiloni F. A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans Neural Network 2002;13:678–86. https://doi.org/10.1109/TNN.2002.1000132.Search in Google Scholar

20. Kantardzic M. Data mining: concepts, models, methods, and algorithms. New Jersey: John Wiley & Sons; 2011.10.1002/9781118029145Search in Google Scholar

21. Welsch RE. Stepwise multiple comparison procedures. J Am Stat Assoc 1977;72:566–75.10.1080/01621459.1977.10480614Search in Google Scholar

22. Fisher KA. Statistical tests. Nature 1935;136:474.10.1038/136474b0Search in Google Scholar

23. Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V. Feature selection for SVMs. Advances in neural information processing systems. Massachusetts: Massachusetts Institute of Technology Press; 2001, 668–74 pp.Search in Google Scholar

24. Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett 1994;15:1119–25.10.1016/0167-8655(94)90127-9Search in Google Scholar

25. Goldberg DE. Genetic algorithms in search. Optimization and machine learning. Addison Wesley Publishing Co. Inc; 1989.Search in Google Scholar

26. Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn 1988;3:95–9. https://doi.org/10.1023/A:1022602019183.10.1023/A:1022602019183Search in Google Scholar

27. Rutkowski, L. Metody i techniki sztucznej inteligencji: inteligencja obliczeniowa. Warsaw: Wydawnictwo Naukowe PWN; 2006.Search in Google Scholar

28. Flotzinger D, Pregenzer M, Pfurtscheller G. Feature selection with distinction sensitive learning vector quantisation and genetic algorithms. Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94). IEEE, New Jersey; 1994, 3448–51 pp, vol. 6. https://doi.org/10.1109/ICNN.1994.374888.Search in Google Scholar

29. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model 1999;17:57–61.Search in Google Scholar

30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825–30.Search in Google Scholar

31. Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S. High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci Unit States Am 2015;112:E6058–67. https://doi.org/10.1073/pnas.1508080112.Search in Google Scholar

32. Fatourechi M, Bashashati A, Ward RK, Birch GE. A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface. In: Proceedings. (ICASSP '05). IEEE international conference on acoustics, speech, and signal processing, 2005. IEEE, New Jersey; 2005, 345–8 pp, vol. 5. https://doi.org/10.1109/ICASSP.2005.1416311.Search in Google Scholar

33. Venthur B, Blankertz B. A platform-independent open-source feedback framework for BCI systems. Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course. Verlag der Technischen Universitaet Graz; 2008, 385–9 pp.Search in Google Scholar

34. Akbari H, Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N. Towards reconstructing intelligible speech from the human auditory cortex. Sci Rep 2019;9:874. https://doi.org/10.1038/s41598-018-37359-z.Search in Google Scholar

Received: 2020-03-05
Accepted: 2020-04-07
Published Online: 2020-05-20

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2020-0013/html
Scroll to top button