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Some Error Estimates for the Finite Volume
Element Method for a Parabolic Problem

Panagiotis Chatzipantelidis · Raytcho Lazarov · Vidar Thomée

Abstract — We study spatially semidiscrete and fully discrete finite volume element
methods for the homogeneous heat equation with homogeneous Dirichlet boundary
conditions and derive error estimates for smooth and nonsmooth initial data. We show
that the results of our earlier work [Math. Comp. 81 (2012), 1–20] for the lumped mass
method carry over to the present situation. In particular, in order for error estimates
for initial data only in L2 to be of optimal second order for positive time, a special
condition is required, which is satisfied for symmetric triangulations. Without any
such condition, only first order convergence can be shown, which is illustrated by a
counterexample. Improvements hold for triangulations that are almost symmetric and
piecewise almost symmetric.
2010 Mathematical subject classification: 65M60, 65M15.
Keywords: Finite Volume Method, Parabolic Partial Differential Equations, Non-
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1. Introduction

We consider the model initial-boundary value problem

ut −∆u = 0, in Ω, u = 0, on ∂Ω, for t > 0, with u(0) = v, in Ω, (1.1)

where Ω is a bounded convex polygonal domain in R2. We restrict ourselves to the homoge-
neous heat equation, thus without a forcing term, so that the initial values v are the only data
of the problem. This problem has a unique solution u(t), under appropriate assumptions on
v, and this solution is smooth for t > 0, even if v is not.

To express the smoothness properties of the solution of (1.1), let, for q > 0, Ḣq ⊂ L2(Ω)
be the Hilbert space defined by the norm

|w|q =
( ∞∑
j=1

λqj(w, φj)
2
)1/2

, where (w,ϕ) =

∫
Ω

wϕdx, (1.2)
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and where {λj}∞j=1, {φj}∞j=1 are the eigenvalues, in increasing order, and orthonormal eigen-
functions of −∆ in Ω, with homogeneous Dirichlet boundary conditions on ∂Ω. Thus
|w|0 = ‖w‖ = (w,w)1/2 is the norm in L2 = L2(Ω), |w|1 = ‖∇w‖ the norm in H1

0 = H1
0 (Ω)

and |w|2 = ‖∆w‖ is equivalent to the norm in H2(Ω) when w = 0 on ∂Ω. Eigenfunction
expansion and Parseval’s relation show for the solution u(t) = E(t)v of (1.1) the stability
and smoothing estimate

|E(t)v|p 6 Ct−(p−q)/2|v|q, for 0 6 q 6 p, and t > 0. (1.3)

In fact, since the smallest eigenvalue is positive, a factor of e−ct, with c > 0, may be included
in the right-hand side, and this holds for all our stability, smoothing and error estimates
throughout our paper. Since our interest here is in small time we shall not keep track of
this decay for large time below. We shall also use the norm ‖w‖Ck =

∑
|γ|6k supx∈Ω|Dγ

xw(x)|
in Ck = Ck(Ω̄), with C = C0, the space of continuous functions on Ω̄. Here for γ = (γ1, γ2),
Dγ
x = (∂/∂x1)γ1(∂/∂x2)γ2 and |γ| = γ1 + γ2.
We first recall some facts about the spatially semidiscrete standard Galerkin finite element

method for (1.1) in the space of piecewise linear functions

Sh = {χ ∈ C : χ|τ linear, ∀ τ ∈ Th; χ|∂Ω = 0},

where {Th} is a family of regular triangulations Th = {τ} of Ω, with h denoting the maximum
diameter of the triangles τ ∈ Th. This method defines an approximation uh(t) ∈ Sh of u(t),
for t > 0, from

(uh,t, χ) + (∇uh,∇χ) = 0, ∀χ ∈ Sh, for t > 0, with uh(0) = vh, (1.4)

where vh ∈ Sh is an approximation of v. It is well known that we have the smooth data
error estimate, valid uniformly down to t = 0, see, e.g., [12],

‖uh(t)− u(t)‖ 6 Ch2|v|2, if ‖vh − v‖ 6 Ch2|v|2, for t > 0. (1.5)

We also have a nonsmooth data error estimate, for v only assumed to be in L2, which is of
optimal order O(h2) for t bounded away from zero, but deteriorates as t→ 0,

‖uh(t)− u(t)‖ 6 Ch2t−1‖v‖, if vh = Phv, for t > 0, (1.6)

where Ph denotes the orthogonal L2-projection onto Sh. Note that the choice of discrete
initial data is not as general in this case as in (1.5). We emphasize that the triangulations Th
are assumed to be independent of t, and thus the use of finer Th for t small is not considered
here.

We note that a possible choice in (1.5) is vh = Phv, and hence, by interpolation, we have
the intermediate result between (1.5) and (1.6),

‖uh(t)− u(t)‖ 6 Ch2t−1/2|v|1, if vh = Phv, for t > 0. (1.7)

Recently, in [4], we showed results similar to (1.5)–(1.7) for the lumped mass finite element
method, which may be defined by replacing the L2-inner product in the first term in (1.4)
by the quadrature approximation (uh,t, χ)h, where, with Ih : C → Sh being the interpolant
defined by Ihv(z) = v(z) for any vertex z of Th,

(χ, ψ)h =

∫
Ω

Ih(χψ) dx, ∀χ, ψ ∈ Sh.
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Figure 1. Left: A union of triangles that have a common vertex z; the dotted line shows the boundary of
the corresponding control volume Vz. Right: A triangle τ partitioned into the three subregions τz.

Improving earlier results, we demonstrated that (1.5) remains valid for the lumped mass
method, but that (1.6) requires restrictive conditions on {Th}, caused by the use of quadra-
ture in (1.4), and satisfied, in particular, for symmetric triangulations. We remark that
the choice of discrete initial data in the analogue of (1.7) was incorrectly stated in [4], see
Section 3 below.

In the present paper our purpose is to carry over the analysis in [4] to the finite volume
element method for problem (1.1). This method is based on a local conservation property
associated with the differential equation. Namely, integrating (1.1) over any region V ⊂ Ω
and using Green’s formula, we obtain∫

V

ut dx−
∫
∂V

∇u · n dσ = 0, for t > 0, (1.8)

where n denotes the unit exterior normal vector to ∂V . The semidiscrete finite volume
element approximation ũh(t) ∈ Sh will satisfy (1.8) for V in a finite collection of subregions
of Ω called control volumes, the number of which will be equal to the dimension of the finite
element space Sh. These control volumes are constructed in the following way. Let zτ be
the barycenter of τ ∈ Th. We connect zτ by line segments to the midpoints of the edges of
τ , thus partitioning τ into three quadrilaterals τz, z ∈ Zh(τ), where Zh(τ) are the vertices
of τ . Then with each vertex z ∈ Zh =

⋃
τ∈Th Zh(τ) we associate a control volume Vz, which

consists of the union of the subregions τz, sharing the vertex z (see Figure 1, left). We denote
the set of interior vertices of Zh by Z0

h. The semidiscrete finite volume element method for
(1.1) is then to find ũh(t) ∈ Sh such that∫

Vz

ũh,t dx−
∫
∂Vz

∇ũh · n dσ = 0, ∀ z ∈ Z0
h, for t > 0, with ũh(0) = vh, (1.9)

where vh ∈ Sh is an approximation of v.
This problem may also be expressed in a weak form. For this purpose we introduce the

finite-dimensional space of piecewise constant functions

Yh = {η ∈ L2 : η|Vz = constant, ∀ z ∈ Z0
h; η|Vz = 0, ∀ z ∈ Zh \ Z0

h}.
We now multiply (1.9) by η(z) for an arbitrary η ∈ Yh, and sum over z ∈ Z0

h to obtain the
Petrov–Galerkin formulation

(ũh,t, η) + ah(ũh, η) = 0, ∀ η ∈ Yh, for t > 0, with ũh(0) = vh, (1.10)
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where the bilinear form ah(·, ·) : Sh × Yh → R is defined by

ah(χ, η) = −
∑
z∈Z0

h

η(z)

∫
∂Vz

∇χ · n dσ, ∀χ ∈ Sh, η ∈ Yh. (1.11)

Obviously, we can define ah(·, ·) also for χ replaced by w ∈ H2, and using Green’s formula
we then easily see that

ah(w, η) = −(∆w, η), ∀w ∈ H2, η ∈ Yh.

We shall now rewrite the Petrov–Galerkin method (1.10) as a Galerkin method in Sh.
For this purpose, we introduce the interpolation operator Jh : C 7→ Yh by

Jhu =
∑
z∈Z0

h

u(z)Ψz,

where Ψz is the characteristic function of the control volume Vz. It is known that Jh is
selfadjoint and positive definite, see [5], and hence the following defines an inner product
〈·, ·〉 on Sh,

〈χ, ψ〉 = (χ, Jhψ), ∀χ, ψ ∈ Sh. (1.12)

Also, the corresponding discrete norm is equivalent to the L2-norm, uniformly in h, i.e., with
C > c > 0,

c‖χ‖ 6 |||χ||| 6 C‖χ‖, ∀χ ∈ Sh, where |||χ||| ≡ 〈χ, χ〉1/2,
see [5]. Further, in [2], it is shown that

ah(χ, Jhψ) = (∇χ,∇ψ), ∀χ, ψ ∈ Sh,

and therefore, ah(·, ·) is symmetric and ah(χ, Jhχ) = ‖∇χ‖2, for χ ∈ Sh.
With this notation, (1.10) may equivalently be written in Galerkin form as

〈ũh,t, χ〉+ (∇ũh,∇χ) = 0, ∀χ ∈ Sh, for t > 0, with ũh(0) = vh. (1.13)

Our aim is thus to show analogues of (1.5)–(1.7) for the solution of (1.13), with the
appropriate choices of vh, i.e.,

‖ũh(t)− u(t)‖ 6 Ch2t−1+q/2|v|q, for t > 0, q = 0, 1, 2. (1.14)

This will be done below for q = 2, and in the case q = 1 under the additional assumption that
{Th} is quasi-uniform. However, for q = 0, as in [4], we are only able to show (1.14) under
an additional hypothesis, expressed in terms of the quadrature error operator Qh : Sh → Sh,
defined by

(∇Qhψ,∇χ) = εh(ψ, χ), ∀χ, ψ ∈ Sh, (1.15)

where εh(·, ·) is the quadrature error defined here by

εh(f, χ) = (f, Jhχ)− (f, χ), ∀ f ∈ L2, χ ∈ Sh, (1.16)

and requiring
‖Qhψ‖ 6 Ch2‖ψ‖, ∀ψ ∈ Sh. (1.17)
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We will show that this assumption is satisfied for symmetric triangulations Th. Symmetry
of Th, however, is a severe restriction which can only hold for special shapes of Ω. For
this reason we will also consider less restrictive families {Th}. We will demonstrate that
(1.17) holds for almost symmetric families (discussed in Section 4), with the addition of
a logarithmic factor; we also show that this logarithmic factor is not needed in one space
dimension. Further, for piecewise almost symmetric families of triangulations, see Section 4,
the inequality (1.17) holds with an O(h3/2) bound.

We then give two examples of nonsymmetric triangulations such that (1.14) does not
hold for q = 0. In the first example we construct {Th} such that the convergence factor is
at most of order O(h) for t > 0, and in the second example, with nonsymmetry only along
a line, of order O(h3/2). Without any additional condition on Th we are only able to show
the nonoptimal order error estimate

‖ũh(t)− u(t)‖ 6 Cht−1/2‖v‖, if vh = Phv, for t > 0.

We remark that in [11], in the more general case of a parabolic integro-differential equa-
tion, the nonsmooth data error estimate (1.14), for q = 0, with an extra factor |log h|, was
stated for any quasi-uniform family {Th}. Unfortunately, this result is in contradiction to
our above counterexamples, and its proof incorrect.

We also discuss optimal orderO(h) error estimates for the gradient of ũh−u, under various
assumptions on the smoothness of v and choices of vh. Further, in a separate section, we
consider briefly the extension of our results for the spatially semidiscrete problem to the fully
discrete backward Euler and Crank–Nicolson finite volume methods.

As for the lumped mass method in [4], our analysis yields improvements of earlier results,
in [3], where it was shown that, for smooth initial data and vh = Rhv,

‖ũh(t)− u(t)‖ 6 Ch2|v|3, for t > 0,

and
‖∇(ũh(t)− u(t))‖ 6 Chε−1|v|2+ε, for t > 0, ε > 0 small.

As in the case of the lumped mass method in [4], these improvements are made possible by
combining the error estimates (1.5)–(1.7) for the standard Galerkin finite element method
with bounds for the difference δ = ũh − uh, which, by (1.13) and (1.4), satisfies

〈δt, χ〉+ (∇δ,∇χ) = −εh(uh,t, χ), ∀χ ∈ Sh, for t > 0. (1.18)

In the final section we sketch the extension of the theory developed above to more general
parabolic equations, considering the initial-boundary value problem

ut + Au = 0, in Ω, u = 0, on ∂Ω, for t > 0, with u(0) = v, in Ω, (1.19)

where Au = −∇ · (α∇u) + βu, with α a smooth symmetric, positive definite 2 × 2 matrix
function on Ω̄ and β a non-negative smooth function.

Here, let uh(t) ∈ Sh denote the standard Galerkin finite element approximation of u(t),
defined by

(uh,t, χ) + a(uh, χ) = 0, ∀χ ∈ Sh, for t > 0, with uh(0) = vh, (1.20)

where vh ∈ Sh is an approximation of v and

a(w,ϕ) = (α∇w,∇ϕ) + (βw, ϕ), for w,ϕ ∈ H1
0 . (1.21)

In a straightforward way the estimates (1.5)–(1.7) extend to the solution of (1.20).
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The natural generalization of the finite volume method (1.10) would now be to find
ũh(t) ∈ Sh such that

〈ũh,t, χ〉+ ah(ũh, Jhχ) = 0, ∀χ ∈ Sh, for t > 0, with ũh(0) = vh, (1.22)

where, instead of (1.11), one uses the bilinear defined by

ah(ψ, η) =
∑
z∈Z0

h

η(z)
(
−
∫
∂Vz

(α∇ψ) · n dσ +

∫
Vz

βψ dx
)
, ∀ψ ∈ Sh, η ∈ Yh. (1.23)

It is known that, in general, the bilinear form ah(ψ, Jhχ) is nonsymmetric on Sh but it is
not far from being symmetric, or |ah(χ, Jhψ) − ah(ψ, Jhχ)| 6 Ch‖∇χ‖ ‖∇ψ‖, cf. [5]. Also,
if α and β are constants over each τ ∈ Th, then, see, e.g., [2, 6],

ah(ψ, Jhχ) = (α∇ψ,∇χ) + (βψ, Jhχ), ∀ψ, χ ∈ Sh, (1.24)

and thus ah(ψ, Jhχ) is symmetric, since as we shall show (βψ, Jhχ) = (βχ, Jhψ). Therefore,
since symmetry is important in our analysis, we introduce the modified bilinear form

ãh(ψ, η) =
∑
z∈Z0

h

η(z)
(
−
∫
∂Vz

(α̃∇ψ) · n dσ +

∫
Vz

β̃ψ dx
)
, ∀ψ ∈ Sh, η ∈ Yh, (1.25)

where, for z ∈ τ , τ ∈ Th, α̃(z) = α(zτ ) and β̃(z) = β(zτ ), with zτ the barycenter of τ . This
choice of ãh(·, ·) leads to the finite volume element method, to find ũh(t) ∈ Sh such that

〈ũh,t, χ〉+ ãh(ũh, Jhχ) = 0, ∀χ ∈ Sh, for t > 0, with ũh(0) = vh, (1.26)

and for this the desired analogues of the estimates (1.14) are established in Theorems 7.1–7.3.
The following is an outline of the paper. In Section 2, we introduce notation and give

some preliminary material needed for the analysis of the finite volume element method.
Further, we derive smooth and nonsmooth initial data estimates for the gradient of the error
in the standard Galerkin method. In Section 3 we derive the error estimates (1.14) discussed
above under the different assumptions on smoothness of data and the triangulations {Th}.
In Section 4 we show that assumption (1.17) is valid for symmetric meshes, and discuss the
corresponding properties for almost symmetric and piecewise almost symmetric meshes. In
Section 5 we present two nonsymmetric triangulations in two space dimensions for which
optimal order L2-convergence for nonsmooth data does not hold. In Section 6 we consider
briefly the application to the fully discrete backward Euler and Crank–Nicolson finite volume
methods. Finally, Section 7 contains the extension of Section 3 to more general parabolic
equations.

2. Preliminaries

In this section we show a smoothing property for the finite volume element method, and
discuss the quadrature associated with this method. We also derive some estimates for the
gradient of the error in the standard Galerkin finite element method which will be needed
later.
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We first recall that for the standard Galerkin method, one may introduce the discrete
Laplacian ∆h : Sh → Sh by

−(∆hψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Sh,
and write the problem (1.4) as

uh,t −∆huh = 0, for t > 0, with uh(0) = vh. (2.1)

Let {λhj }Nhj=1 denote the eigenvalues, in increasing order, and {φhj }Nhj=1 the corresponding
eigenfunctions of −∆h, orthonormal with respect to (·, ·), where Nh = dimSh. Then we
have for the solution operator Eh(t) = e∆ht of (2.1), by eigenfunction expansion,

uh(t) = Eh(t)vh =

Nh∑
j=1

e−λ
h
j t(vh, φ

h
j )φ

h
j , for t > 0.

The following smoothing property analogous to (1.3) holds for vh ∈ Sh and t > 0,

‖∇pD`
tEh(t)vh‖ 6 Ct−`−(p−q)/2‖∇qvh‖, ` > 0, p, q = 0, 1, 2`+ p > q, (2.2)

with Dt = ∂/∂t.
Turning to the finite volume method (1.13), we now introduce the discrete Laplacian

∆̃h : Sh → Sh, corresponding to the inner product 〈·, ·〉 in (1.12), by

−〈∆̃hψ, χ〉 = (∇ψ,∇χ), ∀ψ, χ ∈ Sh. (2.3)

The finite volume method (1.13) can then be written in operator form as

ũh,t − ∆̃hũh = 0, for t > 0, with ũh(0) = vh. (2.4)

For the solution operator Ẽh(t) = e∆̃ht of (2.4) we have

ũh(t) = Ẽh(t)vh =

Nh∑
j=1

e−λ̃
h
j t〈vh, φ̃hj 〉φ̃hj , for t > 0, (2.5)

where {λ̃hj }Nhj=1 and {φ̃hj }Nhj=1 are the eigenvalues, in increasing order, and the corresponding
eigenfunctions, orthonormal with respect to 〈·, ·〉, of the positive definite operator −∆̃h. For
Ẽh(t) the following analogue of (2.2) holds, cf. [4, Lemma 2.1].

Lemma 2.1. For Ẽh defined by (2.5) we have, for vh ∈ Sh and t > 0,

‖∇pD`
tẼh(t)vh‖ 6 Ct−`−(p−q)/2‖∇qvh‖, ` > 0, p, q = 0, 1, 2`+ p > q.

Proof. Introducing the square root G̃h = (−∆̃h)
1/2 : Sh → Sh of −∆̃h, we get

‖∇vh‖2 = 〈(−∆̃h)vh, vh〉 =

Nh∑
j=1

λ̃hj 〈vh, φ̃hj 〉2 = |||G̃hvh|||2.

Since the norms ||| · ||| and ‖·‖ are equivalent on Sh, we find, for t > 0,

‖∇pD`
tẼh(t)vh‖2 6 C|||G̃p

hD
`
tẼh(t)vh|||2 = C

Nh∑
j=1

(λ̃hj )
2`+p−qe−2λ̃hj t(λ̃hj )

q〈vh, φ̃hj 〉2

6 C t−(2`+p−q)|||G̃q
hvh|||2 6 C t−(2`+p−q)‖∇qvh‖2.
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The quadrature error functional εh(·, ·) defined by (1.16) has an important role in our
analysis below. For this reason we recall the following lemma, cf. [3].

Lemma 2.2. For the error functional εh, defined by (1.16), we have

|εh(f, ψ)| 6 Chp+q‖∇pf‖ ‖∇qψ‖, ∀ f ∈ H1, ψ ∈ Sh, and p, q = 0, 1.

Proof. Since
∫
τ
(Jhψ − ψ) dx = 0 for ψ linear in τ , for any τ ∈ Th, see [5], we have that

Jhψ − ψ is orthogonal to S̄h, the set of piecewise constants on Th. Hence

εh(f, ψ) = (f, Jhψ − ψ) = (f − P̄hf, Jhψ − ψ),

where P̄h is the orthogonal projection onto S̄h. The lemma now easily follows since we have
‖Jhψ − ψ‖ 6 Ch‖∇ψ‖ and ‖P̄hf − f‖ 6 Ch‖∇f‖.

The following estimate holds for the quadrature error operator Qh in (1.15).

Lemma 2.3. Let ∆̃h and Qh be the operators defined by (2.3) and (1.15). Then

‖∇Qhχ‖+ h‖∆̃hQhχ‖ 6 Chp+1‖∇pχ‖, ∀χ ∈ Sh, p = 0, 1.

Proof. By (1.15) and Lemma 2.2, with ψ = Qhχ and q = 1, it follows easily that

‖∇Qhχ‖2 = εh(χ,Qhχ) 6 Chp+1‖∇pχ‖ ‖∇Qhχ‖, for p = 0, 1,

which shows the desired estimate for ‖∇Qhχ‖. Also, by the definition of ∆̃h, Lemma 2.2
with q = 0 shows, for p = 0, 1,

|||∆̃hQhχ|||2 = −(∇Qhχ,∇∆̃hQhχ) = −εh(χ, ∆̃hQhχ) 6 Chp‖∇pχ‖ ‖∆̃hQhχ‖.

Since the norms ||| · ||| and ‖·‖ are equivalent on Sh, this implies the bound for the remaining
term ‖∆̃hQhχ‖.

In addition to the orthogonal L2-projection Ph, our error analysis will use the Ritz pro-
jection Rh : H1

0 → Sh defined by

(∇Rhw,∇χ) = (∇w,∇χ), ∀χ ∈ Sh.

It is well known that Rh satisfies

‖Rhw − w‖+ h‖∇(Rhw − w)‖ 6 Chq|w|q, for w ∈ Ḣq, q = 1, 2. (2.6)

We close with some estimates for the gradient of the error, slightly generalizing those of
[4, Theorem 2.1].

Theorem 2.1. Let u and uh be the solutions of (1.1) and (2.1). Then, for t > 0,

‖∇(uh(t)− u(t))‖ 6


Ch|v|2, if ‖∇(vh − v)‖ 6 Ch|v|2,
Cht−1/2|v|1, if ‖vh − v‖ 6 Ch|v|1,
Cht−1‖v‖, if vh = Phv.

Proof. In [4, Theorem 2.1] this was shown with vh = Rhv in the first two estimates, and
thus it remains to bound ∇Eh(t)(vh −Rhv). With ϑ := vh −Rhv we find easily, by Lemma
2.1, for smooth data, ‖∇Eh(t)ϑ(0)‖ 6 ‖∇ϑ(0)‖ 6 Ch|v|2, and for mildly nonsmooth data,
‖∇Eh(t)ϑ(0)‖ 6 Ct−1/2‖ϑ(0)‖ 6 Ct−1/2h|v|1.
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3. Smooth and Nonsmooth Initial Data Error Estimates

In this section we derive optimal order error estimates for the finite volume element method
(1.13), with initial data v in Ḣ2, Ḣ1 and L2. For v ∈ Ḣ2, the error estimate is the same as
that for the standard Galerkin finite element method, and this is also the case for v ∈ Ḣ1,
provided the family of finite element spaces is quasi-uniform. In the case v ∈ L2, with
discrete initial data vh = Phv, in order to derive an optimal order estimate analogous to
(1.6), we need to impose condition (1.17) for the quadrature error operator Qh. In Section 4
we verify this condition for symmetric meshes. In the general case we are only able to show
a nonoptimal order O(h) error bound in L2, whereas for the gradient of the error an optimal
order O(h) bound still holds.

The estimates and their proofs are analogous to those for the lumped mass method
derived in [4], since the operators Ẽh, ∆̃h and Qh, defined in Section 2, have properties
similar to those of the corresponding operators for the lumped mass method. References to
[4] will therefore be given in some of the proofs below. We begin with smooth initial data,
v ∈ Ḣ2.

Theorem 3.1. Let u and ũh be the solutions of (1.1) and (2.4). Then

‖ũh(t)− u(t)‖ 6 Ch2|v|2, if ‖vh − v‖ 6 Ch2|v|2, for t > 0.

Proof. Since, by (1.5), the corresponding error bound holds for the solution uh of the standard
Galerkin method, it suffices to consider the difference δ = ũh − uh. Also, by the stability
estimates of Lemma 2.1, we may assume that vh = Rhv. By the definition (1.15) of Qh,
δ satisfies (1.18), and hence

δt − ∆̃hδ = ∆̃hQhuh,t, for t > 0, with δ(0) = 0, (3.1)

where uh is the solution of (1.4). By Duhamel’s principle this shows

δ(t) =

∫ t

0

Ẽh(t− s)∆̃hQhuh,t(s) ds. (3.2)

Using the fact that Ẽh(t)∆̃h = DtẼh(t), and Lemmas 2.1 and 2.3, we easily get

‖Ẽh(t)∆̃hQhχ‖ 6 Ct−1/2‖∇Qhχ‖ 6 Ch2t−1/2‖∇χ‖, for χ ∈ Sh, (3.3)

and hence

‖δ(t)‖ 6 Ch2

∫ t

0

(t− s)−1/2‖∇uh,t(s)‖ ds.

Here, since ∆hRh = Ph∆, we obtain, by first applying Lemma 2.1,

‖∇uh,t(s)‖ 6 Cs−1/2‖uh,t(0)‖ = Cs−1/2‖∆hRhv‖ 6 Cs−1/2‖∆v‖ = Cs−1/2|v|2,

and hence

‖δ(t)‖ 6 Ch2

∫ t

0

(t− s)−1/2s−1/2 ds |v|2 = C h2|v|2,

which completes the proof.
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We now consider mildly nonsmooth initial data, v ∈ Ḣ1. Here we shall need to assume
the stability of Ph in Ḣ1, or ‖∇Phw‖ 6 C|w|1, which does not hold for arbitrary families
of triangulations. However, a sufficient condition for such stability of Ph is the global quasi-
uniformity of {Th}. Indeed, this assumption implies the inverse inequality ‖∇χ‖ 6 Ch−1‖χ‖,
which combined with the error bound ‖Rhw−w‖ 6 Ch|w|1 shows the desired stability of Ph.

Theorem 3.2. Let u and ũh be the solutions of (1.1) and (2.4). Then for t > 0

‖ũh(t)− u(t)‖ 6 Ch2t−1/2|v|1, if vh = Phv and ‖∇Phv‖ 6 C|v|1.

Proof. Since by (1.7), the corresponding error estimate holds for the solution uh of the
standard Galerkin method (without the condition on ∇Ph), it suffices as above to bound
δ = ũh − uh. We use (3.2) to write

δ(t) =
{∫ t/2

0

+

∫ t

t/2

}
Ẽh(t− s)∆̃hQhuh,t(s) ds = δ1(t) + δ2(t). (3.4)

Using again (3.3), we have, since ‖∇uh,t(s)‖ 6 Cs−1‖∇Phv‖ 6 Cs−1 |v|1, that

‖δ2(t)‖ 6 Ch2

∫ t

t/2

(t− s)−1/2 ‖∇uh,t(s)‖ ds 6 Ch2t−1/2 |v|1.

Integrating by parts, we obtain

δ1(t) =
[
Ẽh(t− s)∆̃hQhuh(s)

]t/2
0
−
∫ t/2

0

DsẼh(t− s)∆̃hQhuh(s) ds. (3.5)

Employing (3.3), Lemmas 2.1 and 2.3 we now find, similarly to the above,

‖δ1(t)‖ 6 Ch2t−1/2
(
‖∇uh(t/2)‖+ ‖∇Phv‖

)
+ Ch2

∫ t/2

0

(t− s)−3/2 ‖∇uh(s)‖ ds

6 Ch2t−1/2|v|1.

Together these estimates complete the proof.

The analogous result and its proof also hold for the lumped mass method, which should
replace the case q = 1 in [4, Theorem 3.1], since (1.7) does not hold for vh = Rhv.

Next, we turn to the nonsmooth initial data error estimate.

Theorem 3.3. Let u and ũh be the solutions of (1.1) and (2.4). If (1.17) holds and vh =
Phv, then

‖ũh(t)− u(t)‖ 6 Ch2t−1‖v‖, for t > 0.

Proof. This follows easily from the fact that for Qh satisfying (1.17) we have,

‖Ẽh(t)∆̃hQhPhv‖ 6 Ct−1‖QhPhv‖ 6 Ch2t−1‖v‖, for t > 0. (3.6)

This inequality is the necessary and sufficient condition for the desired bound to hold by the
following lemma, which is proved in the same way as [4, Theorem 4.1].
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Lemma 3.1. Let u and ũh be the solutions of (1.1) and (2.4). Then

‖ũh(t)− u(t) + Ẽh(t)∆̃hQhvh‖ 6 Ch2t−1‖v‖, if vh = Phv, for t > 0.

Condition (1.17) will be discussed in more detail in Section 4 below. Note that, by
Lemma 2.3, without additional assumptions on the mesh, we have

‖Qhχ‖ 6 C‖∇Qhχ‖ 6 Ch‖χ‖, ∀χ ∈ Sh,

and that the lower order error estimate of the following theorem always holds. The proof is
the same as that of [4, Theorem 4.3]. We shall show in Section 5 that a O(h) bound is the
best possible for general triangulation families {Th}.

Theorem 3.4. Let u and ũh be the solutions of (1.1) and (2.4). Then

‖ũh(t)− u(t)‖ 6 Cht−1/2‖v‖, if vh = Phv, for t > 0.

We end this section by stating optimal order estimates for the gradient of the error. Note
that no additional assumption on {Th} is required.

Theorem 3.5. Let u and ũh be the solutions of (1.1) and (2.4). Then, for t > 0,

‖∇(ũh(t)− u(t))‖ 6


Ch|v|2, if ‖∇(vh − v)‖ 6 Ch|v|2,
Cht−1/2|v|1, if ‖vh − v‖ 6 Ch|v|1,
Cht−1‖v‖, if vh = Phv.

Proof. For the first two estimates it suffices, by the stability and smoothness estimates of
Lemma 2.1, to consider vh = Rhv. For this choice of the initial data the proofs are identical
to those in [4, Theorem 3.1]. In the nonsmooth data case, the proof is the same as that of
[4, Theorem 4.4].

4. Symmetric and Almost Symmetric Triangulations

In this section we first show that for families of triangulations {Th} that are symmetric, in
a sense to be defined below, assumption (1.17) is satisfied and therefore, by Theorem 3.3,
the optimal order nonsmooth data error estimate holds. We shall then relax the symmetry
requirements and consider almost symmetric families of triangulations, consisting of O(h2)
perturbations of symmetric triangulations. In this case we show that (1.17) is satisfied with
an additional logarithmic factor and, as a consequence, an almost optimal order nonsmooth
data error estimate holds. Finally for the less restrictive class of piecewise almost symmetric
families {Th} we derive a O(h3/2) order nonsmooth data error estimate.

In addition to the quadrature error operator Qh defined in (1.16) we shall work with the
symmetric operator Mh : Sh → Sh, defined by

εh(ψ, χ) = [ψ,Mhχ], ∀ψ, χ ∈ Sh, (4.1)

where we use the inner product

[ψ, χ] =
∑
z∈Z0

h

ψ(z)χ(z), ∀ψ, χ ∈ Sh. (4.2)
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τ

ντ0 = ντ3

ντ1 = ντ4 ντ2

τ1

τ6
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τ4

τ3

τ2
ζ1

ζ6

ζ2

ζ4

ζ0

ζ5

ζ3

Πζ0

Figure 2. Left: A triangle τ . Right: A patch Πζ0 around a vertex ζ0.

To determine the form of this operator, we introduce some notation. For z ∈ Z0
h an interior

vertex of Th, we define the patch Πz = {⋃ τ : τ ∈ Th, z ∈ ∂τ}, where for simplicity we have
assumed that τ = τ̄ . Further, for z a vertex of τ ∈ Th, we denote by zτ+ and zτ− the other
two vertices of τ . We then define

MΠz
h χ := − 1

54

∑
τ⊂Πz

|τ |
(
χ(zτ+)− 2χ(z) + χ(zτ−)

)
, (4.3)

for which the following holds.

Lemma 4.1. For the operator Mh defined by (4.1) we have, for z ∈ Z0
h,

Mhχ(z) = MΠz
h χ with MΠz

h χ given by (4.3). (4.4)

Proof. In view of (1.16), we may write

εh(ψ, χ) = (ψ, Jhχ)− (ψ, χ) =
∑
τ∈Th

∫
τ

(ψJhχ− ψχ) dx. (4.5)

For τ ∈ Th we denote its vertices by ντ1 , ν
τ
2 , ν

τ
3 and set ντ4 = ντ1 , ντ0 = ντ3 , see Figure 2.

Writing wj = w(ντj ) for a function w on τ , we obtain, after simple calculations,∫
τ

ψJhχdx =
|τ |
108

3∑
j=1

ψj(22χj + 7χj−1 + 7χj+1), (4.6)

and ∫
τ

ψχdx =
|τ |
12

3∑
j=1

ψj(2χj + χj−1 + χj+1).

Thus ∫
τ

(ψJhχ− ψ χ) dx = −|τ |
54

3∑
j=1

ψj(χj+1 − 2χj + χj−1).

Summation over τ ∈ Th, (4.1) and (4.5) show

[ψ,Mhχ] =
∑
z∈Z0

h

ψ(z)MΠz
h χ, ∀ψ, χ ∈ Sh.

This implies (4.4) and thus completes the proof.
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z zz

Figure 3. Patches which are symmetric with respect to the vertex z.

We say that Th is symmetric at z ∈ Z0
h, if the corresponding patch Πz is symmetric

around z, in the sense that if x ∈ Πz, then z − (x − z) = 2z − x ∈ Πz. We say that Th is
symmetric if it is symmetric at each z ∈ Z0

h. The patch Πζ0 in Figure 2 is nonsymmetric
with respect to ζ0, whereas triangulations which are built up of either of the patches shown
in Figure 3 are symmetric. Symmetric triangulations exist only for special domains, such as
parallelograms, but not for general polygonal domains.

We now show the sufficiency of symmetry of {Th} for condition (1.17) for the operator
Qh, and hence, by Theorem 3.3, for the nonsmooth data error estimate.

Theorem 4.1. If the family {Th} is symmetric, then (1.17) holds.

Proof. The proof, by duality, follows that of [4, Theorem 5.1]. For given χ ∈ Sh we define
ϕ = ϕχ ∈ Ḣ1 as the solution of the Dirichlet problem −∆ϕ = χ in Ω, ϕ = 0 on ∂Ω. Since
Ω is convex, we have ϕ ∈ Ḣ2 and |ϕ|2 6 C‖χ‖. With Ih the finite element interpolation
operator into Sh, we have, for any ψ ∈ Sh,

‖Qhψ‖ = sup
χ∈Sh

(Qhψ, χ)

‖χ‖ = sup
χ∈Sh

(∇Qhψ,∇ϕ)

‖χ‖

6 sup
χ∈Sh

|(∇Qhψ,∇(ϕ− Ihϕ))|
‖χ‖ + sup

χ∈Sh

|(∇Qhψ,∇Ihϕ)|
‖χ‖ = I + II. (4.7)

By the obvious error estimate for Ih and Lemma 2.3, with p = 0, we find

|I| 6 Ch sup
χ∈Sh

‖∇Qhψ‖ |ϕ|2
‖χ‖ 6 Ch2‖ψ‖. (4.8)

To estimate II, we employ (1.15) and (4.1) to rewrite the numerator in the form

(∇Qhψ,∇Ihϕ) = εh(ψ, Ihϕ) = [ψ,MhIhϕ]. (4.9)

To bound MhIhϕ, we consider an arbitrary vertex z = ζ0 ∈ Z0
h. Let Πζ0 be the corre-

sponding patch of Th, with vertices {ζj}Kj=1, numbered counter-clockwise, with ζj+K = ζj for
all j. Also denote by {τj}Kj=1 the triangles of Th in Πζ0 , with τj having vertices ζ0, ζj, ζj+1,
and set τ0 = τK (see Figure 2). Then Lemma 4.1 implies

MhIhϕ(ζ0) = M
Πζ0
h Ihϕ = − 1

54

K∑
j=1

ωj(ϕ(ζj)− ϕ(ζ0)), (4.10)

with ωj = |τj−1|+ |τj|. By assumption, the patch Πζ0 is symmetric and hence, by (4.10), we
can express MhIhϕ(ζ0) as a linear combination of terms of the form ϕ(ζj)− 2ϕ(ζ0) + ϕ(ζ ′j),
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Figure 4. Left: An almost symmetric triangulation. Right: A piecewise almost symmetric triangulation.

where ζ0 is the midpoint of the vertices ζj and ζ ′j of Πζ0 . Hence MhIhϕ(ζ0) = 0 for ϕ linear
in Πζ0 and, as in [4], we may apply the Bramble–Hilbert lemma to obtain

|MhIhϕ(ζ0)| 6 Ch2|Πζ0|1/2‖ϕ‖H2(Πζ0 ) 6 Ch3‖ϕ‖H2(Πζ0 ). (4.11)

Employing this estimate for all patches Πz of Th, we obtain, for any ψ ∈ Sh,∣∣[ψ,MhIhϕ]
∣∣ 6 Ch3

∑
z∈Z0

h

|ψ(z)| ‖ϕ‖H2(Πz) 6 Ch2‖ψ‖ |ϕ|2 6 Ch2‖ψ‖ ‖χ‖. (4.12)

Hence, in view of (4.7) and (4.9), we obtain |II| 6 Ch2‖ψ‖. Together with (4.8) this
completes the proof.

We now want to slightly weaken the assumption about symmetry. We say that a family of
triangulations {Th} is almost symmetric if each Th is a perturbation by O(h2) of a symmetric
triangulation, uniformly in h, in the sense that with each patch Πz of Th there is an associated
symmetric patch from which Πz is obtained by moving each of its vertices by O(h2). Such
triangulations exist for any convex quadrilateral, cf. Figure 4. We note that various special
triangulations have been used in the past for obtaining higher order accuracy for the gradient
of the finite element solution (super-convergent rates of O(h2) or O(h2`h)), see, e.g., [7, 10,
13]. For example, the strongly regular triangulations from [10], requiring that any two
adjacent triangles form almost a parallelogram (a deviation of a parallelogram by O(h2)),
are almost symmetric meshes in our terminology. We shall show that, in this case, we have
almost optimal order convergence for nonsmooth initial data.

Theorem 4.2. If the family {Th} is almost symmetric, then

‖Qhψ‖ 6 Ch2`
1/2
h ‖ψ‖, ∀ψ ∈ Sh, where `h = 1 + |log h|. (4.13)

Hence, for the solution of (1.13), with vh = Phv, we have

‖ũh(t)− u(t)‖ 6 Ch2`
1/2
h t−1‖v‖, for t > 0. (4.14)

In the proof we shall need the following Sobolev type inequality, where the |·|Hk denote
seminorms with only the derivatives of highest order k.

Lemma 4.2. Let B be a fixed bounded domain, satisfying the cone property. Then we have,
for 0 < ε < 1,

sup
z,z′∈B, z′ 6=z

|ϕ(z′)− ϕ(z)|
|z′ − z|1−ε 6 Cε−1/2

(
|ϕ|H1(B) + |ϕ|H2(B)

)
, ∀ϕ ∈ H2(B).
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Proof. We find from [1, pp. 109–110], for ε small, with C independent of ε,

sup
z,z′∈B, z′ 6=z

|ϕ(z′)− ϕ(z)|
|z′ − z|1−ε 6 C‖∇ϕ‖Lp(B), with p = 2/ε, ∀ϕ ∈ W 1

p (B). (4.15)

We shall also apply the Sobolev inequality, with explicit dependence on p,

‖ϕ‖Lp(B) 6 C p1/2‖ϕ‖H1(B), for p <∞, ∀ϕ ∈ H1(B). (4.16)

For ϕ ∈ H1
0 (B) a proof was sketched in [12, Lemma 6.4]. For the general case of ϕ ∈ H1(B),

we make a bounded extension of ϕ from H1(B) to H1
0 (B̃), with B̃ ⊂ B̄, cf. [1, Chapter IV]

and apply (4.16) to H1(B̃) to complete the proof.
Employing (4.16) yields

‖∇ϕ‖Lp(B) 6 C p1/2
(
|ϕ|H1(B) + |ϕ|H2(B)

)
, ∀ϕ ∈ H2(B).

Combining this with (4.15), using p1/2 = (2/ε)1/2, completes the proof.

Proof of Theorem 4.2. The proof proceeds as that of Theorem 4.1, starting with (4.7) and
noting that the bound (4.8) for I remains valid. In order to bound II, we follow the steps
above, but now, instead of (4.11), we show

|MhIhϕ(ζ0)| 6 Ch3`
1/2
h ‖ϕ‖H2(Πζ0 ). (4.17)

Using (4.17) as (4.11) in (4.12), we find∣∣[ψ,MhIhϕ]
∣∣ 6 Ch2`

1/2
h ‖ψ‖ ‖χ‖, ∀ψ, χ ∈ Sh, (4.18)

and hence |II| 6 Ch2`
1/2
h ‖ψ‖. Together with (4.8), this completes the proof of (4.13). The

error estimate (4.14) now follows from Lemma 3.1 and

‖Ẽh(t)∆̃hQhPhv‖ 6 Ct−1‖QhPhv‖ 6 Ch2`
1/2
h t−1‖v‖, for t > 0.

It remains to show (4.17). Let Π̃ζ′0
be the symmetric patch associated with Πζ0 by the

definition of almost symmetric. After a preliminary translation of Π̃ζ′0
by O(h2), we may

assume that ζ ′0 = ζ0. Further, without loss of generality, we may assume that Π̃ζ0 ⊂ Πζ0 .
In fact, if this is not the case originally, it will be satisfied by shrinking Π̃ζ0 by a suitable
factor 1 − ch2 with c > 0. Starting with Π̃ζ0 we may now move the vertices one by one by
O(h2) to obtain Πζ0 in a finite number of steps, through a sequence of intermediate patches
Π̂ζ0 ⊂ Πζ0 .

Applying (4.10) we will show that for each of these∣∣M Π̂ζ0
h Ihϕ

∣∣ 6 Cεh
3−ε‖ϕ‖H2(Πζ0 ), where Cε = Cε−1/2, ε > 0, (4.19)

which implies (4.17), by taking ε = `−1
h and Π̂ζ0 = Πζ0 .

Since (4.19) holds for the symmetric patch Π̃ζ0 , by (4.11), it remains to show that if it
holds for a given patch Π̂ζ0 then it also holds for the next patch in the sequence. Assuming
thus that (4.19) holds for Π̂ζ0 , we consider the effect of moving one of its vertices, ζ2, say, to
ζ ′2, with |ζ ′2 − ζ2| = O(h2).
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Applying Lemma 4.2 to the function ϕ(h·), with B suitable, we obtain

sup
z,z′∈Πζ0 , z

′ 6=z

|ϕ(z′)− ϕ(z)|
|z′ − z|1−ε 6 Cεh

−1+ε
(
|ϕ|H1(Πζ0 ) + h|ϕ|H2(Πζ0 )

)
6 Cεh

−1+ε‖ϕ‖H2(Πζ0 ). (4.20)

Moving only the vertex ζ2 in Π̂ζ0 changes only the triangles τ1 and τ2 and thus the terms
corresponding to j = 1, 2, 3 in (4.10).

Letting τ ′1 and τ ′2 be the new triangles, the change in the term with j = 1 is then bounded,
since ||τ ′1| − |τ1|| 6 Ch3, by

∣∣(ω′1 − ω1)
(
ϕ(ζ1)− ϕ(ζ0)

)∣∣ 6 C
∣∣|τ ′1| − |τ1|

∣∣h1−ε |ϕ(ζ1)− ϕ(ζ0)|
|ζ1 − ζ0|1−ε

6 Cεh
3‖ϕ‖H2(Πζ0 ),

and thus by the right-hand side of (4.19). The change in the term with j = 3 is bounded in
the same way. For j = 2 the change is bounded by the modulus of

ω′2
(
ϕ(ζ ′2)− ϕ(ζ0)

)
− ω2

(
ϕ(ζ2)− ϕ(ζ0)

)
= (ω′2 − ω2)

(
ϕ(ζ2)− ϕ(ζ0)

)
+ ω′2

(
ϕ(ζ ′2)− ϕ(ζ2)

)
.

The first term on the right is bounded as the terms with j = 1, 3, and the second is bounded,
using (4.20), since |ζ ′2 − ζ2| 6 Ch2, in the following way,∣∣ω′2(ϕ(ζ ′2)− ϕ(ζ2)

)∣∣ 6 Cεh
2|ζ ′2 − ζ2|1−εh−1+ε‖ϕ‖H2(Πζ0 ) 6 Cεh

3−ε‖ϕ‖H2(Πζ0 ).

This shows that (4.19) remains valid after moving ζ2, which concludes the proof.

More generally, we shall consider families of piecewise almost symmetric triangulations
{Th}, in which Ω is partitioned into a fixed set of subdomains {Ωk}Kk=1, and each of these
is supplied with an almost symmetric family {Th(Ωk)} so that Th =

⋃K
k=1 Th(Ωk). Such

families may be constructed for any convex polygonal domain, cf. Figure 4, by successively
refining an initial coarse mesh, a procedure routinely used in computational practice. For
such meshes we show the following result.

Theorem 4.3. If the family {Th} is piecewise almost symmetric, then

‖Qhψ‖ 6 Ch3/2‖ψ‖, ∀ψ ∈ Sh. (4.21)

Hence, for the solution of (2.4) with vh = Phv, we have

‖ũh(t)− u(t)‖ 6 Ch3/2t−1‖v‖, for t > 0. (4.22)

Proof. Following again the steps in the proof of Theorem 4.1, we note that (4.8) still holds,
and it remains to bound II. For each internal vertex ζ0 of one of the Th(Ωk), the corresponding
patch Πζ0 is a O(h2) perturbation of a symmetric patch, and thus (4.17) holds. For ζ0 ∈ Z0

h

a vertex on the boundary of two of the Th(Ωk) we see that by (4.10)

|Mhχ(ζ0)| 6 Ch3 max
x∈Πζ0

|∇χ(x)| 6 Ch2‖∇χ‖L2(Πζ0 ),
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and by the use of approximation properties of the interpolation operator Ih we get

|MhIhϕ(ζ0)| 6 Ch2‖Ihϕ‖H1(Πζ0 ) 6 Ch2
(
‖ϕ‖H1(Πζ0 ) + h|ϕ|H2(Πζ0 )

)
. (4.23)

Using (4.17) and (4.23) as earlier (4.11) in (4.12), we conclude∣∣[ψ,MhIhϕ]
∣∣ 6 Ch2`

1/2
h ‖ψ‖ |ϕ|2 + Ch‖ψ‖ ‖ϕ‖H1(ΩS),

where ΩS is a strip of width O(h) around the interface between the subdomains Ωk of Ω.
Using now the inequality ‖ϕ‖H1(ΩS) 6 Ch1/2‖ϕ‖H2(Ω) 6 Ch1/2‖χ‖, we get∣∣[ψ,MhIhϕ]

∣∣ 6 Ch3/2‖ψ‖ ‖χ‖, ∀ψ, χ ∈ Sh, (4.24)

and hence |II| 6 Ch3/2‖ψ‖. Together with (4.8), this completes the proof of (4.21). The
error estimate (4.22) now follows by Lemma 3.1 and

‖Ẽh(t)∆̃hQhPhv‖ 6 Ct−1‖QhPhv‖ 6 Ch3/2t−1‖v‖, for t > 0.

We remark that the operator Mh used here, modulo a constant factor, is the same as the
operator ∆∗h in [4]. The arguments in the proofs of Theorems 4.2 and 4.3 therefore show
that the following result holds for the lumped mass method.

Corollary 4.1. Assume that {Th} is almost or piecewise almost symmetric. Then the non-
smooth data error estimates for the lumped mass method, corresponding to (4.13) and (4.21),
respectively, hold.

We finish this section by remarking that, in one space dimension, the full O(h2) L2-norm
bound (1.17) for Qh holds also for almost symmetric partitions, without a logarithmic factor.
Let Ω = (0, 1) be partitioned by 0 = x0 < x1 < · · · < xNh+1 = 1. Denote now Th = {τi}Nh+1

i=1 ,
with τi = [xi−1, xi], and let Sh be the set of the continuous piecewise linear functions over
Th, vanishing at x = 0, 1. We set hi = xi − xi−1 and h = maxi hi. The control volumes
are Vi = (xi − hi/2, xi + hi+1/2) and Jhψ(x) = ψ(xi) for x ∈ Vi. We say that Th is almost
symmetric if |hi+1 − hi| 6 Ch2 for all i.

Simple calculations show, with (χ, ψ) =
∫ 1

0
χψ dx and 〈χ, ψ〉 = (χ, Jhψ), for χ, ψ ∈ Sh,

εh(ψ, χ) = 〈ψ, χ〉 − (ψ, χ) = − 1

24

Nh∑
i=1

ψi
(
hi+1(χi+1 − χi)− hi(χi − χi−1)

)
,

where wi = w(xi) for a function w on Ω, and the one-dimensional version of (4.10) at xi
becomes

MhIhϕ(xi) = − 1

24

(
hi+1(ϕi+1 − ϕi) + hi(ϕi−1 − ϕi)

)
, i = 1, . . . , Nh.

The crucial step to prove (1.17) is then to show an analogue of (4.11), in this case

|MhIhϕ(xi)| 6 Ch5/2‖ϕ‖H2(Πxi )
, i = 1, . . . , Nh, with Πxi = τi ∪ τi+1, (4.25)

from which (1.17) follows as earlier. Using the Taylor formula

ϕ(x) = ϕ(xi) + (x− xi)ϕ′(xi) +

∫ x

xi

(x− y)ϕ′′(y) dy,
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we find easily

MhIhϕ(xi) = − 1

24
(h2

i+1 − h2
i )ϕ

′(xi) +O
(
h5/2 ‖ϕ′′‖L2(Πxi )

)
, i = 1, . . . , Nh.

By the almost symmetry, |h2
i+1 − h2

i | 6 Ch3 and by the Sobolev type inequality

|ϕ′(xi)| 6 Ch−1/2
(
‖ϕ′‖L2(Πxi )

+ h‖ϕ′′‖L2(Πxi )

)
6 Ch−1/2‖ϕ‖H2(Πxi )

,

for i = 1, . . . , Nh, we now conclude that (4.25) holds.

5. Examples of Nonoptimal Nonsmooth Initial Data Estimates

In this section we present two examples where the necessary and sufficiency condition (3.6)
for an optimal O(h2) nonsmooth data error estimate for t > 0 is not satisfied. In the first
example we construct a family of nonsymmetric meshes {Th} for which the norm on the
left-hand side of (3.6) is bounded below by ch, thus showing that the first order error bound
of Theorem 3.5 is the best possible. In the second example we exhibit a piecewise symmetric
mesh for which this norm is bounded below by ch3/2, implying that the error estimate of
Theorem 4.3 is best possible.

In our first example we choose Ω = (0, 1)× (0, 1) and introduce a quasi-uniform family of
triangulations {Th} of Ω as follows. Let N be a positive integer divisible by 4, h = 4/(3N),
x0 = 0, and set, for j = 1, . . . , N and m = 0, 1, . . . ,M = 3

4
N ,

xj = xj−1 +

{
1
2
h, for j odd,
h, for j even,

and ym = mh. (5.1)

We split the rectangle (xj, xj+1) × (ym, ym+1) into two triangles by connecting the nodes
(xj, ym) and (xj+1, ym−1), see Figure 5. This defines a triangulation Th that is not symmetric
at any vertex.

Let now ζ0 = (x2j, ym), ζ0 ∈ Z0
h, and let Πζ0 be the corresponding nonsymmetric patch

shown in Figure 5, with vertices {ζj}6
j=1. Let τj be the triangle in Πζ0 with vertices ζ0, ζj,

ζj+1, where ζ7 = ζ1. We then have |τj| = 1
4
h2, for j = 1, 2, 3, and |τj| = 1

2
h2, for j = 4, 5, 6.

Thus, using (4.10), for ψ ∈ Sh, we obtain with ψj = ψ(ζj),

Mhψ(ζ0) = − 1

54

6∑
j=1

ωj(ψj − ψ0) = − 1

54

h2

4

(
3(ψ1 + ψ4 − 2ψ0)

+ 2(ψ2 − ψ0) + 2(ψ3 − ψ0) + 4(ψ5 − ψ0) + 4(ψ6 − ψ0)
)
. (5.2)

Because ∇ψ is piecewise constant over Πζ0 , we easily see that (5.2) implies

|Mhψ(ζ0)| 6 Ch2‖∇ψ‖L2(Πζ0 ), ∀ψ ∈ Sh. (5.3)

For a smooth function ϕ we have, by Taylor expansion,

ϕ(ζj)− ϕ(ζ0) = ∇ϕ(ζ0) · (ζj − ζ0) +O(h2),
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Figure 5. Left: A nonsymmetric mesh. Right: A nonsymmetric patch Πζ0 , around ζ0.

where ζj is considered as a vector with components its Cartesian coordinates and the dot
denotes the Euclidean inner product in R2. Employing this in (5.2), we find, after a simple
calculation,

MhIhϕ(ζ0) =
h3

108
∇ϕ(ζ0) · (3,−1) +O(h4). (5.4)

Let φ1(x, y) = 2 sin(πx) sin(πy) be the eigenfunction of−∆, corresponding to the smallest
eigenvalue λ1 = 2π2. We then easily find that ∇φ1(1/4, 1/4) · (3,−1) = 2π. Hence, there
exists a square P = [1/4− d, 1/4 + d]2, with 0 < d < 1/4, such that

∇φ1(z) · (3,−1) > 1, ∀ z ∈ P . (5.5)

Letting now z ∈ Z0
h ∩ P we then have that MhIhφ1(z) > ch3, c > 0, for h small. We shall

prove the following proposition.

Proposition 5.1. Let Th be defined by (5.1), Ph = {z = (x2j, ym) ∈ P} and consider the
initial value problem (2.4) with vh =

∑
z∈Ph Φz, where Φz ∈ Sh is the nodal basis function of

Sh at z. Then we have, for h small,

‖Ẽh(t)∆̃hQhvh‖ > c(t)h‖vh‖, with c(t) > 0, for t > 0.

Proof. Letting λ̃hj and φ̃hj be the eigenvalues and eigenfunctions of −∆̃h, and using Parseval’s
relation in Sh, equipped with 〈·, ·〉, we have

|||Ẽh(t)∆̃hQhvh|||2 =

Nh∑
j=1

e−2tλ̃hj 〈∆̃hQhvh, φ̃
h
j 〉2 > e−2tλ̃h1 〈∆̃hQhvh, φ̃

h
1〉2. (5.6)

Combining (2.3), (1.15) and (4.1), we find

−〈∆̃hQhvh, ψ〉 = (∇Qhvh,∇ψ) = εh(vh, ψ) = [vh,Mhψ], ∀ψ ∈ Sh. (5.7)

Note now that for z ∈ Ph, the corresponding patch Πz has the same form as the patch Πζ0

considered above. Thus employing (5.3) for ζ0 = z, we get, for ψ ∈ Sh,∣∣[vh,Mhψ]
∣∣ 6 ∑

z∈Ph

∣∣[Φz,Mhψ]
∣∣ =

∑
z∈Ph

|Mhψ(z)| 6 Ch‖∇ψ‖, (5.8)
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Figure 6. A piecewise symmetric mesh.

where in the last inequality we have used the fact that the number of points in Ph is O(N2) =
O(h−2). We recall from [8] that

‖φ̃h1 − φ1‖H1 = O(h) and λ̃h1 → λ1, as h→ 0,

and, since obviously ‖φ1 − Ihφ1‖H1 = O(h), (5.8) with ψ = φ̃h1 − Ihφ1 gives∣∣[vh,Mh(φ̃
h
1 − Ihφ1)]

∣∣ 6 Ch‖∇(φ̃h1 − Ihφ1)‖ 6 Ch2. (5.9)

For every z ∈ Ph, (5.5) holds, and thus, using (5.4) with ϕ = φ1 and ζ0 = z, we obtain, for
h small, since the number of vertices in Ph is bounded below by cN2,

[vh,MhIhφ1] =
∑
z∈Ph

MhIhφ1(z) > ch3N2 = ch, with c > 0.

Combining this with (5.9), we obtain, for h small,

[vh,Mhφ̃
h
1 ] > [vh,MhIhφ1]−

∣∣[vh,Mh(φ̃
h
1 − Ihφ1)]

∣∣ > ch− Ch2 > ch, with c > 0.

Since |||vh||| = O(1), (5.6) and (5.7) now show

|||Ẽh(t)∆̃hQhvh||| > e−tλ̃
h
1 [vh,Mhφ̃

h
1 ] > c(t)h |||vh|||, for t > 0.

Since ||| · ||| and ‖·‖ are equivalent norms, the proof is complete.

It follows from Proposition 5.1 and Lemma 3.1 that the highest order of convergence that
can hold, uniformly for all v ∈ L2, and for any family of triangulations {Th}, is O(h), i.e.,
Theorem 3.4 is best possible, in this case.

We now turn to our second example, in which {Th} is a piecewise symmetric family. Let
again Ω = (0, 1)× (0, 1) and consider a triangulation Th of Ω, where the nodes (xj, ym) are
given as follows. With J a positive integer, let N = 7J , M = 4J and h = 1/(4J), and set
for j = 0, . . . , N and m = 0, . . . ,M ,

xj =

{
jh, for 0 6 j 6 J,

1/4 + (j − J)h/2, for J < j 6 N,
and ym = mh, (5.10)
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see Figure 6. This time we consider the set of vertices in P with x = 1/4 and prove the
following proposition.

Proposition 5.2. Let Th be defined by (5.10) and P ′h = {z = (xJ , ym) ∈ P}. For the initial
value problem (2.4), with vh =

∑
z∈P ′

h
Φz, where Φz ∈ Sh is the nodal basis function of Sh at

z, we have, for h small,

‖Ẽh(t)∆̃hQhvh‖ > c(t)h3/2‖vh‖, with c(t) > 0, for t > 0.

Proof. Again, using (5.6) and (5.7), we have,

|||Ẽh(t)∆̃hQhvh|||2 > e−2tλ̃h1 [vh,Mhφ̃
h
1 ]2. (5.11)

For z ∈ P ′h, the corresponding patch Πz has the same form as the patch Πζ0 considered
above, see Figure 5 (right). Thus employing (5.3) for ζ0 = z and taking into account that
the number of vertices in P ′h is O(N) we now obtain, for ψ ∈ Sh,∣∣[vh,Mhψ]

∣∣ 6 ∑
z∈P ′

h

∣∣[Φz,Mhψ]
∣∣ =

∑
z∈P ′

h

|Mhψ(z)| 6 Ch3/2‖∇ψ‖.

Similarly to (5.9) this now shows∣∣[vh,Mh(φ̃
h
1 − Ihφ1)]

∣∣ 6 Ch5/2, (5.12)

and, again using (5.4), for h small,

[vh,MhIhφ1] =
∑
z∈P ′

h

MhIhφ1(z) > ch3J = ch2, with c > 0.

Combined with (5.12) this gives, for h small,

[vh,Mhφ̃
h
1 ] > ch2 − Ch5/2 > ch2, with c > 0. (5.13)

Since |||vh||| = O(h1/2) we obtain from (5.11) and (5.13)

|||Ẽh(t)∆̃hQhvh||| > c(t)h2 > c(t)h3/2 |||vh|||, for t > 0.

It follows from Proposition 5.2 and Lemma 3.1 that the highest order of convergence that
can hold, uniformly for all v ∈ L2, and for all piecewise symmetric families {Th}, is O(h3/2),
i.e., Theorem 4.3 is best possible in this regard.

Remark 5.1. SinceMh is proportional to the operator ∆∗h used in [4], the arguments in this
section also apply to the lumped mass method. In particular, the analogue of Proposition
5.1 then shows that the first order nonsmooth data estimate for t > 0 of [4, Theorem 4.3]
is best possible for general triangulations {Th}. Further, the O(h3/2) estimate stated in
Corollary 4.1 is best possible for piecewise almost symmetric triangulations. Our examples
here may be thought of as generalizations to two space dimensions of the one-dimensional
counter-examples in [4, Section 7].
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6. Some Fully Discrete Schemes

In this section we discuss briefly the generalization of our above results for the spatially
semidiscrete finite volume method to some basic fully discrete schemes, namely the backward
Euler and Crank–Nicolson methods.

With k > 0, tn = n k, n = 0, 1, . . . , the backward Euler finite volume method approxi-
mates u(tn) by Ũn ∈ Sh for n > 0 such that, with ∂̄Ũn = (Ũn − Ũn−1)/k,

〈∂̄Ũn, χ〉+ (∇Ũn,∇χ) = 0, ∀χ ∈ Sh, for n > 1, with Ũ0 = vh,

or,
∂̄Ũn − ∆̃hŨ

n = 0, for n > 1, with Ũ0 = vh. (6.1)

Introducing the discrete solution operator Ẽkh = (I − k∆̃h)
−1 we may write Ũn =

ẼkhŨ
n−1 = Ẽn

khŨ
0, n > 1. Using eigenfunction expansion and Parseval’s relation, we obtain,

analogously to [12, Chapter 7], the stability property

‖∇pẼn
khχ‖ 6 C‖∇pχ‖, ∀χ ∈ Sh, for p = 0, 1. (6.2)

The estimates that follow and their proofs are analogous to those for the lumped mass
method derived in [4], since the operators Ẽh(t), ∆̃h and Qh, defined in Section 2, have
properties analogous to those of the corresponding operators for the lumped mass method.
For simplicity we will only sketch the proof of Theorem 6.1.

We shall use the following abstract lemma shown in [4], in the case H = Sh, normed by
||| · |||, and with A = −∆̃h.

Lemma 6.1. Let A be a linear, selfadjoint, positive definite operator in a Hilbert space H,
with compact inverse, let u = u(t) be the solution of

u′ + Au = 0, for t > 0, with u(0) = v,

and let U = {Un}∞n=0 be defined by

∂̄Un + AUn = 0, for n > 1, with U0 = v.

Then, for p = 0, 1, −1 6 q 6 3, with p+ q > 0, we have

‖Ap/2(Un − u(tn))‖ 6 Ckt−(1−q/2)
n ‖A(p+q)/2v‖, for n > 1.

The error estimates of the following theorem for (6.1) are of optimal order under the
same assumptions as in Section 3.

Theorem 6.1. Let u and Ũ be the solutions of (1.1) and (6.1). Then, for n > 1,

‖Ũn − u(tn)‖ 6


C(h2 + k)|v|2, if ‖vh − v‖ 6 Ch2|v|2,
C(h2 + k)t

−1/2
n |v|1, if vh = Phv and ‖∇Phv‖ 6 C|v|1,

C(h2 + k)t−1
n ‖v‖, if vh = Phv and (1.17) holds.
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Proof. Analogously to the proof of [4, Theorem 8.1], we split the error as

Ũn − u(tn) = (Ũn − ũh(tn)) + (ũh(tn)− u(tn)) = βn + ηn.

By Theorems 3.1–3.3, ηn is bounded as required. In order to bound βn = (Ẽn
kh − Ẽh(tn))vh

in the smooth data case, it suffices, using the stability estimates (6.2) and Lemma 2.1, to
consider vh = Rhv. We obtain by Lemma 6.1, with A = Ah = −∆̃h, and q = 2, 1, 0,

|||βn||| = |||Ũn − ũh(tn)||| 6 Ckt−(1−q/2)
n |||Aq/2h vh||| 6 Ckt−(1−q/2)

n |v|q,

where for q = 2, the last inequality follows from

|||AhRhv|||2 = (∇Rhv,∇AhRhv) = (∇v,∇AhRhv) = −(∆v, AhRhv),

for q = 1 from |||A1/2
h Phv||| = ‖∇Phv‖ 6 C|v|1 and for q = 0 from |||Phv||| 6 C‖v‖.

Also for the lumped mass method the analogous result in the mildly nonsmooth data
case v ∈ Ḣ1 holds, and should replace the result for q = 1 in [4, Theorem 8.1], cf. the remark
after Theorem 3.2.

Recall that Qh satisfies (1.17) if {Th} is symmetric. For almost symmetric or piecewise
almost symmetric {Th} we obtain correspondingly the following nonsmooth initial data error
estimates employing (4.14) and (4.22).

Theorem 6.2. Let u and Ũ be the solutions of (1.1) and (6.1), with vh = Phv. Then, for
n > 1,

‖Ũn − u(tn)‖ 6
{
C(h2`

1/2
h + k)t−1

n ‖v‖, if {Th} is almost symmetric,
C(h3/2 + k)t−1

n ‖v‖, if {Th} is piecewise almost symmetric.

For the gradient of the error we may prove as in [4, Theorem 8.2], the following smooth
and nonsmooth data error estimates, without additional assumptions on Th. For smooth
initial data we assumed in [4] that vh = Rhv, but the more general choices of vh are permitted
by the stability estimates (6.2) and Lemma 2.1.

Theorem 6.3. Let u and Ũ be the solutions of (1.1) and (6.1). Then, for n > 1,

‖∇(Ũn − u(tn))‖ 6
{
C(h+ k)|v|3, if ‖∇(vh − v)‖ 6 Ch|v|2,
C(h t−1

n + k t
−3/2
n )‖v‖, if vh = Phv.

We now turn to the Crank–Nicolson method, defined by

∂̄Ũn − ∆̃hŨ
n− 1

2 = 0, for n > 1, with U0 = vh, Ũn− 1
2 =

1

2
(Ũn + Ũn−1). (6.3)

Denoting again the discrete solution operator by Ẽkh = (I+ 1
2
k∆̃h)(I− 1

2
k∆̃h)

−1 we may write
Ũn = ẼkhŨ

n−1 = Ẽn
khŨ

0, n > 1. Using eigenfunction expansion and Parseval’s relation, we
find that (6.2) also holds for this method.

The Crank–Nicolson method does not have as advantageous smoothing properties as the
backward Euler method, which is reflected in the fact that the following analogue of Lemma
6.1, shown in [4, Lemma 8.2], does not allow q = 0.
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Lemma 6.2. Let A and u(t) be as in Lemma 6.1 and let Un satisfy

∂̄Un + AUn− 1
2 = 0, for n > 1, with U0 = v.

Then

‖Ap/2(Un − u(tn))‖ 6 Ck2t−(2−q)
n ‖Ap/2+qv‖, for n > 1, p = 0, 1, q = 1, 2.

This time optimal order estimates for the error in L2 and in H1 hold uniformly down to
t = 0, if v ∈ Ḣ4 and v ∈ Ḣ5, respectively. The proofs are analogous to those of [4, Theorems
8.3 and 8.4], where we assumed vh = Rhv. Again the stability estimates (6.2) and Lemma
2.1 permit the more general choices for vh.

Theorem 6.4. Let u and Ũ be the solutions of (1.1) and (6.3). Then, with q = 1, 2, we
have, for n > 1,

‖Ũn − u(tn)‖ 6 C(h2 + k2t−(2−q)
n )|v|2q, if ‖vh − v‖ 6 Ch2|v|2,

‖∇(Ũn − u(tn))‖ 6 C(h+ k2t−(2−q)
n )|v|2q+1, if ‖∇(vh − v)‖ 6 Ch|v|2.

For optimal order convergence for initial data only in L2, one may modify the Crank–
Nicolson scheme by taking the first two steps by the backward Euler method, which has
a smoothing effect. We may show then the following result, analogously to that of [4,
Theorem 8.5], with the obvious modifications for almost symmetric and piecewise almost
symmetric families {Th}.

Theorem 6.5. Let u be the solution of (1.1) and Ũn that of (6.1), for n = 1, 2, and of
(6.3), for n > 3, with vh = Phv and assume (1.17) holds. Then we have

‖Ũn − u(tn)‖ 6 C(h2t−1
n + k2t−2

n )‖v‖, for n > 1.

7. Problems with More General Elliptic Operators

This final section is devoted to the extension of our earlier results to the more general
problem (1.19), and we recall that we shall consider the finite volume method (1.26) where
the bilinear form ãh(·, ·) is defined by (1.25). Our error analysis is again based on estimates
for the standard Galerkin finite element method, in this case defined by (1.20) and (1.21).
It is well known that for this method the stability and smoothing estimates (2.2) hold as do
the error estimates (1.5)–(1.7), where the norms |·|q are defined analogously to the norms
(1.2), using the eigenvalues and eigenfunctions of A.

We introduce the discrete elliptic operator Ãh : Sh → Sh by

〈Ãhψ, χ〉 = ãh(ψ, Jhχ), ∀χ, ψ ∈ Sh, (7.1)

which is symmetric and positive definite with respect to the inner product 〈·, ·〉 by (1.24),
since (β̃ψ, Jhχ) is symmetric, positive semidefinite on Sh. This follows from the fact that∫
τ
χJhψ dx is symmetric by (4.6) and β̃ is constant and non-negative in each τ of Th. We

may then rewrite (1.26) as

ũh,t + Ãhũh = 0, for t > 0, with ũh(0) = vh, (7.2)
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and the solution is given by ũh(t) = Ẽh(t)vh, where Ẽh(t) = e−Ãh t is defined as in (2.5), with
{λ̃hj } and {φ̃hj } the eigenvalues and eigenfunctions of Ãh, orthonormal with respect to 〈·, ·〉.

Note that a slightly different finite volume element method for (1.19) has been considered
in [9]. This method differs in the discretization of the lower order term, using the bilinear
āh(·, ·) defined by

āh(ψ, Jhχ) = (α̃∇ψ,∇χ) + (βJhψ, Jhχ), ∀ψ, χ ∈ Sh.

For this method analogous results to Theorems 7.1–7.3 hold.
Following our error analysis in the previous sections we introduce δ = ũh − uh and split

the error into ũh − u = δ + (uh − u), where uh − u and ∇(uh − u) are estimated by the
analogues of (1.5)–(1.7). It therefore suffices to derive estimates for δ, which satisfies, for
t > 0,

〈δh,t, χ〉+ ãh(δ, Jhχ) = −εh(uh,t, χ)− ε̃h(uh, χ), ∀χ ∈ Sh, with δ(0) = 0, (7.3)

where εh(·, ·) is given by (1.16) and ε̃h(·, ·) is defined by

ε̃h(ψ, χ) = ãh(ψ, Jhχ)− a(ψ, χ), ∀ψ, χ ∈ Sh. (7.4)

Now let Qh : Sh → Sh and Q̃h : Sh → Sh be the quadrature error operators given by

ãh(Qhψ, Jhχ) = εh(ψ, χ) and ãh(Q̃hψ, Jhχ) = ε̃h(ψ, χ), ∀ψ, χ ∈ Sh. (7.5)

Using (7.1), the equation (7.3) for δ can then be written in operator form as

δt + Ãhδ = −ÃhQhuh,t − ÃhQ̃huh, for t > 0, with δ(0) = 0.

This problem is similar to (3.1), except that the operator −∆̃h is replaced by Ãh and that
on the right-hand side we have an additional term resulting from the approximation of the
bilinear form a(·, ·). By Duhamel’s principle we have

δ(t) = −
∫ t

0

Ẽh(t− s)ÃhQhuh,t(s) ds−
∫ t

0

Ẽh(t− s)ÃhQ̃huh(s) ds

=: δ̃(t) + δ̂(t), for t > 0. (7.6)

To estimate δ it therefore suffices to bound δ̃ and δ̂. For this we need some auxiliary
results, which are discussed below.

Lemma 7.1. Let α, β ∈ C2. For the error functional ε̃h, defined by (7.4), we have

|ε̃h(ψ, χ)| 6 Chp+q‖∇qψ‖ ‖∇pχ‖, ∀ψ, χ ∈ Sh, with p, q = 0, 1.

Proof. In view of (7.4), we may write

ε̃h(ψ, χ) = ((α̃− α)∇ψ,∇χ) + (β̃ψ, Jhχ)− (βψ, χ).

We then split ε̃h(ψ, χ) as a sum of integrals over τ ∈ Th. Since α̃ = α(zτ ), we see that∫
τ
(f − f(zτ ))dx = 0 for linear functions f , and hence∣∣∣∫

τ

(f − f(zτ ))dx
∣∣∣ 6 Ch2

τ |τ |‖f‖C2 , for f ∈ C2, (7.7)
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with hτ the maximal side length of τ . Therefore, using this and the fact that ∇ψ · ∇χ is
constant in τ , we get∣∣∣∫

τ

(α̃− α)∇ψ · ∇χdx
∣∣∣ 6 Ch2

τ‖α‖C2
∫
τ

|∇ψ · ∇χ| dx 6 Ch2
τ‖∇ψ‖L2(τ)‖∇χ‖L2(τ).

Employing an inverse inequality locally and summing over τ ∈ Th, we obtain

|((α̃− α)∇ψ,∇χ)| 6 Chp+q‖∇qψ‖ ‖∇pχ‖. (7.8)

In a similar manner we estimate the zero order term. Obviously,

(β̃ψ, Jhχ)− (βψ, χ) = εh(β̃ψ, χ) + ((β̃ − β)ψ, χ). (7.9)

Using Lemma 2.2 we can bound the first term on the right-hand side of (7.9), as desired.
We then split the second term, in the following way,∫

τ

(β̃ − β)ψ χdx =

∫
τ

(β̃ − β)(ψχ)(zτ )dx+

∫
τ

(β̃ − β)(ψ χ− (ψχ)(zτ ))dx

=: I + II. (7.10)

Employing (7.7) we easily get

|I| 6 Ch2
τ‖β‖C2|τ ||(ψχ)(zτ )| = Ch2

τ |τ |−1
∣∣∣∫
τ

ψ dx
∣∣∣ ∣∣∣∫

τ

χdx
∣∣∣ 6 Ch2‖ψ‖L2(τ)‖χ‖L2(τ),

and since |β − β̃| 6 Chτ‖β̃‖C1 in τ ,

|II| 6 Ch2
τ

∫
τ

(
|∇ψ χ|+ |ψ∇χ|

)
dx

6 Ch2
(
‖∇ψ‖L2(τ)‖χ‖L2(τ) + ‖ψ‖L2(τ)‖∇χ‖L2(τ)

)
.

Combining the bounds for I and II with (7.10), using an inverse inequality locally, summing
over τ ∈ Th and using (7.8), we conclude the proof.

For the solution operator Ẽh(t) = e−Ãh t of (7.2), one shows, as in Lemma 2.1, the
following smoothing property.

Lemma 7.2. For Ẽh, the solution operator of (7.2), we have, for vh ∈ Sh and t > 0,

‖∇pD`
tẼh(t)vh‖ 6 Ct−`−(p−q)/2‖∇qvh‖, ` > 0, p, q = 0, 1, 2`+ p > q.

Further, following the steps in the proof of Lemma 2.3 we can get easily the following
estimate.

Lemma 7.3. Let Ãh, Qh and Q̃h be the operators defined by (7.1) and (7.5). Then

‖∇Qhχ‖+ h‖ÃhQhχ‖ 6 Chp+1‖∇pχ‖, ∀χ ∈ Sh, for p = 0, 1,

and the same bounds hold if we replace Qh by Q̃h.
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Proof. Using the fact that ãh(χ, Jhχ) > c‖∇χ‖2, for χ ∈ Sh, (7.5) and Lemma 2.2, with
ψ = Qhχ, we obtain for p = 0, 1,

c‖∇Qhχ‖2 6 ãh(Qhχ, JhQhχ) = εh(χ,Qhχ) 6 Chp+1‖∇pχ‖ ‖∇Qhχ‖,

which bounds Qhχ as desired. By the definition of Ãh and Lemma 2.2 with q = 0, we also
get for p = 0, 1,

|||ÃhQhχ|||2 = εh(χ, ÃhQhχ) 6 Chp‖∇pχ‖ ‖ÃhQhχ‖.

Since the norms ||| · ||| and ‖·‖ are equivalent on Sh, this shows the bound stated.
To prove the corresponding bounds for Q̃h, analogously we use Lemma 7.1 instead of

Lemma 2.2.

We now show an estimate for δ̂ defined in (7.6), including exceptionally the exponential
decay of the bound.

Lemma 7.4. For the error δ̂ defined by (7.6), we have

‖δ̂(t)‖+ h‖∇δ̂(t)‖ 6 Ch2e−ct‖vh‖, for t > 0, vh ∈ Sh, with c > 0.

Proof. Using the fact that Ẽh(t)Ãh = −DtẼh(t), Lemmas 7.2 and 7.3, and the smoothing
property (2.2), we find this time taking into account the exponential decay of Ẽh(t) and
uh(t) for large t,

‖δ̂(t)‖+ h‖∇δ̂(t)‖ 6
∫ t

0

(
‖Ẽ ′h(t− s)Q̃huh(s)‖+ h‖∇Ẽh(t− s)ÃhQ̃huh(s)‖

)
ds

6 C

∫ t

0

(t− s)−1/2e−c(t−s)
(
‖∇Q̃huh(s)‖+ h‖ÃhQ̃huh(s)‖

)
ds

6 Ch2

∫ t

0

(t− s)−1/2e−c(t−s)‖∇uh(s)‖ ds

6 Ch2

∫ t

0

(t− s)−1/2e−c(t−s)s−1/2e−cs ds ‖vh‖ = Ch2e−ct‖vh‖,

which is the desired result.

We are now ready for the error estimates for the solution of (7.2).

Theorem 7.1. Let u and ũh be the solutions of (1.19) and (7.2). Then for t > 0,

‖ũh(t)− u(t)‖ 6
{
Ch2|v|2, if ‖vh − v‖ 6 Ch2|v|2,
Ch2t−1/2|v|1, if vh = Phv and ‖∇Phv‖ 6 C|v|1.

Further, the estimates for the gradient of the error of Theorem 3.5 remain valid.

Proof. As in Section 3, it suffices to estimate δ = ũh−uh. Using the splitting (7.6), δ = δ̃+ δ̂,
the term δ̂ is easily bounded by Lemma 7.4, and δ̃ is bounded as in Theorems 3.1 and 3.2,
now applying Lemmas 7.2 and 7.3.

Turning to nonsmooth initial data, we begin with the following lemma.
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Lemma 7.5. Let u and ũh be the solutions of (1.19) and (7.2). Then, for t > 0,

‖ũh(t)− u(t)− Ẽh(t)ÃhQhvh‖ 6 Ch2t−1‖v‖, if vh = Phv.

Proof. Using Lemma 7.4 for δ̂, it remains to bound δ̃(t)− Ẽh(t)ÃhQhvh, which as for Lemma
3.1, is done as in [4, Theorem 4.1].

The following is now our nonsmooth data error estimate. Its proof is an obvious modifi-
cation of that of Theorem 3.3, using Lemmas 7.2, 7.3 and 7.5.

Theorem 7.2. Let u and ũh be the solutions of (1.19) and (7.2), and let Qh be defined by
(7.5). Then, if (1.17) holds, we have

‖ũh(t)− u(t)‖ 6 Ch2t−1‖v‖, if vh = Phv, for t > 0.

Condition (1.17) on Qh is again satisfied for symmetric meshes:

Theorem 7.3. For {Th} symmetric, (1.17) holds for Qh defined by (7.5).

Proof. We follow the steps in the proof of Theorem 4.1. For given χ ∈ Sh we define ϕ =
ϕχ ∈ Ḣ1 as the solution of the Dirichlet problem Aϕ = χ in Ω, ϕ = 0 on ∂Ω. Since Ω is
convex, we have ϕ ∈ Ḣ2 and |ϕ|2 6 C‖χ‖. For ψ ∈ Sh, we have

‖Qhψ‖ = sup
χ∈Sh

(Qhψ, χ)

‖χ‖ = sup
χ∈Sh

a(Qhψ, ϕ)

‖χ‖

6 sup
χ∈Sh

|a(Qhψ, ϕ− Ihϕ)|
‖χ‖ + sup

χ∈Sh

|a(Qhψ, Ihϕ)|
‖χ‖ = I + II.

By the obvious error estimate for Ih and Lemma 7.3, with p = 0, we get

|I| 6 Ch sup
χ∈Sh

‖∇Qhψ‖ |ϕ|2
‖χ‖ 6 Ch2‖ψ‖.

To estimate II, we rewrite the numerator in the form

a(Qhψ, Ihϕ) = −ε̃h(Qhψ, Ihϕ) + ãh(Qhψ, JhIhϕ) = ii1 + ii2.

In order to complete the proof it suffices to show that

|ii1 + ii2| 6 Ch2‖χ‖ ‖ψ‖.
Using Lemmas 7.1 and 7.3 we obtain

|ii1| 6 Ch2‖∇Qhψ‖ ‖∇Ihϕ‖ 6 Ch2‖∇Qhψ‖ ‖ϕ‖H2 6 Ch2‖ψ‖ ‖χ‖.
Also, employing (7.5) and (4.1) we get

ii2 = εh(ψ, Ihϕ) = [ψ,MhIhϕ].

Since the family {Th} is symmetric, (4.12) shows the required bound for ii2.

The results of Theorems 4.2 and 4.3 for our less restrictive assumptions on the family
{Th} also remain valid, with the obvious modified proofs.

The above results for the spatially semidiscrete finite volume method (1.26) extend in
the obvious way to the fully discrete backward Euler method (6.1) and the Crank–Nicolson
method (6.3), with −∆̃h replaced by Ãh, so that Theorems 6.1–6.5 remain literally valid in
the general case.
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