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Abstract

An initial-boundary value problem for the 1D self-adjoint parabolic equation on the

half-axis is solved. We study a broad family of two-level finite-difference schemes with

two parameters related to averagings both in time and space. Stability in two norms

is proved by the energy method. Also discrete transparent boundary conditions are

rigorously derived for schemes by applying the method of reproducing functions. Results

of numerical experiments are included as well.
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1 Introduction

In many applications, a problem of solving partial differential equations

in unbounded domains arises. A number of approaches to the problem is

developed mainly associated with the statement of additional boundary con-

ditions on artificial boundaries [1]-[6]. The conditions are called the (exact)

artificial/non-reflecting/transparent boundary conditions provided that they
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are satisfied by the solutions of the original problems in unbounded domains.

For definiteness, we exploit the last name (TBCs). For parabolic evolution

equations or for the Schroödinger equation, the TBCs are integro-differential

relations along the artificial boundaries. Their adequate discretization is non-

trivial since it can produce significant reflections from the boundaries and even

instability in computations as well as create difficulties in rigorous proofs of

stability of the resulting numerical method.

An alternative approach suggests to implement the idea of the TBCs on

the mesh level. Namely, first one consider a discretization of the problem on

an infinite mesh in the unbounded domain (which is not practical because

of the infinite number of unknowns). Its solution is restricted to the finite

mesh by deriving a mesh counterpart of the TBC on the artificial boundary.

One version of this approach is associated with the derivation of discrete

TBCs requiring to solve analytically model mesh problems on infinite grids.

This approach had worked well by the complete absence of reflections from

artificial boundaries and reliable stability of computations in practice as well

as by clarity of the mathematical background and rigorous proofs of stability

of the resulting mesh method in theory. Such an approach is developed in

detail for 1D time-dependent Schrödinger equation in [7]-[11] and also used

for 1D parabolic equations in [1, 12, 8, 6, 13].

In this paper, the approach is developed for the 1D self-adjoint parabolic

equation on the half-axis. We study a broad family of two-level finite-

difference σ-schemes with averaging in space with a weight θ. We prove

its stability by the energy method and rigorously derive the discrete TBC by

applying the method of reproducing functions. Notice that both points are

not so well developed in some other papers. Similarly to [11], this allows one

to cover in a unified manner a collection of particular schemes: the standard

scheme without averaging (θ = 0), the linear finite-element method (θ = 1
6),

scheme of higher order of accuracy (for constant coefficients, θ = 1
12) and a

vector scheme on a four-point stencil (θ = 1
4). The results generalize those

obtained for θ = 0 in [13] but here we prove stability in two (not one) energy

norms, the rigorous derivation of the discrete TBC is notably different and

results of numerical experiments are included as well.
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Notice that the results for the family of finite-difference schemes can be

enlarged for the 2D (or multi-D) case exploiting the technique from [14, 15].

2 An initial-boundary value problem and a finite-

difference σ-scheme with averaging in space and an

approximate TBC

We consider the one-dimensional parabolic equation

ρ
∂u

∂t
+Au = f, Au := − ∂

∂x

(
b
∂u

∂x

)
+ cu (1)

for x > 0 and t > 0. Its coefficients satisfy the conditions ρ(x) > ρ > 0,

b(x) > ν > 0 and c(x) > 0 for x > 0.

Equation (1) is supplemented with the following boundary condition, the

condition at infinity and the initial condition:

u|x=0 = g(t), u(x, t) → 0 as x → ∞, for all t > 0, (2)

u|t=0 = u0(x) for x > 0. (3)

We assume that the coefficients become constants as well as f and u0 vanish

for sufficiently large x > X0 (for some X0 > 0)

ρ(x) = ρ∞ > 0, b(x) = b∞ > 0, c(x) = c∞ > 0, f(x, t) = 0, u0(x) = 0. (4)

An integro-differential TBC satisfied by the solution to this problem can

be written in the Dirichlet-to-Neumann form

∂u

∂x
(X, t) = −

√
ρ∞
b∞

e−(c∞/ρ∞)t 1√
π

d

dt

∫ t

0

u(X, θ)e(c∞/ρ∞)θ dθ√
t− θ

(5)

for t > 0 and for any X > X0; other equivalent forms are also known. The

TBC is nonlocal in time; recall that the involved operator

D1/2
t+ w(t) :=

1√
π

d

dt

∫ t

0

w(θ)
dθ√
t− θ

for t > 0

defines the classical left-hand Riemann-Liouville time derivative of order 1
2
on

the half-axis [0,∞). But we do not exploit this TBC explicitly below.
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We fix some X > X0, set Ω = (0, X) and introduce a nonuniform mesh

ωh,∞ in x on [0,∞) with nodes 0 = x0 < · · · < xJ = X < . . . and steps

hj := xj − xj−1 such that hJ 6 X −X0 and hj = h ≡ hJ for j > J . We set

xj−1/2 :=
xj−1+xj

2 and hj+1/2 :=
hj+hj+1

2 . Let ωh,∞ := ωh,∞\ {0}, ωh := {xj}Jj=0

and ωh := {xj}J−1
j=1 . Let H0(ωh) be the space of functions on mesh ωh that

equal 0 for x0 = 0.

We define the backward, modified forward and central difference quotients

in x

∂xWj :=
Wj −Wj−1

hj
, ∂̂xWj :=

Wj+1 −Wj

hj+1/2
,

◦
∂xWj :=

Wj+1 −Wj−1

2hj+1/2
,

together with averaging operators in x

ŝxWj :=
hj

2hj+1/2
Wj +

hj+1

2hj+1/2
Wj+1,

sθWj := θ
hj

hj+1/2
Wj−1 + (1− 2θ)Wj + θ

hj+1

hj+1/2
Wj+1

and a more general mesh counterpart of multiplication by a mesh function κh

Cθ[κh]Wj := θ
hj

hj+1/2
κhjWj−1 + (1− 2θ)(ŝxκhj)Wj + θ

hj+1

hj+1/2
κhj+1

Wj+1,

see [11]; clearly Cθ[1] = sθ. Notice that sθWJ = s−θ WJ + s+θ WJ , where

s−θ WJ := θWJ−1 + (1
2
− θ)WJ , s+θ WJ := (1

2
− θ)WJ + θWJ+1.

We also introduce a nonuniform mesh in t on [0,∞) with the nodes 0 = t0 <

· · · < tm < . . . such that tm → ∞ for m → ∞ and the steps τm := tm − tm−1.

Let ωτ := ω τ\ {0}, ωτ
M := {tm}Mm=1. We also define the backward difference

quotient, the mean value with the weight σ (independent of the meshes) and

the backward shift in t

∂tΦ
m :=

Φm − Φm−1

τm
, Φ(σ)m := σΦm + (1− σ)Φm−1, Φ̌m := Φm−1.

We study the following finite-difference scheme, which is weighted in t and

averaged in x, on a finite mesh with an abstract approximate TBC for the
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initial-boundary value problem (1)-(4)

Cθ[ρh]∂tU
m +AhU

(σ)m = Fm on ωh × ωτ , (6)

Um
0 = g(tm) for m > 1, (7)

b∞∂xU
(σ)m
J + hJs

−
θ (ρ∞∂tU + c∞U (σ))mJ = b∞SmUm

J for m > 1, (8)

U 0 = U 0
h on ωh (9)

with the operator AhW := −∂̂x
(
bh∂xW

)
+ Cθ[ch]W and the functions

ρhj = ρ(xj−1/2), bhj = b(xj−1/2), chj = c(xj−1/2), Fm
j = f(xj, tm)

and U 0
hj = u0(xj) (for simplicity, for continuous ρ, b, c, f and u0). Thus

U 0
hJ = 0; we also assume that U 0

h0 = 0. Here Sm is any linear operator acting in

the space of functions given on the mesh ωτ
m∪{0}, and Um

J :=
{
U 0
J , . . . , U

m
J

}
.

Now we discuss the approximate TBC, i.e., the boundary condition (8).

Let an equation

◦
∂x

[
U (σ) − θh2

b∞

(
ρ∞∂tU + c∞U (σ)

)]m

J

= SmUm
J for m > 1 (10)

serve as an (abstract) approximate TBC for (5) at the node xJ ; here we

have discretized ∂u
∂x with weight in t and symmetrically in x. We first write

down equation (6) on the mesh ωh ∪ {xJ} and apply it at the node xJ only

in order to eliminate the values U
(σ)
J+1 involved in the left-hand side of (10).

Namely, since
◦
∂xWJ = ∂xWJ +

h
2 ∂̂x ∂xWJ , taking into account (4) we get the

boundary condition (8). Importantly, the boundary condition (8) for S = 0 is

the natural approximation of the Neumann boundary condition for this finite-

difference scheme for x = X. Such an approach was implemented earlier in

[9, 13, 11]; it reliably leads to the computationally stable form of discrete

TBCs (in contrast to some other approaches).

The corresponding three-point system of mesh equations for a vector

{Um
j }Jj=0 of the solution values on the upper level, has the form:

αm
σ,jU

m
j−1 + (βm

σ,j + βm
σ,j+1)U

m
j + αm

σ,j+1U
m
j+1

= αm
σ−1,jU

m−1
j−1 + (βm

σ−1,j + βm
σ−1,j+1)U

m−1
j + αm

σ−1,j+1U
m−1
j+1 + hj+1/2F

m
j
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for 1 6 j 6 J − 1,

Um
0 = g(tm), αm

σ,JU
m
J−1 + (2βm

σ−1,J − µm0)U
m
J

= αm
σ−1,JU

m−1
J−1 + (2βm

σ−1,J − µ(m−1)1)U
m−1
J +

∑

06l6m−2

µl(m−l)U
l
J , (11)

compare with [11]. Here the coefficients are given by formulas

αm
σ,j = θ

(
hjρhj
τm

+ σhjchj

)
− σ

bhj
hj

, βm
σ,j = (1

2
− θ)

(
hjρhj
τm

+ σhjchj

)
+ σ

bhj
hj

for 1 6 j 6 J ; in particular, for j = J , these expressions become more simple

αm
σ,J = θ

(
hρ∞
τm

+ σhc∞

)
− σ

b∞
h
, βm

σ,J = (12 − θ)

(
hρ∞
τm

+ σhc∞

)
+ σ

b∞
h
.

Equation (11) is written assuming that the operator in the approximate TBC

has the form SmUm
J =

m∑
l=1

µl(m−l)U
l
J .

3 Stability of the finite-difference scheme on the finite

mesh with the approximate TBC

We consider the stability problem for the finite-difference scheme (6)-(9)

with respect to the initial data U 0
h , the free term F and a perturbation in the

boundary condition (8) and take g(t) = 0. We need to introduce several mesh

counterparts of the L2(Ω)-inner products

(V,W )ωh
=

J−1∑

j=1

VjWjhj+1/2, (V,W )ω̃h
=

J∑

j=1

VjWjhj ,

(V,W )ωh
= (V, W )ωh

+ VJWJ
h

2

and the corresponding norms ‖·‖ωh
, ‖·‖ω̃h

, ‖·‖ωh
(of course, for mesh functions

given on ωh or belonging to H0(ωh)).

We introduce a bilinear form

(U,W )Cθ[κh] := (Cθ[κh]U,W )ωh
+ κhJ(s

−
θ U)JWJhJ for U,W ∈ H0(ωh).

According to [11], it is symmetric for θ 6
1
4 and generates a norm ‖W‖Cθ[κh] =

(W,W )
1/2
Cθ[κh]

for κh > 0 (or a seminorm for κh > 0). Moreover, an inequality

√
cθρ ‖W‖ωh

6 ‖W‖Cθ[ρh] 6
√

(1 + 4max{−θ, 0})ρ‖W‖ωh
(12)
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holds for any W ∈ H0(ωh) and θ 6
1
4, where cθ = 1 − 4max{θ, 0} and

ρ = max
16j6J

ρhj.

We also introduce mesh counterparts of the norms in L2(0, tM) and L2(Ω×
(0, tM)):

‖Φ‖ωτ
M
:=

( M∑

m=1

(Φm)2τm

)1/2

, ‖ · ‖ωh,τ
M

:= ‖ ‖ · ‖ωh
‖ωτ

M
, ‖ · ‖ω̃h,τ

M
:= ‖ ‖ · ‖ω̃h

‖ωτ
M

and also set ‖ · ‖Cθ[κh]τM
:= ‖ ‖ · ‖Cθ[κh]‖ωτ

M
for κh > 0.

Proposition 1 Let U be a solution to the finite-difference scheme (6)-(9)

with a generalized boundary condition (8):

b∞∂xU
(σ)m
J + hJs

−
θ (ρh∂tU + chU

(σ))mJ = b∞SmUm
J +Gm for m > 1, (13)

where G is given on ωτ . Let the operator S satisfy an inequality

M∑

m=1

(SmΦm) Φ(σ)mτm 6 0 for any M > 1 (14)

for any function Φ given on ω τ such that Φ0 = 0, where Φm = {Φ1, . . . ,Φm}.
Then, for σ >

1
2 and θ < 1

4, the first energy bound

max
{

max
06m6M

‖Um‖Cθ[ρh],
√
2 ‖U‖(1)

}
6 ‖U 0

h‖Cθ[ρh]

+
Kσ√
cθρ

M∑

m=1

‖F (0)m‖ωh
τm +

√
2

ν
(‖F (1)‖ω̃h,τ

M
+
√
X‖G‖ωτ

M
) (15)

holds for any M > 1 and for any decomposition F = F (0) + ∂̂xF
(1) such that

F (1)|j=J = 0, with Kσ := 2(σ + |1− σ|). Here the norm ‖U‖(1) is such that

‖U‖2(1) = (σ − 1
2)‖

√
τ ∂tU‖2Cθ[ρh]τM

+ ‖
√
bh ∂xU

(σ)‖2
ω̃h,τ
M

+ ‖U (σ)‖2Cθ[ch]τM
.

The bound holds also in the case θ = 1
4 provided that F (0) = 0 (one has to

drop the summand with F (0)).

Consequently, for σ >
1
2 and θ 6

1
4, the scheme has a unique solution.

Proof. We take the (· , ·)ωh
–inner product of equation (6) and a function

W ∈ H0(ωh), sum the result by parts (using the second assumption (4)) and
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obtain

(
Cθ[ρh]∂tU

m,W
)
ωh

+
(
bh∂xU

(σ)m, ∂xW
)
ω̃h

+
(
Cθ[ch]U

(σ)m,W
)
ωh

= b∞(∂xU
(σ)m
J )Wm

J + (Fm,W )ωh
. (16)

Choosing W = U (σ)m and applying the boundary condition (13) and other

assumptions (4), we get

(∂tU
m, U (σ)m)Cθ[ρh] + (bh∂xU

(σ)m, ∂xU
(σ)m)ω̃h

+ (U (σ)m, U (σ)m)Cθ[ch]

−b∞ (SmUm
J )U

(σ)m
J = (Fm, U (σ)m)ωh

+ GmU
(σ)m
J for m > 1.

We multiply the result by τm and sum up it over m = 1, . . . ,M . Applying

the formula U (σ) = U (1/2) + (σ − 1
2
)τ∂tU , we obtain the first energy equality

1
2‖U

M‖2Cθ[ρh]
+ (σ − 1

2)‖
√
τ ∂tU‖2Cθ[ρh]τM

+ ‖
√
bh ∂xU

(σ)‖2
ω̃h,τ
M

+‖U (σ)‖2Cθ[ch]τM
− b∞

M∑

m=1

(SmUm
J )U

(σ)m
J τm = 1

2
‖U 0

h‖2Cθ[ρh]
+ I(1)M (17)

for M > 1, where

I(1)M :=

M∑

m=1

[
(Fm, U (σ)m)ωh

+GmU
(σ)m
J

]
τm.

For F = F (0)+ ∂̂xF
(1), we sum the result by parts and derive the following

bound

I(1)M 6

M∑

m=1

‖F (0)m‖ωh

(
|σ|‖Um‖ωh

+ |1− σ|‖Um−1‖ωh

)
τm

+(‖F (1)‖ω̃h,τ
M

+
√
X‖G‖ωτ

M
)‖∂xU

(σ)‖ω̃h,τ
M

6 (|σ|+ |1− σ|)
M∑

m=1

‖F (0)m‖ωh
τm max

06m6M
‖Um‖ωh

+
1√
ν

(
‖F (1)‖ω̃h,τ

M
+
√
X‖G‖ωτ

M

)
‖
√
bh ∂xU

(σ)‖ω̃h,τ
M
.

Using the left-hand inequality (12), conditions σ >
1
2 and (14) and applying

the standard argument lead from the first energy equality (17) to bound (15).

It is well-known that such a bound implies the existence and uniqueness of a

solution to the finite-different scheme.
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Remark 1 In the case θ = 1
4, one can generalize bound (15) and next

stability bounds for F (0) 6≡ 0 as well, see [11].

We also define a symmetric bilinear form

Lωhθ
(U,W ) = (bh∂xU, ∂xW )ω̃h

+ (Cθ[ch]U,W )ωh
+ c∞(s−θ UJ)WJhJ

for U,W ∈ H0(ωh) and derive stability in the norm ‖W‖Lωhθ
= L1/2

ωhθ(W,W ).

Proposition 2 Let U be a solution to the finite-difference scheme (6)-(9)

with the generalized boundary condition (13) instead of (8). Let the operator

S satisfy an inequality

M∑

m=1

(SmΦm) ∂tΦ
mτm 6 0 for any M > 1 (18)

for any function Φ given on ω τ such that Φ0 = 0. Then, for σ >
1
2 and θ < 1

4,

the second energy bound

max
{

max
06m6M

‖Um‖Lωhθ
,
√
2 ‖U‖(2)

}
6 ‖U 0

h‖Lωhθ
+

√
2

cθρ
‖F (0)‖ωh,τ

M

+
4√
ν

[
‖F (1) 0‖ω̃h

+
M∑

m=1

‖∂tF
(1)‖ω̃h

τm +
√
X
(
|G0|+

M∑

m=1

|∂tG
m|τm

)]
(19)

holds for any M > 1 and any decomposition F = F (0)+∂̂xF
(1) with F (1)|j=J =

0. Here

‖U‖2(2) =
M∑

m=1

[
(σ − 1

2
)τm‖∂tU

m‖2Lωhθ
+ ‖∂tU

m‖2Cθ[ρh]

]
τm.

The bound holds also in the case θ = 1
4 provided that F (0) = 0.

Consequently, for σ >
1
2
and θ 6

1
4
, the scheme has a unique solution.

Proof. We choose W = ∂tU
m in (16), apply the boundary condition (13)

and assumptions (4) and get

(
∂tU

m, ∂tU
m
)
Cθ[ρh]

+ Lωhθ
(U (σ)m, ∂tU

m)

−b∞ (SmUm
J ) ∂tU

m
J =

(
Fm, ∂tU

m
J

)
ωh

+ Gm∂tU
m
J for m > 1.

9



Wemultiply the equality by τm and sum up it overm = 1, . . . ,M . Applying

again the formula U (σ) = U (1/2) + (σ − 1
2
)τ∂tU , we obtain the second energy

equality

M∑

m=1

∥∥∂tU
m
∥∥2
Cθ[ρh]

τm + 1
2‖U

M‖2Lωhθ
+ (σ − 1

2)
M∑

m=1

‖∂tU
m‖2Lωhθ

τ 2m

−b∞

M∑

m=1

(SmUm
J ) ∂tU

m
J τm = 1

2

∥∥U 0
h

∥∥2
Lωhθ

+ I(2)M (20)

for M > 1, where

I(2)M :=
M∑

m=1

[
(Fm, ∂tU

m)ωh
+Gm∂tU

m
J

]
τm.

For F = F (0) + ∂̂xF
(1), we sum the result by parts in t and x and get

I(2)M =

M∑

m=1

(F (0)m, ∂tU
m)ωh

τm − (F (1)m, ∂xU
m)ω̃h

∣∣∣
m=M

m=0

+

M∑

m=1

(∂tF
(1)m, ∂xU

m−1)ω̃h
τm + (GmUm

J )|m=M
m=0 −

M∑

m=1

(∂tG
m)Um−1

J τm

6 ‖F (0)‖ωh,τ
M
‖∂tU‖ωh,τ

M
+ 2

[
‖F (1) 0‖ω̃h

+

M∑

m=1

‖∂tF
(1)‖ω̃h

τm +
√
X
(
|G0|+

M∑

m=1

|∂tG
m|τm

)]
max

06m6M
‖∂xU

m‖ω̃h
.

Using the left-hand inequality (12), conditions σ >
1
2 and (18) and applying

the standard argument lead from the second energy equality (20) to bound

(19).

4 Stability of the finite-difference scheme on an infinite

mesh

In order to construct and study the discrete TBC, we first turn to the

finite-difference scheme on an infinite mesh for the original problem (1)-(3)
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on the half-axis

Cθ[ρh] ∂tU +AhU
(σ) = F on ωh,∞ × ωτ , (21)

Um
0 = g(tm) for m > 1, (22)

U 0 = U 0
h on ωh,∞. (23)

Assumptions (4) are supposed to be fulfilled. Let g(t) = 0 and U 0
h |j=0 = 0.

We introduce the Hilbert spaces Hh and H̃h (mesh counterparts of L2(R+))

consisting of functions W given on the meshes respectively ωh,∞ (and with

W0 = 0) and ωh,∞ and such that ‖W‖2ℓ2 =
∞∑
j=1

W 2
j < ∞, equipped with the

inner products

(V,W )Hh
:=

∞∑

j=1

VjWjhj+1/2, (V,W )H̃h
:=

∞∑

j=1

VjWjhj .

Since hj = h for j > J , the conditions ‖W‖2ℓ2 < ∞, ‖W‖2Hh
< ∞ and

‖W‖2
H̃h

< ∞ are equivalent.

We define symmetric bilinear forms [11]

(V,W )Cθ[κh],∞ := (Cθ[κh]V,W )Hh
,

LHhθ
(V,W ) = (bh∂xV, ∂xW )H̃h

+ (Cθ[ch]V,W )Hh

for V,W ∈ Hh. They generate norms ‖W‖Cθ[κh],∞ = (W,W )
1/2
Cθ[κh],∞ for κh =

ρh (a seminorm for κh = ch) and ‖W‖LHhθ
= L1/2

Hhθ
(W,W ). Moreover, an

inequality

√
cθρ ‖W‖Hh

6 ‖W‖Cθ[ρh],∞ 6
√

(1 + 4max{−θ, 0})ρ‖W‖Hh

holds for all W ∈ Hh and θ 6
1
4 [11].

We also define the mesh counterparts of the norm in L2(R+ × (0, tM))

‖ · ‖Hh,τ
M

:= ‖ ‖ · ‖Hh
‖ωτ

M
, ‖ · ‖H̃h,τ

M
:= ‖ ‖ · ‖H̃h

‖ωτ
M
.

Proposition 3 Let F = F (0) + ∂̂xF
(1) with F (0)m ∈ Hh and F (1)m ∈ H̃h

for any m > 1 and U 0
h ∈ Hh. Then, for σ > 0 and θ 6

1
4
, there exists a unique

solution Um ∈ Hh, for all m > 0, to the finite-difference scheme (21)-(23),

11



and, for σ >
1
2 and θ < 1

4, the first energy bound

max

{
max

06m6M
‖Um‖Cθ[ρh],∞,

√
2 ‖U‖(1),∞

}

6 ‖U 0
h‖Cθ[ρh],∞ +

Kσ√
cθρ

M∑

m=1

‖F (0)m‖Hh
τm +

√
2

ν
‖F (1)‖H̃h,τ

M
(24)

holds for any M > 1. Here

‖U‖2(1),∞ =
∥∥∥
√

(σ − 1
2)τ‖∂tU‖Cθ[ρh],∞

∥∥∥
2

ωτ
M

+ ‖‖U (σ)‖LHhθ
‖2ωτ

M
.

The bound holds also in the case θ = 1
4 provided that F (0) = 0.

Proof. We extend Ah and Cθ[ρh] up to operators acting in Hh by setting

(AhW )0 := 0 and (Cθ[ρh]W )0 := 0. By virtue of assumptions (4) and the

property hj = h for j > J , the operator Ah is bounded Hh. Moreover,

Ah = A∗
h > 0 since

(AhW,V )Hh
= LHhθ

(V,W ) (25)

for any W,V ∈ Hh. To establish equality (25), one can first transform the

finite sum
j1∑
j=1

(AhW )jVjhj+1/2 by summing by parts (compare with the deriva-

tion of equality (16)) and then pass to the limit as j1 → ∞ using the property

limj→∞Wj = 0 for W ∈ Hh (as in [13] for θ = 0).

Now we rewrite equation (21), together with the homogeneous boundary

condition (22), as an operator equation in Hh

Cθ[ρh] ∂tU +AhU
(σ) = F on ωτ . (26)

Thus

(Cθ[ρh] + στmAh)U
m = (Cθ[ρh]− (1− σ)τmAh)Ǔ

m + τmF
m (27)

for m > 1. For σ > 0, the operator Cθ[ρh] + στmAh is bounded, self-adjoint

and positive definite and therefore invertible. Since for Ǔm ∈ Hh the right-

hand side of equation (27) also belongs to Hh, we find that the eqution has a

unique solution Um ∈ Hh.

12



Equation (26) with the help of property (25) implies the first energy equal-

ity

1
2
‖UM‖2Cθ[ρh],∞ +

M∑

m=1

[
(σ − 1

2
)
∥∥√τm ∂tU

m
∥∥2
Cθ[ρh],∞ + ‖U (σ)m‖2Cθ[ch],∞

]
τm

+‖
√
bh ∂xU

(σ)‖2
H̃h,τ

M

= 1
2
‖U 0

h‖2Cθ[ρh],∞ +
M∑

m=1

(Fm, U (σ)m)Hh
τm, (28)

compare with (17). Similarly to the proof of Proposition 1, it implies bound

(24).

Remark 2 Proposition 3 remains valid for any ρh, bh and ch satisfying

the conditions ρh > ρ > 0, bh > ν > 0, ch > 0 and sup
j>1

(ρhj + bhj + chj) < ∞.

Remark 3 The solution U = Uσ to the finite-difference scheme (21)-(23)

(specified in Proposition 3) depends continuously on σ >
1
2
for any θ 6

1
4
.

Indeed, let σ0 > 1/2. Then the difference Uσ − Uσ0
satisfies the operator

equation in Hh

Cθ[ρh] ∂t(Uσ −Uσ0
) +Ah(Uσ −Uσ0

)(σ) = (σ0− σ)Ah(Uσ0
− Ǔσ0

) on ωτ . (29)

Let IhVj :=
∑

16k6j−1 Vkhk+1/2 for j > 0. Since U 0
σ − U 0

σ0
= 0 and AhW =

∂̂x(−bh∂xW +IhCθ[ch]W ) on ωh,∞, the property follows from bound (24) (with

F (0) = 0) applied to equation (29).

We define the mesh counterparts of the norm in L2(X,∞) such that

‖W‖2Dh
:=

h

2
W 2

J +

∞∑

j=J+1

W 2
j h, ‖W‖2

D̃h
:=

∞∑

j=J+1

W 2
j h,

‖W‖2sθ,Dh
:= (s+θ W )JWJh+

∞∑

j=J+1

(sθW )jWjh;

concerning the correctness of the last definition, see [11].

Corollary 1 Let Fm
j = 0 and U 0

hj = 0 for j > J and m > 1. If the solution

Um ∈ Hh, for all m > 0, to the scheme (21)-(23) satisfies the approximate

13



TBC (10) with some operator S = Sref, then an equality

−b∞

M∑

m=1

(Sm
refU

m
J )U

(σ)m
J τm = 1

2ρ∞
∥∥UM

∥∥2
sθ,Dh

+

M∑

m=1

[
(σ − 1

2)τmρ∞‖∂tU
m‖2sθ,Dh

+ b∞‖∂xU
(σ)m‖2

D̃h
+ c∞‖U (σ)m‖2sθ,Dh

]
τm

holds for all M > 1. Its right-hand side is nonnegative for σ >
1
2
.

Proof. By virtue of equation (21) at the node xJ with Fm
J = 0, relation

(10) is equivalent to the boundary condition (8); thus, the solution to the

scheme (21)-(23) satisfies the scheme (6)-(9) as well. Taking the difference

of the energy equalities (28) and (17) (with G = 0) and applying simple

identities

‖W‖2Hh
= ‖W‖2ωh

+ ‖W‖2Dh
, ‖W‖2

H̃h
= ‖W‖2ω̃h

+ ‖W‖2
D̃h
,

‖W‖2Cθ[κh],∞ = ‖W‖2Cθ[κh]
+ κhJ‖W‖2sθ,Dh

for any W ∈ Hh and κh = ρh, ch, we obtain the announced equality.

We also derive stability in another norm.

Proposition 4 Let F = F (0) + ∂̂xF
(1) with F (0)m ∈ Hh and F (1)m ∈ H̃h

for any m > 1 and U 0
h ∈ Hh. Then, for σ >

1
2
and θ < 1

4
, the second energy

bound

max
{

max
06m6M

‖Um‖LHhθ
,
√
2 ‖U‖(2),∞

}
6 ‖U 0

h‖LHhθ

+

√
2

cθρ
‖F (0)m‖Hh,τ

M
+

4√
ν

(
‖F (1) 0‖H̃h

+

M∑

m=1

‖∂tF
(1)m‖H̃h

τm

)
(30)

holds for the solution Um ∈ Hh, for all m > 0, to the finite-difference scheme

(21)-(23) and any M > 1. Here

‖U‖2(2),∞ =
∥∥∥
√
(σ − 1

2
)τ‖∂tU‖LHhθ

∥∥∥
2

ωτ
M

+ ‖‖∂tU‖Cθ[ρh],∞‖2ωτ
M
.

The bound holds also in the case θ = 1
4 provided that F (0) = 0.

14



Proof. The second energy equality

M∑

m=1

‖∂tU
m‖2Cθ[ρh],∞τm + 1

2

∥∥UM
∥∥2
LHhθ

+
M∑

m=1

(σ − 1
2
)‖∂tU

m‖2LHhθ
τ 2m

= 1
2
‖U 0

h‖2LHhθ
+

M∑

m=1

(
Fm, ∂tU

m
)
Hh

τm (31)

holds, compare with (20). Similarly to the proof of Proposition 2, it implies

bound (30).

Corollary 2 Under the hypotheses of Corollary 1, an equality

−b∞

M∑

m=1

(Sm
refU

m
J ) ∂tU

m
J τm = 1

2

(
b∞‖∂xU

M‖2
D̃h

+ c∞‖UM‖2sθ,Dh

)

+
M∑

m=1

[
ρ∞‖∂tU

m‖2sθ,Dh
+ (σ − 1

2)τm

(
b∞‖∂x∂tU

m‖2
D̃h

+ c∞‖∂tU
m‖2sθ,Dh

)]
τm

holds for any M > 1. Its right-hand side is nonnegative for σ >
1
2.

Proof. The result is derived by taking the difference of (31) and (20) (with

G = 0).

By definition, the discrete TBC is an approximate TBC (10) with the oper-

ator S = Sref . It will be explicitly constructed in the next section. Corollaries

1 and 2 clarify the energy meaning of conditions (14) and (18) for the discrete

TBC, for Φ = UJ , and are exploited below to prove the conditions (for any

Φ).

5 Derivation and analysis of the discrete TBC

Now we turn to derivation of the explicit form for the discrete TBC in

the form (10) and verification of inequalities (14) and (18) for it. We confine

ourselves by the case of the uniform mesh ω τ , i.e., τm = τ form > 1. Consider

an auxiliary finite-difference problem on the uniform part of the infinite mesh

15



in x

ρ∞sθ∂tU +Ah,∞U (σ) = 0 on (ωh,∞\ωh)× ωτ , (32)

U |j=J = Φ, with |Φ|∞, q0 := sup
m>0

q−m
0 |Φm| < ∞, Φ0 = 0, (33)

U 0
j = 0 for j > J − 1 (34)

for some q0 > 1. Here the limiting finite-difference operator

Ah,∞W := −b∞∂̂x ∂xW + c∞sθW on ωh,∞\ωh.

has appeared. We seek for the solution satisfying the following property

‖U‖2,∞, q := sup
m>0

q−m
( ∞∑

j=J−1

|Um
j |2

)1/2

< ∞ (35)

for sufficently large q > q0.

Since the coefficients are constant and the meshes are uniform, the stated

problem can be solved explicitly. For a mesh function Φ: ω τ → C such that

|Φ|∞, q < ∞ for some q > 0, recall the reproducing function

Φ̃(z) ≡ T [Φ](z) :=
∞∑

m=0

Φmzm ∈ A(D1/q),

i.e., analytic in the disc D1/q := {|z| < 1
q} ⊂ C, satisfying a bound

|Φ̃(z)| 6 |Φ|∞, q

1− q|z| for |z| < q−1. (36)

Conversely, for a function p ∈ A(Dr) (for some r > 0), the transformation

Φ = T −1[p] such that

Φm =
p(m)(0)

m!
=

1

2π

∫ 2π

0

p(z)

zm

∣∣∣∣
z=r1eiϕ

dϕ for any m > 0, 0 < r1 < r, (37)

is well defined implying the Cauchy inequality

|Φ|∞, 1/r1 6 max
|z|=r1

|p(z)|. (38)

Hereafter i is the imaginary unit, and Re z and Im z are real and imaginary

parts of z ∈ C.
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Taking into account conditions (34) and (35), for |z| < r = 1
q , we calculate

T
[
ρ∞sθ∂tUj +Ah,∞U

(σ)
j

]
(z) = ρ∞sθ

1− z

τ
Ũj(z) + z(σ)Ah,∞Ũj(z)

=
{
ρ∞

θ(1− z)

τ
+
(
−b∞
h2

+ θc∞
)
z(σ)

}(
Ũj+1(z)− 2γ(z)Ũj(z) + Ũj−1(z)

)

= −b∞
h2

d(z)
(
Ũj+1(z)− 2γ(z)Ũj(z) + Ũj−1(z)

)
(39)

provided that d(z) 6= 0, with z(σ) := σ + (1 − σ)z. Hereafter, for j > J − 1,

we extend Um
j

∣∣
m=−1

:= 0 so that ∂tU
0
j = U

(σ) 0
j = 0. The coefficients γ(z) and

d(z) are expressed by formulas

d(z) = 2a1θ(z − 1) + (1− 2a0θ)z
(σ), γ(z) := 1 +

a1(1− z) + a0z
(σ)

d(z)
,

a1 :=
h2ρ∞
2τb∞

> 0, a0 :=
h2c∞
2b∞

> 0.

By virtue of (32) and (39) a difference equation

Ũj+1(z)− 2γ(z)Ũj(z) + Ũj−1(z) = 0 for j > J (40)

holds. The corresponding characteristic equation has the form

ν2(z)− 2γ(z)ν(z) + 1 = 0. (41)

Notice that d(0) = 0 for σ = σ0 :=
2a1θ

1−2a0θ
.

Lemma 1 For σ > 0, σ 6= σ0 and θ 6
1
4, the quadratic equation (41) has

roots ν1, ν2 ∈ A(Dr), for sufficiently small r > 0, such that

ν1(z) = Z−1
1 (γ(z)), 0 < |ν1(z)| < 1, ν2(z) = Z−1

2 (γ(z)) =
1

ν1(z)
, |ν2(z)| > 1,

where Z−1
k (γ) = γ + (−1)k+1 ∗

√
γ2 − 1, k = 1, 2 are analytic branches of the

two-valued inverse function to the elementary Zhukovskii function Z(z) =
1
2(z+z−1) defined in C with the cross-cut along the segment [−1, 1] of the real

axis [16].

Proof. The presented formulas are rather elementary. The property

ν1, ν2 ∈ A(Dr) holds provided that γ(Dr) ⊂ C \ [−1, 1]. For validity of
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the latter property for sufficiently small r > 0, it is required that |γ(0)| < ∞
(i.e., σ 6= σ0) and |γ(0)| > 1. For σ 6= σ0 and 2a0θ 6= 1, formulas

γ(0)− 1 =
a1 + a0σ

(1− 2a0θ)(σ − σ0)
, γ(0) + 1 =

(1− 4θ)a1 + [2 + (1− 4θ)a0]σ

(1− 2a0θ)(σ − σ0)

hold. Since σ > 0 and θ 6
1
4, the nominators of the both formulas are

positive and thus γ(0) > 1 for d(0) = (σ − σ0)(1 − 2a0θ) > 0, or γ(0) < −1

for d(0) = (σ − σ0)(1 − 2a0θ) < 0. If 2a0θ = 1, then once again γ(0) =

1− a0 − a20σ/a1 < −1.

The following result corresponds to Proposition 5.3 in [11].

Proposition 5 For σ > 0, σ 6= σ0 and θ 6
1
4, the solution to the problem

(32)-(35) exists, is unique and is given by a formula

Uj = T −1
[
νj−J
1 (z)Φ̃(z)

]
for j > J − 1. (42)

This solution satisfies a bound

‖U‖2,∞, q 6 C|Φ|∞, q0 (43)

for sufficiently large q > q0. For real Φ, it is real too.

Proof. Let σ 6= σ0. By taking into account Lemma 1, for z ∈ Dr the

general solution to the difference equation (40) has the form

Ũj(z) = c1(z)ν
j−J+1
1 (z) + c2(z)ν

j−J+1
2 (z) for j > J − 1

with any c1(z) and c2(z). By virtue of bounds (35) and (36) we find that

c2(z) ≡ 0, and then from condition (33) we derive a formula (taking into

account that ν1(z) 6= 0)

Ũj(z) = Φ̃(z)νj−J
1 (z) for j > J − 1. (44)

Since Φ̃νj−J
1 ∈ A(Dr) exploiting Lemma 1, if the solution to the problem

(32)-(35) exists, then it is given by formula (42).

Conversely, the function given by formula (42) satisfies an equation

T
[
ρ∞sθ∂tUj +Ah,∞U

(σ)
j

]
(z) = 0 for j > J, z ∈ Dr

and therefore equation (32) as well. It also satisfies conditions (33) and (34).
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By virtue of (38) and (36) we get that, for any j > J and m > 1, bounds

q−m
1 |Um

j | 6 max
|z|=r1

|νj−J
1 (z)Φ̃(z)| 6 Cj−J

0j

|Φ|∞, q0

1− q0r1

hold for q1 =
1
r1
> 1

r
> q0, with

C0(J−1) = ν1min = min
|z|=r1

|ν1(z)|, C0j = ν1max = max
|z|=r1

|ν1(z)| for j > J.

Therefore bound (43) holds with C = C1

1−q0r1
, where

C2
1 =

∞∑

j=J−1

C
2(j−J)
0j =

1

ν21min

+
1

1− ν21max

, C1 > 0.

For real Φ, the functions Φ̃(z) and γ(z) are real as well for z ∈ R. If in

addition |z| 6 r, then |γ(z)| > 1 and thus ν1(z) = Z−1
1 (γ(z)) is real. Therefore

U is real too, see (37).

The proofs of Lemma 1 and Proposition 5 remain valid also for σ = 0,

θ < 1
4 and θ 6= 0.

We go back to the derivation of the discrete TBC. By virtue of formula

(44) we have

Ũj+1(z)− Ũj−1(z) =

(
ν1(z)−

1

ν1(z)

)
Ũj(z) for j > J.

Therefore it is easy to check that a formula

T
[ ◦
∂x

(
U (σ) − θh2

b∞
(ρ∞∂tU + c∞U (σ))

)
J

]
=

1

2h
d(z)(ν1 − ν2)(z) Φ̃(z) (45)

holds, compare with (39). By virtue of the well known formula for the multip-

klication of two poer series it leads to the discrete TBC (10) with the operator

S = Sref of the discrete convolution form

Sm
refΦ

m :=
1

2h
(R ∗ Φ)m =

1

2h

m∑

q=0

RqΦm−q for m > 1, (46)

with the kernel

R := T −1[d(z)(ν1 − ν2)(z)]. (47)

Let us see that Propositions 1 and 2 on stability are valid for S = Sref .
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Proposition 6 For σ >
1
2, σ 6= σ0 and θ 6

1
4, the operator S = Sref of the

discrete TBC (46) satisfies inequalities (14) and (18).

Proof. We apply a method first suggested in [9]. Fix any M > 1 and real

values Φ1, . . . ,ΦM . Extend Φm = 0 for m = −1, 0 and m > M . We define a

function U by formula (42) for j > J − 1 and set, for example, Um
j := 0 for

0 6 j < J − 1 and m > 0, and then set F := Cθ[ρh]∂tU +AhU
(σ).

By virtue of Proposition 5, the constructed function U serves as the real

solution to the problem (32)-(34) and therefore as one to the scheme (21)-

(23), where F = 0 on (ωh,∞\ωh)× ωτ and U 0
h = 0. Then Corollary 1 implies

inequality (14) whereas Corollary 2 implies inequality (18) since Um
J = Φm

for 0 6 m 6 M .

The case σ = σ0 >
1
2 will be also covered in Remark 4 below.

We find the kernel R explicitly. We introduce quantities by recurrence

formulas

pm,α,β =
2m− 1

m
βpm−1,α,β −

m− 1

m
αpm−2,α,β for m > 1, (48)

p0,α,β = 1, pm,α,β = 0 for m < 0 (49)

with parameters α, β. Their close connecton to the classical Legendre poly-

nomials will be shown below.

Proposition 7 For σ > 0, σ 6= σ0 or σ = σ0 >
1
2
, and θ 6

1
4
, the kernel R

of the operator of the discrete TBC (46) is real and is expressed by an explicit

formula

Rm = 2a1
√
δ

1

2m− 1
[pm,α,β − αpm−2,α,β] for m > 0, (50)

with the quantities α, β and δ of the form

α = α0α1, β =
α0 + α1

2
, (51)

α0 = 1− d0
1 + σd0

, α1 = 1− d0(1− 4θ) + d1
(1 + σd0)(1− 4θ) + σd1

, (52)

δ := (1 + σd0)[(1 + σd0)(1− 4θ) + σd1] > 0, (53)

d0 :=
a0
a1

=
c∞
ρ∞

τ > 0, d1 :=
2

a1
= 4

b∞
ρ∞

τ

h2
> 0. (54)
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Proof. Let first σ 6= σ0. By Lemma 1 for z ∈ Dr we have

(ν1 − ν2)(z) = 2 ∗

√
γ2(z)− 1. (55)

One can straightforwardly verify that

d2(z)
(
γ2(z)− 1

)
=

= a21(1− z + d0z
(σ))[(1− 4θ)(1− z) + (d1 + d0(1− 4θ))z(σ)] =

= a21δ(α0z − 1)(α1z − 1) = a21δ(αz
2 − 2βz + 1), (56)

where the coefficients d0, d1, α0, α1 and α, β, δ are given by formulas (51)-(54).

Let first also α 6= 0. We write down a formula

αz2 − 2βz + 1 = (κz)2 − 2µκz + 1,

where κ =
√
α and µ = β√

α
are real for α > 0, or κ = i

√
|α| and µ = −i β√

|α|
are purely imaginary for α < 0; herewith κ2 = α and κµ = β are always real.

Inserting the formula into (56) leads to

d(z) ∗

√
γ2(z)− 1 = −a1

√
δ +
√

(κz)2 − 2µκz + 1 (57)

at least for sufficiently small z (in accordance with the proof of Lemma 1),

where +
√
w is an analytic branch of

√
w on C with the cross-cut along the

negative real half-axis Rew < 0 such that +
√
1 = 1. Formulas (55) and (57)

imply an equality

d(z)(ν1 − ν2)(z) = −2a1
√
δ

(κz)2 − 2µκz + 1
+

√
(κz)2 − 2µκz + 1

.

The following generalized formula for the reproducing function of the Legan-

dre polynomials holds [9]:

∞∑

m=l

κ
mPm−l(µ)z

m =
(κz)l

+

√
(κz)2 − 2µκz + 1

for any κ ∈ C, integer l > 0 and sufficiently small z, that easily follows from

the classical one in the case κ = 1, l = 0 [16]. Therefore

d(z)(ν1 − ν2)(z) = −2a1
√
δ

∞∑

m=0

κ
m [Pm−2(µ)− 2µPm−1(µ) + Pm(µ)] z

m,
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where Pm(µ) ≡ 0 form < 0. Applying the recurrence relation for the Legendre

polynomials

µPm−1(µ) =
m− 1

2m− 1
Pm−2(µ) +

m

2m− 1
Pm(µ) for m > 0, (58)

one can simplify the last formula as follows

d(z)(ν1 − ν2)(z) = 2a1
√
δ

∞∑

m=0

κm

2m− 1
(Pm − Pm−2)(µ)z

m,

i.e., to derive a formula

Rm = 2a1
√
δ

κm

2m− 1
(Pm − Pm−2)(µ), m > 0. (59)

Following [6, 13], we introduce modified Legendre polynomials pm,κ(z) :=

κ
mPm(z). From (58) clearly pm,α,β = pm,κ(µ) satisfy recurrence equalities (48)

and (49) and, in particular, they are real. Therefore formula (50) is proved.

For α = 0 formula (57) is simplified and takes the form d(z) ∗

√
γ2(z)− 1 =

−a1
√
δ +
√
1− 2βz. Hence one can easily verify that formulas (48), (49) and

(50) remain valid and even are simplified in the case α = 0.

Owing to continuous dependence of U on σ >
1
2 (see Remark 3) and R on

σ >
1
2 (it is clear), one can pass to the limit as σ → σ0 on the left-hand side

of the discrete TBC (10) with S = Sref and on the right-hand side of equality

(46). This justifies the validity of formula (46), for R of the form (50), in the

case σ = σ0 >
1
2 (that is possible only provided that 1

4a1+2a0
6 θ < 1

2a0
).

Remark 4 Proposition 6 remains valid also in the case σ = σ0 >
1
2. To

see this, it suffices to insert formula (46) into inequalities (14) and (18) for

S = Sref that have been already proved, for σ 6= σ0, and pass to the limit as

σ → σ0 taking into account the continuous dependence of R on σ.

In practical computations, recurrence equalities for R are more convenient

than formula (50).

Proposition 8 The kernel R satisfies the recurrence equalities

Rm =
2m− 3

m
βRm−1 − m− 3

m
αRm−2 for m > 2, (60)

R0 = −2a1
√
δ, R1 = 2a1

√
δβ. (61)
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Proof. The form of formula (59) differs from the corresponding one in

[11], Proposition 5.7 only by a constant multiplier. Therefore Proposition 5.8

in [11] implies a recurrence formula

Rm =
2m− 3

m
κµRm−1 − m− 3

m
κ

2Rm−2, m > 2.

Inserting κµ = β and κ2 = α leads to (60). Formulas (61) straightforwardly

follow from (50) and (48), (49) for m = 1.

Typical graphs of lg |Rm| are presented on Figures 1 for Examples 1 and

2, see Section 6 below (the values of parameters are given on Figures 2 and

3).
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Figure 1: Graphs of lg |Rm| in dependence with m, for θ = 1/12, in Example 1 (left) and

Example 2 (right)

One can rather easily extend the above results are to the case of the third

boundary condition at x = 0, or to the Cauchy problem where equation (1)

is posed on R. The case σ < 1/2 could be also analyzed under suitable

additional condition between steps τ and hj.

6 Numerical experiments

Consider the initial-boundary value problem (1)-(3) for the simplest ho-

mogeneous heat equation where ρ(x) ≡ 1, b(x) ≡ 1, c(x) ≡ 0 and f(x, t) ≡ 0,

for 0 6 t 6 T . In Example 1, we base upon an exact solution

u1(x, t) =

√
t0

t+ t0
e−(x−x∗)

2/[4(t+t0)]

with parameters x∗ > 0 and t0 > 0 and take the data g(t) = u1(0, t) and

u0(x) = u1(x, 0). We choose x∗ = 1.25, t0 = 0.03125, T = 1 and X = 2.5.
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Note that |u0(x)| < 3.8 · 10−6 for x > X. On Fig. 2, we demonstrate the

numerical solution and its error computed for σ = 1
2 , θ = 1

12, h = 0.05 and

τ = 1
1500.
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Figure 2: Example 1. The numerical solution (left) and its error (right) for σ = 1

2
, θ = 1

12
,

h = 0.05 and τ = 1

1500

In Table 1, the absolute errors are given in dependence with M (where

Mτ = T ) for θ = 0 and θ = 1
12. For θ = 0, they do not practically change for

M > 500 whereas for θ = 1
12

the error continues to decrease up to M = 2000

thus allowing to reach values of 725 times less. Note that actually the value

U 0
J 6= 0 has been used and the minimal reached absolute error is less than this

one.

M 20 50 100 200 500 1000 2000

θ = 0 4.39 · 10−2 8.30 · 10−3 1.30 · 10−3 5.38 · 10−4 8.63 · 10−4 9.15 · 10−4 9.28 · 10−4

θ = 1

12
4.53 · 10−2 9.50 · 10−3 2.20 · 10−3 4.89 · 10−4 7.28 · 10−5 1.35 · 10−5 1.28 · 10−6

Table 1: Example 1. The absolute errors in dependence with M for h = 0.05

Notice that if one sets simply the Neumann boundary condition (i.e., takes

S = 0) instead of the discrete TBC at x = X, then it is necessary to increase

X three times to reach the error of the same order of smallness (for the same

h and τ); herewith the maximum absolute error is reached at (x, t) = (X, T )

(the corresponding graphs are omitted).

In Example 2, we take the data g(t) = t2 and u0(x) = 0. The exact

solution to such problem u2(x, t) = 32t2I4(ξ) is also known and is calculated
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by applying the recurrence formulas [17]

I0(ξ) = erfc(ξ) ≡ 2√
π

∫ ∞

ξ

e−ζ2dζ, I1(ξ) =
1√
π
e−ξ2 − ξ erfc(ξ),

In(ξ) =
1

2n
In−2(ξ)−

ξ

n
In−1(ξ), n = 2, 3, 4,

where ξ = x
2
√
t
. Choose T = 1 and X = 1.

On Fig. 3 we present the numerical solution and its error computed for

σ = 1
2
, θ = 1

12
, h = 0.1 and τ = 0.01. In contrast to Example 1, now the

solution is not close to 0 for x = X. The error is maximal at the node

(xj, tm) = (h, τ) (but not on the artificial boundary x = X). Notice that

decreasing of X down to 0.2 for the same mesh steps does not increase the

error (for u0 = 0 and while applying namely the discrete TBC, this is natural

and clear from above). Moreover, if once again one sets simply the Neumann

boundary condition instead of the discrete TBC at x = X, then (for the same

h and τ) the absolute error equals 0.15 and is unacceptably large. It decreases

to the same values as on Fig. 3 only when X increases five times.
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Figure 3: Example 2. The numerical solution (left) and its error (right) for σ = 1

2
, θ = 1

12
,

h = 0.1 and τ = 0.01

On Fig. 4 we give the graphs of errors in the cases θ = 0 and θ = 1
6. Their

forms are different and the maximum absolute errors are about two orders of

magnitude greater than in the case θ = 1
12.

In addition in Tables 2 and 3 we put the absolute errors in dependence

with M for h = 0.1 and various θ. For θ = 0, 16 and 1
4 the errors do not

practically change already for M > 50; herewith their minimum values for

θ = 0 and θ = 1
6 are close whereas for θ = 1

4 one is approximately twice larger.
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Figure 4: Example 2. The error of numerical solution in the cases θ = 0 (left) and θ = 1

6

(right) for σ = 1

2
, h = 0.1 and τ = 0.01

In contrast, for θ = 1
12 the error continues to decrease rather rapidly up to

M = 500 thus allowing to reach values about four orders of magnitude less

(though it increases slightly when M grows further).

M 5 10 20 50 100 200

θ = 0 0.020 6.989 · 10−4 4.239 · 10−4 3.506 · 10−4 3.402 · 10−4 3.376 · 10−4

θ = 1

12
0.020 4.948 · 10−4 1.224 · 10−4 1.799 · 10−5 4.700 · 10−6 9.300 · 10−7

θ = 1

6
0.019 4.654 · 10−4 2.565 · 10−4 3.237 · 10−4 3.340 · 10−4 3.366 · 10−4

θ = 1

4
0.019 4.355 · 10−4 5.931 · 10−4 6.613 · 10−4 6.717 · 10−4 6.743 · 10−4

Table 2: Example 2. The absolute errors in dependence with M for h = 0.1

M 300 400 500 600 650

θ = 1

12
2.638 · 10−7 6.797 · 10−8 4.032 · 10−8 8.962 · 10−8 1.062 · 10−7

Table 3: Example 2. The absolute errors in dependence with M > 300 for h = 0.1 and θ = 1

12
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