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The Construction of the Coarse de Rham
Complexes with Improved Approximation

Properties
Ilya V. Lashuk · Panayot S. Vassilevski

Abstract — We present two novel coarse spaces (H1- and H(curl)-conforming) based
on element agglomeration on unstructured tetrahedral meshes. Each H1-conforming
coarse basis function is continuous and piecewise-linear with respect to an original tetra-
hedral mesh. The H(curl)-conforming coarse space is a subspace of the lowest order
Nédélec space of the first type. The H1-conforming coarse space exactly interpolates
affine functions on each agglomerate. The H(curl)-conforming coarse space exactly
interpolates vector constants on each agglomerate. Combined with the H(div)- and
L2-conforming spaces developed previously in [8], the newly constructed coarse spaces
form a sequence (with respect to exterior derivatives) which is exact as long as the
underlying sequence of fine-grid spaces is exact. The constructed coarse spaces inherit
the approximation and stability properties of the underlying fine-grid spaces supported
by our numerical experiments. The new coarse spaces, in addition to multigrid, can
be used for upscaling of broad range of PDEs involving curl, div and grad differential
operators.
2010 Mathematical subject classification: 65N20, 65M25.
Keywords: Finite Element de Rham Complexes, Element Agglomeration, Algebraic
Multigrid, Upscaling.

1. Introduction

We describe a systematic approach of constructing accurate “coarse or upscaled models
or discretizations” that utilize coarse finite element spaces with guaranteed approximation
properties constructed by specialized, element-based, algebraic multigrid (or AMGe) meth-
ods. The main goal is not necessarily building a hierarchy for an efficient multigrid solver,
rather providing accurate coarse (upscaled) discretizations that can be used instead of a
fine-resolution one which may turn out infeasible for repeated large-scale simulations.

The present paper completes a sequence of results originally motivated by the so-called
element agglomeration algebraic multigrid (or AMGe) [4, 6, 7, 12, 13], see also [14]. The
AMGe exploits the natural idea of agglomerating the elements of the original (fine) mesh in
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order to produce macro-elements that serve as coarse elements and then construct by some
local energy minimization principle the associated coarse spaces, so that recursion is possible
to apply. Originally, the AMGe approach was developed for SPD problems and eventually
extended, in [10], to the entire de Rham sequence of finite element spaces with the purpose to
develop coarse hierarchies for use in multigrid. As motivated in [14], the AMGe approach can
successfully be applied to construct coarse spaces with guaranteed approximation properties
(not only for multigrid purposes). More recently, based on the work in [10], the AMGe was
generalized in [8] to mixed systems involving the lowest order H(div)-conforming Raviart–
Thomas spaces to guarantee that the coarse spaces contain locally the vector constants.
In the present work, we extend the approach from [8], concentrating on the approximation
properties of the constructed coarse spaces, by completing the entire de Rham sequence of
the respective lowest order finite element spaces. More specifically, we propose two novel
coarse spaces, which utilize agglomerates of standard tetrahedral elements. Each agglomerate
must meet certain topological requirements, but otherwise it can have arbitrary shape. The
proposed coarse spaces are subspaces of, respectively, the space of continuous piecewise-
linear functions and the lowest order Nédélec space associated with the original “fine” mesh.
Together with the H(div)- and L2-conforming coarse spaces described in our previous work,
the proposed spaces form an exact sequence (with respect to exterior derivatives) when the
spatial domain is homeomorphic to a ball. In contrast to the previous work, all four coarse
spaces locally contain (on each coarse element) the set of all polynomials of the same order
as do the corresponding fine-grid spaces. For example, the coarse counterpart of the H1-con-
forming space locally contains all four linear functions, and the coarse version of the Nédélec
space locally contains all three vector constants. This property ensures that the constructed
coarse spaces can exhibit approximation properties comparable to those of the original fine-
grid spaces. Our numerical experiments do confirm this. As the original mesh is refined and
the average agglomerate size is kept constant (in other words, the ratio H/h is kept constant,
where H and h are coarse and fine mesh parameters, respectively), the corresponding norm
(H1, H(curl), H(div), or L2) of the error of the coarse-grid approximation (based on a
respective Galerkin projection) exhibits O(H) ' O(h) behavior, that is, the same as of
the fine-grid approximation. We additionally observe that the coarse H1-conforming space
approximates smooth scalar functions in L2-norm with error of order O(h2).

Related approaches are found in the mimetic/virtual finite element literature, see e.g.,
[2, 3]. In recent years, several mimetic/virtual methods have been developed for finite ele-
ments with rather general polygonal/polyhedral shape. We stress upon the fact that mimetic
methods are discretization methods, i.e., they take a PDE as input and produce a discrete
system of equations as output. Our approach differs in that we assume the existence of
a fine-grid discretization of a PDE utilizing standard finite elements, and then we create,
by local procedures, coarse discretization spaces associated with agglomerates. Note that
obtaining the fine-grid finite element solution may be computationally infeasible, while the
created coarse (upscaled) problem may be more tractable.

To actually create the coarse elements (agglomerates) we use mesh partitioners, such
as (Par)METIS [5], with post-processing to ensure certain topological properties of the ag-
glomerates. This is by itself a very challenging task, and the implementation details will be
addressed elsewhere.

The main results of the paper that we prove are exactness of the sequence of coarse
spaces, and also that the coarse spaces possess certain approximation properties in the sense
that locally on each agglomerate the coarse spaces span the lowest order polynomials as the
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ones of the respective fine-grid space. The latter property is described in detail at the end
of Section 2.

We finally mention, that the approach presented here is general and extends to de Rham
sequences of arbitrary order finite element spaces. The details however will be presented in
a follow-up paper.

The remainder of the paper is structured as follows. We begin with a general problem
setup in Section 2, then introduce our assumptions on the coarse topology in Section 3, and
in Section 4, we provide some auxiliary results that are used throughout the paper. Then
in the following several sections we describe the construction of the four coarse counterparts
of the originally given lowest order spaces. The coarse L2-conforming space and the coarse
counterpart of the Raviart–Thomas space are described in Section 5. The coarse version of
the Nédélec space is described in Section 6, and the coarse H1-conforming space is described
in Section 7. We present some numerical results in Section 8 that illustrate the improved
approximation properties of the new coarse spaces.

2. Problem Setup

We consider a bounded three-dimensional polyhedral domain Ω, exactly covered by an un-
structured tetrahedral mesh Th. We assume that there exists a polyhedral domain Ω̂, exactly
covered by an unstructured tetrahedral mesh T̂h such that Ω ⊂ Ω̂, Th is a “sub-mesh” of T̂h,
and Ω̂ is homeomorphic to a 3D ball. This assumption is used later in Section 7.7.

We use the following definitions, which are customary in the finite element literature.
The element is an individual tetrahedron from Th. The boundary of each element consists of
four triangular faces. The boundary of each face consists of three straight segments, referred
to as edges. Finally, the two endpoints of each edge are called vertices. We treat elements,
faces and edges as closed sets of points in 3D. Then, for example, we can express the fact
that an edge e is part of the boundary of a face f by writing e ⊂ f . We say that two mesh
entities a and b (an entity is an element, a face, an edge, or a vertex) are incident iff either
a ⊂ b or b ⊂ a. In what follows we often call Th the fine mesh, as opposite to the coarse
mesh that we seek to construct. We also often call the vertices, edges, faces, and elements
of Th the fine vertices, edges, faces, and elements.

In this paper, we use letters in bold font to denote 3D vectors and 3D vector fields. All
other objects (e.g., scalar fields and vectors in Rk) are denoted by letters in normal font.

Throughout the paper we use the following notation for vector constant functions:

c1 = (1, 0, 0)T , c2 = (0, 1, 0)T , c3 = (0, 0, 1)T , C = span(c1, c2, c3). (2.1)

We assume that each fine face f is assigned a particular unit normal vector n = n(f),
once and for all. Similarly, we assign each edge a direction (we label one of the vertices as
the “head” and another as the “tail”). Let a fine edge e have tail vertex A and head vertex B.
Let
−→
AB denote the vector starting at point A and ending at point B. The length of vector−→

AB will be denoted by |
−→
AB|. We associate with e a unit tangential vector

τ = τ (e) =

−→
AB

|
−→
AB|

.

Let S̃h denote the space of continuous functions which are linear on each tetrahedron
t ∈ Th. Let Q̃h denote the lowest order Nédélec space (Nédélec curl-conforming finite element
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space of the first type) associated with Th, and let R̃h denote the lowest-order Raviart–
Thomas space (also known as divergence-conforming Nédélec space of the first type), see,
e.g., [9]. Finally, let M̃h denote the space of functions which are constant on each tetrahedron
(clearly, such functions are generally discontinuous).

It is well known (e.g., [9]) that

R ↪→ S̃h
∇−→ Q̃h

∇×−−→ R̃h
∇·−→ M̃h → 0

is an “exact sequence”, when Ω is homeomorphic to a ball. The term “exact sequence” in this
context means

(1) ∇S̃h ⊂ Q̃h, ∇×Q̃h ⊂ R̃h, ∇·R̃h ⊆ M̃h;

(2) ker(∇) = R, ker(∇×) = ∇S̃h, ker(∇·) = ∇×Q̃h, M̃h = ∇·R̃h.

We also need the spaces “with zero boundary conditions”: Sh, Qh, Rh and Mh (note the
absence of tildes). Sh ⊂ S̃h is defined to consist of functions from S̃h which vanish on ∂Ω. In
a similar way, Qh ⊂ Q̃h consists of functions which have zero tangential component on ∂Ω.
Next, Rh ⊂ R̃h consists of functions with zero normal component on ∂Ω. Finally, Mh ⊂ M̃h

is defined to consist of functions which have zero average over Ω. It is well known that the
sequence

0 ↪→ Sh
∇−→ Qh

∇×−−→ Rh
∇·−→Mh → 0 (2.2)

is also exact when Ω is homeomorphic to a ball. Note that this time the sequence starts with
zero, which means that the zero function is the only function in Sh which has zero gradient.

Let D ⊂ Ω be an open subdomain such that its closure D is exactly covered by a union
of elements from Th. We define Sh(D) ⊂ S̃h to contain those functions g ∈ S̃h which
satisfy supp(g) ⊂ D and g = 0 on ∂D. Let Qh(D) ⊂ Q̃h contain those functions q ∈ Q̃h

which satisfy supp(q) ⊂ D and have vanishing tangential component on ∂D. Similarly, let
Rh(D) ⊂ R̃h consist of those functions r ∈ R̃h which satisfy supp(r) ⊂ D and have vanishing
normal component on ∂D.

Finally, let Mh(D) ⊂ M̃h contain those functions u ∈ M̃h which satisfy supp(u) ⊂ D and∫
D
u dV = 0.
When D is homeomorphic to a ball, the sequence

0 ↪→ Sh(D)
∇−→ Qh(D)

∇×−−→ Rh(D)
∇·−→Mh(D)→ 0 (2.3)

is exact, since (2.3) is just (2.2) written for a different domain Ω′ = D.
Suppose we are given a partitioning Ω =

⋃
Ti of the domain into subdomains such that

each subdomain Ti is a union of fine-grid elements (tetrahedrons) from Th, and the interiors
of the subdomains do not intersect. In other words, we partition the set of all fine-grid
elements into non-intersecting groups. Throughout the rest of the paper we interchangeably
call the subdomains Ti agglomerates, coarse elements or agglomerated elements. We seek to
construct four spaces, S̃H ⊂ S̃h, Q̃H ⊂ Q̃h, R̃H ⊂ R̃h and M̃H ⊂ M̃h, so that the sequence

R ↪→ S̃H
∇−→ Q̃H

∇×−−→ R̃H
∇·−→ M̃H → 0 (2.4)

is exact if Ω is homeomorphic to a ball, and the constructed spaces have the following
approximation properties:
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• There exists a projection ΠS : S̃h → S̃H such that for any g ∈ S̃h and any agglomerate
T , the functions ΠSg and g coincide on T , as long as g is linear on T .

• There exists a projection ΠQ : Q̃h → Q̃H such that for any q ∈ Q̃h and any agglomerate
T , the functions ΠQq and q coincide on T , as long as q is a vector constant on T .

• There exists a projection ΠR : R̃h → R̃H such that for any r ∈ R̃h and any agglomerate
T , the functions ΠRr and r coincide on T , as long as r is a vector constant on T .

• There exists a projection ΠM : M̃h → M̃H such that for any u ∈ M̃h and any agglom-
erate T , the functions ΠMu and u coincide on T , as long as u is constant on T .

Our construction guarantees that the coarse spaces have “locally” supported basis functions.
“Locally” means that the support of each coarse basis function only includes agglomerates
which are “neighbors” of the geometrical entity (coarse vertex, coarse edge, etc.) with which
the coarse basis function is associated.

We note that the spaces introduced in [10] do form an exact sequence (under certain
conditions), but do not satisfy the approximation properties outlined above, unless the “faces”
of the agglomerates (coarse faces) are flat and the “edges” of the agglomerates (coarse edges)
are straight. We rigorously define coarse faces and coarse edges in Section 3. The space
R̃H ⊂ R̃h locally containing all vector constants (and satisfying the exactness property
together with the space M̃H) has been described in our previous work [8]. We include its
description here for completeness.

3. Element Agglomeration and Coarse Topology

We assume that we are given the partitioning of all fine elements into non-intersecting
subsets, called agglomerates. We call a fine face a boundary face of an agglomerate T iff that
face is a subset of exactly one fine element from T . A fine edge (vertex) is called a boundary
edge (boundary vertex) of T iff that edge (vertex) is a subset of any boundary face of T .

Assumption 3.1. We further assume that each agglomerate T has the following properties:

• Define the following dual graph. Its vertices are the fine-grid elements belonging to T .
Any two such vertices are connected by an arc iff the corresponding fine-grid elements
share a face. Our assumption is that the dual graph of T is connected.

• The graph made of boundary edges and boundary vertices of T is connected.

• Let N v
int(T ), N e

int(T ), N f
int(T ) be, respectively, the number of interior (non-boundary)

vertices, edges and faces of the agglomerate. Let N t(T ) be the number of tetrahedrons
(elements) in the agglomerate. We require that

E0(T ) := N v
int(T )−N e

int(T ) +N f
int(T )−N t(T ) = −1.

The number E0 is similar to the Euler characteristic, except that we are counting only
interior entities.
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3.1. Coarse Faces

Consider the set of all fine faces, which are boundary faces of at least one agglomerate. We
assume that this set is partitioned into non-intersecting subsets, which we call coarse faces.
We additionally assume that for any such coarse face F , each fine face f in F is a boundary
face of the same set of agglomerated elements. That is, either there exist two agglomerates,
T1 and T2, such that each fine face from F is a boundary face of both T1 and T2 (and, clearly,
of no other agglomerate), or there exists an agglomerate T such that each fine face from F
is a boundary face of T (and of no other agglomerate).

With each coarse face F , we associate a “consistent normal” nF defined to be a vector
function on F , equal on each fine face f ∈ F to either n(f) or −n(f), so that nF always
points inside the same agglomerated element T . The latter means that on each fine face
f ∈ F we have nF = ε(f)n(f) where ε(f) is either 1 or −1, chosen such that nF points
inside the fine-grid element that is contained in T . Generally, two such choices of nF are
possible (they differ by a sign). For each coarse face F , we fix one particular choice, once
and for all.

We call a fine edge e a boundary fine edge of a coarse face F iff e is a subset of exactly
one fine face from F . A vertex v is called a boundary vertex of F iff v is an endpoint of
some boundary edge of F . We call all other edges and vertices of F interior.

Assumption 3.2. We assume that each coarse face F additionally meets the following
requirements:

• Define a dual graph of F with its vertices being the fine faces in F , and any two such
vertices are connected by an arc iff the corresponding fine faces share an edge. Our
assumption is that the dual graph of F is connected.

• Each interior edge of F is a subset of exactly two fine faces from F .

• Interior edges and vertices of F do not belong to any other coarse face. In other words,
coarse faces can only “touch” each other along their boundary fine edges (and their
boundary vertices).

• F has at least one boundary edge (and thus, at least two boundary vertices).

• Let N v
int(F ) and N e

int(F ) be, respectively, the number of interior vertices and edges of
F . Let N f (F ) be the number of faces in F . We require that

E0(F ) := N v
int(F )−N e

int(F ) +N f (F ) = 1.

• The following is a technical assumption which simplifies the construction to follow. It
can be avoided as demonstrated in [8]. We assume that the average normal of F ,

navg
F =

∫F nF ·c1 dA∫
F

nF ·c2 dA∫
F

nF ·c3 dA

 ,
is a non-zero vector. We recall that ci are the vector constant functions introduced in
(2.1).

The above assumptions are in essence a 2D analog of Assumption 3.1. Note that for
any agglomerate, the set of its boundary fine faces can always be represented as a union of
several coarse faces.
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3.2. Coarse Edges and Coarse Vertices

Consider the set of all fine edges, which are the boundary edges (as defined above) of at least
one coarse face. We assume that this set is partitioned into non-intersecting subsets, which
we call coarse edges.

We call a fine vertex v an endpoint of a coarse edge E iff v is a subset of exactly one fine
edge from E. We refer to the endpoints of the coarse edges also as to coarse vertices.

Assumption 3.3. We assume that each coarse edge E meets the following requirements:

• Each fine edge in E is a boundary edge of the same set of coarse faces.

• The fine edges in E together with their endpoints form a connected graph.

• Each fine vertex can be an endpoint of at most two fine edges from E.

• If a fine vertex v is an endpoint of two fine edges from E, then v is not an endpoint
of any fine edge from any other coarse edge. In other words, coarse edges only “meet”
each other at coarse vertices.

Let a coarse edge E contain n fine edges. From the assumptions itemized above it follows
that E contains n+1 fine vertices and the edges and the vertices can be ordered in such way
that the fine edge ei ∈ E connects the fine vertices vi and vi+1. This way the vertices v1 and
vn+1 are the endpoints of E. (There are two such possible orderings. We choose one, once
and for all.) We call v1 the tail of E, and vn+1 the head of E. We define τE to be a vector
function on the coarse edge E, equal on each fine edge ei to ±τ (ei), where the sign is chosen
so that τE|ei points from vi to vi+1. Since the endpoints of the coarse edge are two distinct
vertices, one can easily see that at least one of the integrals

∫
E

ci ·τE dL must be non-zero
(for ci see (2.1)).

As we shall show in the course of the paper, the conditions in Assumptions 3.1–3.3
guarantee the exactness of the sequence

0 ↪→ Sh(T )
∇−→ Qh(T )

∇×−−→ Rh(T )
∇·−→Mh(T )→ 0. (3.1)

Note that this is a sequence of spaces with homogeneous boundary conditions.

3.3. Stokes Theorems for Coarse Entities

Let E be a coarse edge consisting of fine edges e1, . . . , en and fine vertices v1, . . . , vn+1, so
that edge ei connects vertices vi and vi+1, and τE|ei points from vi to vi+1. The vertices v1
and vn+1 are hence the tail and the head of E, respectively. Let f ∈ S̃h. By integrating
∇f ∈ Q̃h over the fine edge ei, we obtain∫

ei

∇f ·τE dL = f(vi+1)− f(vi). (3.2)

By summing (3.2) over i we obtain∫
E

∇f ·τE dL = f(vn+1)− f(vn). (3.3)
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Lemma 3.4. Let T be a coarse element. Then for each coarse face F ⊂ ∂T there exists a
number α(F ) ∈ {−1, 1} such that for any sufficiently smooth r ∈ H(div)∫

T

∇·r dV =
∑
F⊂∂T

α(F )

∫
F

r ·nF dA. (3.4)

Proof. By applying the divergence theorem to each fine element (tetrahedron) contained in T ,
summing up the resulting equalities and noting that integrals over interior faces (inside T )
cancel out in the sum, we obtain∫

T

∇·r dV =

∫
∂T

r ·nT dA =
∑
F⊂∂T

∫
F

r ·nT dA,

where nT is outward normal to ∂T . Take any coarse face F ⊂ ∂T . Consider the “consistent
normal” nF (defined in Section 3.1). There are two possibilities. Either nF points outside T
and then for each fine face f ⊂ F we have nF |f = nT |f . Or nF points inside T and then for
each fine face f ⊂ F we have nF |f = −nT |f . In any case there exists α(F ) ∈ {−1, 1} such
that ∫

F

r ·nT dA = α(F )

∫
F

r ·nF dA.

Lemma 3.5. Given a coarse edge E consisting of the fine edges e1, . . . , en, let the numbers
αi ∈ {−1, 1}, i = 1, . . . , n, satisfy

n∑
i=1

αi

∫
ei

∇θ ·τ dL = 0

for any θ ∈ S̃h vanishing at the endpoints (coarse vertices) of E. Then either

αiτ (ei) = τE|ei , i = 1, . . . , n, (3.5)

or
αiτ (ei) = −τE|ei , i = 1, . . . , n. (3.6)

Proof. Denote the fine vertices of E as v1, . . . , nn+1, so that the fine edge ei connects the
vertices vi and vi+1, and τE|ei points from vi to vi+1. We shall assume

α1τ (e1) = τE|e1 (3.7)

and prove (3.5). The case α1τ (e1) = −τE|e1 is treated analogously, yielding (3.6).
Suppose (3.5) does not hold. Denote by k the first index i for which (3.5) is violated.

Due to our assumption (3.7), k > 2. Let θ ∈ S̃h satisfy θ(vk) = 1 and vanish at all other fine
vertices. We then have

n∑
i=1

αi

∫
ei

∇θ ·τ dL = αk−1

∫
ek−1

∇θ ·τ dL+ αk

∫
ek

∇θ ·τ dL

=

∫
ek−1

∇θ ·τE dL−
∫
ek

∇θ ·τE dL

= θ(vk)− θ(vk−1)− θ(vk+1) + θ(vk) = 2 6= 0,

which contradicts the assumption of the lemma.
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Lemma 3.6. Let F be a coarse face. Then for each coarse edge E ⊂ ∂F there exists a
number β(E) ∈ {−1, 1} such that for any sufficiently smooth q ∈ H(curl)∫

F

∇×q ·nF dA =
∑
E⊂∂F

β(E)

∫
E

q ·τE dL. (3.8)

Proof. By applying the Stokes theorem to each fine face contained in F and summing up
the resulting equalities, we can see that for each fine edge e ⊂ F there exists a number α(e)
such that ∫

F

∇×q ·nF dA =
∑
e∈F

α(e)

∫
e

q ·τ dL (3.9)

for any sufficiently smooth q ∈ H(curl). We further observe that α(e) ∈ {−1, 1} for the
boundary edges of F , and α(e) ∈ {−2, 0, 2} for the interior edges of F .

We shall prove that α(e) = 0 for any interior fine edge e ⊂ F . Choose q to satisfy∫
e′

q ·τ dL =

{
1 if e′ = e,

0 if e′ 6= e

for each fine edge e′ of the mesh. Then for any coarse face F ′ we have∫
F ′

(∇×q) ·nF ′ dA =

{
α(e) if F ′ = F,

0 if F ′ 6= F.

There exists at least one agglomerate T such that F is part of ∂T . We then have, applying
Lemma 3.4 to T ,

0 =

∫
T

∇·∇×q dV = ±α(e),

which is only possible when α(e) = 0.
We can now re-write (3.9) as∫

F

∇×q ·nF dA =
∑
E⊂∂F

∑
e⊂E

α(e)

∫
e

q ·τ dL, (3.10)

where α(e) = ±1 for each e on ∂F . Consider any coarse edge E ⊂ ∂F . Let θ ∈ S̃h be an
arbitrary function vanishing at all boundary vertices of F , except the interior vertices of E.
Note that θ vanishes at the endpoints of E and

∫
e
∇θ ·τ dL = 0 for any fine edge e ⊂ ∂F ,

e 6⊂ E. Substituting q = ∇θ into (3.10), we get

0 =

∫
F

(∇×∇θ) ·nF dA =
∑
e⊂E

α(e)

∫
e

∇θ ·τ dL.

Then, by Lemma 3.5 there exists a β(E) ∈ {−1, 1} such that

α(e)τ (e) = β(E)τE|e for all e ⊂ E,

which substituted in (3.10) implies∑
e⊂E

α(e)

∫
e

q ·τ dL = β(E)

∫
E

q ·τE dL.

The desired result follows.
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4. Some Auxiliary Results

4.1. Solvability of Certain Discrete Mixed Systems

Our construction of the coarse spaces involves solving various “small” linear systems, asso-
ciated with either coarse elements or coarse faces. The unique solvability of these linear
systems follows from, e.g., [1, Lemma 3.10]. We restate the necessary corollary of the lemma
below for completeness.

Let Vi, i = 1, 2, 3, be finite dimensional linear spaces with inner products ( · , ·)i. In
particular, we allow Vi = {0}. Note that in this case ( · , ·)i ≡ 0 is still formally an inner
product. Let di : Vi → Vi+1, i = 1, 2, be linear operators. Consider the problem of finding a
pair σ ∈ V1, u ∈ V2 satisfying

(σ, τ)1 − (d1τ, u)2 = ϕ(τ) for all τ ∈ V1,
(d1σ, v)2 + (d2u, d2v)3 = ψ(v) for all v ∈ V2,

(4.1)

where ϕ is a linear functional on the space V1, and ψ is a linear functional on the space V2.

Lemma 4.1. If ker(d2) = d1(V1), then the system (4.1) has a unique solution pair for any
ϕ and ψ.

Proof. Since the spaces Vi are finite-dimensional, it is sufficient to show that the homogeneous
system

(σ, τ)1 − (d1τ, u)2 = 0 for all τ ∈ V1,
(d1σ, v)2 + (d2u, d2v)3 = 0 for all v ∈ V2

has only zero solution, when ker(d2) = d1(V1), which is readily checked (as shown in [1,
Lemma 3.10]).

4.2. Some Properties of Projectors

We summarize here two properties of projection operators that we use throughout the paper.
Let V be a linear space. An operator P is called a projector onto the subspace L ⊂ V
if P (V ) ⊂ L and Px = x for any x ∈ L. The definition obviously implies P 2 = P ,
P (V ) = P (L) = L.

Lemma 4.2. Let P1, . . . , Pk be projectors onto subspaces V1, . . . , Vk of V , respectively. Let
PiPj = PjPi = 0 for i 6= j. Then the sum

∑
i Vi is direct and the operator P =

∑
i Pi is a

projector onto
∑

i Vi =
⊕

i Vi.

The proof is straightforward and can be found, e.g., in [11, p. 131].

Lemma 4.3. Let P : V → V be a projector onto a linear space L ⊂ V . Let Ai : V → V ,
i = 1, . . . , n, be linear operators satisfying PAi = 0 for each i. Then the operator(

1 +
∑
i

Ai

)
P

is a projector onto the linear space (
1 +

∑
i

Ai

)
L.

Proof. Let A = 1 +
∑

iAi. We need to prove that AP is a projector onto A(L). Clearly
APx ∈ A(L) for any x ∈ V . Let x = Ay for y ∈ L. From the condition PAi = 0 it follows
that PA = P . We then have APx = APAy = APy = Ay = x.
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5. L2- and H(div)-Conforming Coarse Spaces

We define the space M̃H ⊂ M̃h ⊂ L2(Ω) to consist of functions which are constant in (the
interior of) each agglomerated element. The functions in M̃H are elements of L2(Ω); they
are discontinuous across the boundaries of the agglomerated elements. We define ΠM to be
the orthogonal projection onto M̃H (with respect to the L2 inner product).

In the rest of this section we describe the construction of the coarse Raviart–Thomas
space, R̃H ⊂ R̃h. This construction was introduced in [8], and we include it here for com-
pleteness. We define R̃H in two steps. First, for each coarse face F we define a certain
space R̃H(F ) ⊂ R̃h. We then describe the “interior extension” mapping from

⊕
F R̃H(F ) to

R̃h, i.e., from the traces on the set of coarse faces F into the interior of the agglomerated
elements.

The standard degrees of freedom for the lowest order Raviart–Thomas space are the
integrals of the normal component over the fine faces:

r→
∫
f

r ·n dA, r ∈ R̃h, f is a fine face. (5.1)

Specifying the values of all such degrees of freedom completely defines a function in R̃h.

Definition 5.1 (Restrictions of fine-grid RT functions). Let r ∈ R̃h. Let K be a coarse face
or a coarse element. Define πR

Kr ∈ R̃h to have the following degrees of freedom:∫
f

(πR
Kr) ·n dA =

{∫
f
r ·n dA if f ∈ K,

0 if f 6∈ K.

Recall that we treat all coarse entities as closed sets, e.g., a coarse element contains all its
boundary fine faces.

5.1. Defining Coarse Raviart–Thomas Basis Functions on Coarse Faces

We associate at least one and up to three coarse Raviart–Thomas basis functions with a
given coarse face. Let F be any coarse face. Consider the space

R̃h(F ) = πR
F R̃h.

We define R̃H(F ) ⊂ R̃h(F ) to be
R̃H(F ) = πR

FC.

Remark 5.2. In an actual computer implementation, we form a matrix with entries Wij =∫
fi

cj ·nF dA, where fi ∈ F , and perform the singular value decomposition (SVD) of W .
The singular vectors which correspond to singular values above certain threshold give rise
to coarse basis functions. This is discussed in more detail in [8]. The dimension of R̃H(F )
can be one (the case for a planar coarse face), two, or three.

For r, s ∈ R̃h, we define

(r, s)F = (r, s)RF =
∑
f∈F

(∫
f

r ·nF dA
)(∫

f

s ·nF dA
)
. (5.2)
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Clearly, this bilinear form (r, s)F is an inner product on R̃h(F ). Note that we are using the
“global” normal nF (f) on each fine face f ∈ F . (It is easy to check that using local normal
in each integral of (5.2) would lead to an equivalent definition. Using global normals in (5.2)
is more convenient when proving (6.12).)

Remark 5.3. Alternatively, we could use the following bilinear form:

(r, s)F =
∑
f∈F

(∫
f

r ·nF s ·nF dA
)
.

The mapping

r→
∫
F

r ·nF dA (5.3)

can be viewed as a linear functional on the space R̃H(F ). Due to the Riesz representation
theorem, there exists a νF ∈ R̃H(F ) such that∫

F

r ·nF dA = (νF , r)F for all r ∈ R̃H(F ). (5.4)

We assume that the average normal of F is non-zero (last bullet in Assumption 3.2). Thus,
the linear functional (5.3) is nonzero on R̃H(F ) and consequently νF 6= 0. Let the projector
ΠR

F,1 : R̃h → span(νF ) be defined as follows:

ΠR
F,1r =

∫
F

r ·nF dA

(νF ,νF )F
νF for all r ∈ R̃h. (5.5)

From (5.4) it follows that ΠR
F,1 is indeed a projector onto span(νF ). We now define the space

RH(F ) =
{
r ∈ R̃H(F ) : (r,νF )F = 0

}
.

Note that the dimension of RH(F ) can be zero (for a flat F ), one, or two. For any r ∈ R̃h,
we define ΠR

F,0r to be the (unique) element of RH(F ) satisfying

(ΠR
F,0r, s)

F
= (r, s)F for all s ∈ RH(F ). (5.6)

It is easy to check that ΠR
F,0Π

R
F,1 = ΠR

F,1Π
R
F,0 = 0. Consequently,

ΠR
F = ΠR

F,1 + ΠR
F,0

is a projector onto span(νF )⊕RH(F ) = R̃H(F ). Note that∫
F

r ·nF dA =

∫
F

(ΠR
F,1r) ·nF dA =

∫
F

(ΠR
F r) ·nF dA. (5.7)

Definition 5.4. We define
ΠR

2 =
∑
F

ΠR
F .

Lemma 5.5. ΠR
2 is a projector onto

⊕
F R̃H(F ).

Proof. It is easy to check that ΠR
FΠR

F ′ = 0 for F 6= F ′. The desired result then follows from
Lemma 4.2.

Lemma 5.6. Let F be a coarse face. Let r ∈ R̃h. Suppose πR
F r = πR

F c, where c is a vector
constant. Then πR

F ΠR
2 r = πR

F c.

Proof. It is easy to check that πR
F ΠR

2 r = ΠR
F r = ΠR

Fπ
R
F r. Since πR

F r = πR
F c ∈ R̃H(F ) and ΠR

F

is a projector onto R̃H(F ), we have ΠR
Fπ

R
F r = πR

F c.
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5.2. Extending Coarse Raviart–Thomas Basis Functions into the Interior
of Agglomerated Elements

After we have constructed the spaces R̃H(F ), it remains to describe the interior extension
mapping IRT for each coarse element T . We first prove that the sequence 3.1 is exact at
the term Mh(T ). We need this result to show that a certain linear system that we use for
interior extension is non-degenerate.

Lemma 5.7. We have
∇·Rh(T ) = Mh(T ).

Proof. We first prove ∇·Rh(T ) ⊂ Mh(T ). Fix r ∈ Rh(T ). On any tetrahedron ∇·r is
constant. If tetrahedron t is outside T , then

∫
f
r ·n dA = 0 for any triangular face f of t.

Thus, due to the divergence theorem applied to t, we have that ∇·r vanishes on t. The
condition

∫
T
∇·r dV = 0 follows from Lemma 3.4.

We now show the equality ∇·Rh(T ) = Mh(T ). Just for the sake of this proof, consider
the following inner product on Mh(T ):

〈u, v〉 =
∑
t⊂T

(∫
t

u dV
)(∫

t

v dV
)
.

This inner product is not the L2(T ) inner product on Rh(T ), unless each tetrahedron in T
has unit volume. Let w ∈Mh(T ) satisfy

〈w,∇·r〉 = 0 for all r ∈ Rh(T ).

We shall prove w = 0, which implies the desired equality. We first establish that∫
t1

w dV =

∫
t2

w dV (5.8)

for any pair of fine elements t1, t2 ⊂ T which share an (interior) face f ⊂ T . Let r ∈ Rh(T )
satisfy ∫

f ′
r ·n dA =

{
1 if f ′ = f,

0 otherwise.

By applying the divergence theorem to the fine elements t1, t2 we obtain∣∣∣∫
ti

∇·r dV
∣∣∣ = 1, i = 1, 2. (5.9)

Clearly, f can be a subset of at most two tetrahedrons from T . Consequently, by applying
the divergence theorem to any fine element t ⊂ T other than t1 and t2, we get∫

t

∇·r dV = 0, t 6∈ {t1, t2}.

As we already established, ∇·Rh(T ) ⊂Mh(T ), and thus

0 =

∫
T

∇·r dV =

∫
t1

∇·r dV +

∫
t2

∇·r dV. (5.10)
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We can re-write (5.9) and (5.10) as∫
t1

∇·r dV = α,

∫
t2

∇·r dV = −α, |α| = 1.

The condition 〈w,∇·r〉 = 0 can then be re-written as

α

∫
t1

w dV − α
∫
t2

w dV = 0.

Since α 6= 0, this implies (5.8).
By Assumption 3.1 the dual graph of T is connected. Because of this, (5.8) holds even if

t1 and t2 do not share a face. Since w ∈ Rh(T ), we have∑
t⊂T

∫
t

w dV = 0.

We have already established that all terms in the above sum are equal, consequently they
are all zero. Since w is constant on each tetrahedron, we have w = 0.

We now describe the actual extension procedure. Given a function r ∈ R̃h, let rT ∈ Rh(T )
satisfy

(rT , s)T + (uT ,∇·s)T = −(r, s)T for all s ∈ Rh(T ),

(∇·rT , w)T = −(∇·r, w)T for all w ∈Mh(T ),
(5.11)

for some uT ∈Mh(T ). Here (r, s)T =
∫
T

r ·s dV and (u,w)T =
∫
T
uw dV . The system (5.11)

is uniquely solvable due to Lemma 4.1 (take V1 = Rh(T ), V2 = Mh(T ), V3 = {0}, d1 = ∇· ,
d2 = 0, and use (5.7)).

Definition 5.8. Let r ∈ R̃h. Let rT ∈ Rh(T ) be the corresponding solution of (5.11). We
define

IRT r = rT .

Note that we have
IRT r = −r for all r ∈ Rh(T ), (5.12)

since the pair (rT = −r, uT = 0) solves (5.11).

Lemma 5.9. Let r ∈ R̃h. Let T be a coarse element. Suppose πR
T r ∈ Rh(T ). Then

πR
T (1 + IRT )r = 0.

Proof. Fix r ∈ R̃h. It is easy to verify the identities πR
T IRT r = IRT πR

T r = IRT r. Using these
identities we obtain

πR
T (1 + IRT )r = (1 + IRT )πR

T r
(5.12)
= πR

T r− πR
T r = 0.

Definition 5.10. The coarse Raviart–Thomas space is defined to be

R̃H =
(
1 +

∑
T

IRT
)⊕

F

R̃H(F ).

The corresponding projector, ΠR : R̃h → R̃H , is defined to be

ΠR =
(
1 +

∑
T

IRT
)

ΠR
2 =

(
1 +

∑
T

IRT
)∑

F

ΠR
F . (5.13)
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We show next that ΠR is indeed a projector onto R̃H . It is clear that equations (5.7) and
(5.13) imply that for any coarse face F and any function r ∈ R̃h, we have∫

F

r ·nF dA =

∫
F

(ΠR
Hr) ·nF dA. (5.14)

Lemma 5.11. ΠR is a projector onto R̃H .

Proof. It is easy to check that for any coarse element T we have ΠR
2 IRT = 0. The desired

result then follows from Lemma 4.3.

5.3. The Commutativity Property

Theorem 5.12. For all s ∈ R̃h, we have

∇·ΠRs = ΠM∇·s.

Proof. Since ΠRs ∈ R̃H , we have ΠRs = r +
∑

T rT , where r ∈
⊕

F R̃H(F ) and each rT
satisfies (5.11). For any agglomerate T and any function w ∈ Mh(T ), due to the second
equation of (5.11), we have

(∇·ΠRs, w)T =
(
∇·(r + rT ), w

)
T

= 0.

In other words, ∇·ΠRs is constant on T , just like ΠM∇·s. To prove that the constants are
equal, it is obviously sufficient to show that∫

T

∇·ΠRs dV =

∫
T

ΠM∇·s dV.

Let F1, . . . , Fn be the coarse faces incident to T . We have∫
T

∇·ΠRs dV
(3.4)
=

n∑
i=1

αi

∫
Fi

(ΠRs) ·nFi
dA

(5.14)
=

n∑
i=1

αi

∫
Fi

s ·nF dA
(3.4)
=

∫
T

∇·s dV =

∫
T

ΠM∇·s dV,

where the last equality is true by the definition of ΠM .

5.4. The “Exactness” Property

Corollary 5.13. If ∇·R̃h = M̃h, then ∇·R̃H = M̃H .

Proof. Let u ∈ M̃H . Since ∇·R̃h = M̃h, there exists r̂ ∈ M̃h such that ∇· r̂ = u. Since
∇· r̂ ∈ M̃H and due to Theorem 5.12, we have

∇· r̂ = ΠM∇· r̂ = ∇·ΠRr̂.

That is, u = ∇·r, where r = ΠRr̂ ∈ R̃H .
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5.5. The Local Approximation Property

Theorem 5.14. If a function s ∈ R̃h coincides with a vector constant c on an agglomerate T ,
then ΠRs also coincides with c on T .

Proof. We have
ΠRs = r +

∑
T ′

rT ′ ,

where each rT ′ satisfies (5.11), and
r =

∑
F

ΠR
F s.

On the coarse element T , ΠRs obviously equals r + rT . In what follows we shall restrict all
functions to T . Due to Lemma 5.6 we have for any fine face f ∈ ∂T∫

f

r ·nf dA =

∫
f

c ·nf dA,

and thus the function c− r belongs to Rh(T ). It now suffices to prove that rT = c− r solves
(5.11), since (5.11) has only one solution. The second equation of (5.11) is satisfied, since
∇·c = 0. Let ûT be any linear function satisfying ∇ûT = c. Pick any s ∈ Rh(T ). Using the
“integration by parts” (applying (3.4) to ∇·(ûT s) and noting that s ·n vanishes on ∂T ), we
obtain

(c, s)T + (ûT ,∇·s)T = 0.

Let uT be an L2 projection of ûT ontoMh(T ). By the properties of the orthogonal projection,
(ûT , w)T = (uT , w)T for any w ∈Mh(T ). Since ∇·s ∈Mh(T ), we have

(c, s)T + (uT ,∇·s)T = 0,

or equivalently
(rT , s)T + (uT ,∇·s)T = −(r, s)T ,

which is the first equation of (5.11).

6. Coarse Nédélec Space

As is well known, the standard degrees of freedom for the lowest-order Nédélec space are the
integrals of tangential component over the edges:

q→
∫
e

q ·τ dL, q ∈ Q̃h, e is a fine edge. (6.1)

Specifying all such degrees of freedom completely specifies a function from Q̃h.

Definition 6.1. Let q ∈ Q̃h. Let K be a coarse edge, a coarse face or a coarse element. We
define πQ

Kq ∈ Q̃h to have the following degrees of freedom:∫
e

(πQ
Kq) ·τ dL =

{∫
e
q ·τ dL if e ∈ K,

0 if e 6∈ K.

Note that we treat all coarse entities as closed sets, i.e., a coarse face F contains all its
boundary fine edges and so forth.



Coarse de Rham Complexes with Improved Approximation Properties 273

6.1. Defining Coarse Nédélec (ND) Basis Functions on Coarse Edges

With each coarse edge we associate up to three coarse basis functions. Let E be any coarse
edge. Consider the space

Q̃h(E) = πQ
EQ̃h.

Recall that the space of vector constant functions is denoted by C. We define the space
Q̃H(E) ⊂ Q̃h(E) to be

Q̃H(E) = πQ
EC. (6.2)

Remark 6.2. In an actual computer implementation, a basis of Q̃H(E) can be constructed
by calculating the left singular vectors of the matrix with entries Wij =

∫
ei

cj ·τ dL, where
ei ⊂ E. If E is a straight line, the dimension of Q̃H(E) is one. If E is not a straight line,
but still a planar polygonal line, the dimension of Q̃H(E) is two. If E is not planar, the
dimension of Q̃H(E) is three.

Let ( · , ·)E = ( · , ·)E,Q be the following bilinear form Q̃h×Q̃h → R:

(p,q)E =
∑
e⊂E

(∫
e

p ·τE dL
)(∫

e

q ·τE dL
)
.

Note that ( · , ·)E is an inner product, when both arguments are restricted to Q̃h(E).

Remark 6.3. We can alternatively use the following inner product:

(p,q)E =
∑
e⊂E

∫
e

(p ·τE)(q ·τE) dL.

Due to the Riesz representation theorem, there exists a νE ∈ Q̃H(E) such that∫
E

q ·τE dL = (νE,q)E for all q ∈ Q̃H(E). (6.3)

At least one of the integrals
∫
E

ci ·τE dL is nonzero (see Section 3.2), so, in view of (6.2),
νE 6= 0. Define the space QH(E) to be

QH(E) =
{
q ∈ Q̃H(E) : (q,νE)E = 0

}
. (6.4)

The dimension of QH(E) can be zero, one, or two.
Define the 1D projector ΠQ

E,1 : Q̃h → span(νE) as follows:

ΠQ
E,1q =

∫
E

q ·τE dL

(νE,νE)E
νE for all q ∈ Q̃h. (6.5)

From (6.3) it follows that ΠQ
E,1 is indeed a projector onto span(νE).

For any q ∈ Q̃h, we define ΠQ
E,0q to satisfy

(ΠQ
E,0q,p)

E
= (q,p)E for all p ∈ QH(E). (6.6)
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It is easy to check that such ΠQ
E,0q exists, is unique and ΠQ

E,0q = q when q ∈ QH(E). From
the fact νE ⊥ QH(E) and (6.6) it follows that

ΠQ
E,0Π

Q
E,1 = ΠQ

E,1Π
Q
E,0 = 0,

and consequently the operator
ΠQ

E = ΠQ
E,0 + ΠQ

E,1

is a projector onto Q̃H(E) = span(νE)⊕QH(E). Note that for any q ∈ Q̃h∫
E

(ΠQ
Eq) ·τE dL =

∫
E

(ΠQ
E,1q) ·τE dL =

∫
E

q ·τE dL. (6.7)

6.2. Projector ΠQ
1 and its Properties

Definition 6.4. We define
ΠQ

1 =
∑
E

ΠQ
E.

Then the following result holds:

Lemma 6.5. ΠQ
1 is a projector onto

⊕
E Q̃H(E).

Proof. Since for each coarse edge E the operator ΠQ
E is a projector onto Q̃H(E), it is sufficient

to prove that ΠQ
EΠQ

E′ = 0 for distinct coarse edges E and E ′. The latter is true since distinct
coarse edges do not have common fine edges.

The following result follows from (6.7) and the fact that
∫
E

(ΠQ
E′q) ·τE dL = 0 for E 6= E ′.

For any coarse edge E, the following identity holds:∫
E

(ΠQ
1 q) ·τE dL =

∫
E

q ·τE dL. (6.8)

Lemma 6.6. Let E be any coarse edge. Let c be a vector constant. Let q ∈ Q̃h be such that
its restriction to E is c restricted to E, i.e., πQ

Eq = πQ
Ec. Then the restriction of ΠQ

1 q to E
also coincides with c on E, i.e., πQ

EΠQ
1 q = ΠQ

Eq = πQ
Ec.

Proof. We have ΠQ
Eq = ΠQ

Eπ
Q
Eq = ΠQ

Eπ
Q
Ec = πQ

Ec.

Lemma 6.7. For any coarse face F , we have

ΠR
F,1∇×q = ΠR

F,1∇×ΠQ
1 q for all q ∈ Q̃h.

Proof. Let the boundary of the coarse face F consist of the coarse edges E1, . . . , En. We
then have

ΠR
F,1∇×q

(5.5)
=

∫
F

(∇×q) ·nF dA

(νF ,νF )F
νF

(3.8)
=

∑n
i=1 αi

∫
Ei

q ·τEi
dL

(νF ,νF )F
νF

(6.8)
=

∑n
i=1 αi

∫
Ei

(ΠQ
1 q) ·τEi

dL

(νF ,νF )F
νF

(3.8)
=

∫
F

(∇×(ΠQ
1 q)) ·nF dA

(νF ,νF )F
νF

(5.5)
= ΠR

F,1∇×(ΠQ
1 q).
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6.3. Coarse ND Basis Functions: Edge-to-Face Extension and Face Bubbles

In this section we describe how we interpolate the coarse ND basis functions from coarse edges
to coarse faces. We also describe the construction of additional coarse ND basis functions that
we associate with coarse faces. Our approach is similar to that of [10] modified accordingly.

6.3.1. Preliminaries. We start with defining two subspaces of Q̃h. These subspaces are
associated with a given coarse face F . The space Q̃h(F ) ⊂ Q̃h is defined to be

Q̃h(F ) = πQ
F (Q̃h).

We shall equip Q̃h(F ) with an inner product

(p,q)QF =
∑
e⊂F

(∫
e

p ·τ dL
)(∫

e

q ·τ dL
)
.

We note that we have defined previously (see (5.2)) one more inner product on coarse faces,
denoted ( · , ·)F = ( · , ·)RF acting on traces of functions from R̃h. If there is no ambiguity, we
will omit the superscript R or Q, since which inner product is used will be clear from the
arguments that it is applied to.

The space Qh(F ) ⊂ Q̃h(F ) is defined to be

Qh(F ) =
{

q ∈ Q̃h(F ) :

∫
e

q ·τ dL = 0 for all e ⊂ ∂F
}
.

Definition 6.8. We also need the space Rh(F ) ⊂ R̃h(F ) defined as follows:

Rh(F ) =
{

r ∈ R̃h(F ) :

∫
F

r ·nF dA = 0
}
.

Observe that RH(F ) ⊂ Rh(F ).

Definition 6.9. Let q ∈ Q̃h, and let K be a coarse face or a coarse element. We define

∇K×q = πR
K∇×q.

Note that above ∇×q is viewed as an element of R̃h.

Remark 6.10. An important observation is that ∇F×q depends only on degrees of freedom
of q associated with edges e ∈ F , i.e., we have ∇F×q = ∇F×πQ

F q. This is a consequence of
the Stokes theorem applied to each fine face f ∈ F :∫

f

(∇×q) ·nf dA =
∑
e⊂∂f

εe

∫
e

q ·τ e dL for some εe = ±1.

Also, note that
(∇F×q, r)F = (∇×q, r)F for all q ∈ Q̃h, r ∈ R̃h, (6.9)

and ∫
F

(∇F×q) ·nF dA =

∫
F

(∇×q) ·nF dA for all q ∈ Q̃h. (6.10)
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Due to (3.8) we have
∇F×Qh(F ) ⊂ Rh(F ). (6.11)

The following lemma ensures the solvability of the linear systems that we utilize in the course
of the edge-to-face interpolation.

Lemma 6.11. The following “exactness” result on coarse faces holds:

∇F×Qh(F ) = Rh(F ). (6.12)

Proof. The proof is analogous to that of Lemma 5.7. Let r ∈ Rh(F ) satisfy

(r,∇F×q)F = 0 for all q ∈ Qh(F ).

The above equation actually reads∑
f

(∫
f

r ·nF dA
)(∫

f

∇F×q ·nF dA
)

= 0 for all q ∈ Qh(F ). (6.13)

We shall prove r = 0, which would imply (6.12). We first establish that∫
f1

r ·nF dA =

∫
f2

r ·nF dA (6.14)

for any pair of fine faces f1, f2 ⊂ F which share an (interior) edge e ⊂ F . Let q ∈ Qh(F )
satisfy ∫

e′
q ·τ dA =

{
1 if e′ = e,

0 otherwise.

By applying the Stokes theorem to the fine faces f1, f2 we obtain∣∣∣∫
fi

(∇F×q) ·nF dA
∣∣∣ = 1, i = 1, 2. (6.15)

Due to our assumptions about coarse faces (Assumption 3.2), e can be a subset of at most
two fine faces from F . Consequently, by applying the Stokes theorem to any fine face f ⊂ F
other than f1 and f2, we get∫

f

(∇F×q) ·nF dA = 0, f 6∈ {f1, f2}. (6.16)

Due to (6.11) we have

0 =

∫
F

(∇F×q) ·nF dA =

∫
f1

(∇F×q) ·nF dA+

∫
f2

(∇F×q) ·nF dA. (6.17)

We can re-write (6.15) and (6.17) as∫
f1

(∇F×q) ·nF dA = α,

∫
f2

(∇F×q) ·nF dA = −α, |α| = 1.

Due to (6.13) and (6.16) we have

α

∫
f1

r ·nF dA− α
∫
f2

r ·nF dA = 0.

Since α 6= 0, this implies (6.14).
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Due to the way we construct the coarse faces (Assumption 3.2), the dual graph of F
is connected. (We recall that “vertices” of the dual graph are the fine faces of F , and any
two such “vertices” are connected by an arc iff the corresponding fine faces share an edge.)
Because of this, (6.14) holds even if f1 and f2 do not share an edge (since there exists a finite
sequence S of fine faces starting with f1 and ending with f2 such that all faces in S belong
to F and each face in S shares an edge with the next face in S). Since r ∈ Rh(F ), we have∑

f⊂F

∫
f

r ·nF dA = 0.

We have already established that all terms in the above sum are equal, consequently they
are all zero. Thus, for any fine face f ⊂ F we have∫

f

r ·n dA = ±
∫
f

r ·nF dA = 0,

i.e., r = 0.

6.3.2. The Bilinear Form for the Edge-to-Face Extension. To interpolate coarse
ND basis functions from coarse edges to the interior of the coarse faces, we solve certain linear
system, similar to the mixed system (5.5) of [10]. However, the construction there does not
guarantee the exact interpolation of the vector constants, unless the coarse faces are flat. We
modify one of the bilinear forms used in the mixed system to achieve the exact interpolation of
constants. However, this modification (to be described) is not always sufficient. For example,
if a coarse face F is not flat but has a flat boundary, those vector constant functions which
are orthogonal to the plane containing ∂F will “vanish” on ∂F . “Vanish” means that the
degrees of freedom associated with the edges in ∂F will vanish, when evaluated on those
functions. Since we assume linear extension procedures, zero function can only be extended
as zero function. Thus, we have to add the “problematic” vector constant as a “bubble” basis
function. We also add a bubble basis function when the boundary of a non-flat face is almost
flat, to avoid ill-conditioned interpolation operators.

Let the functions cQ
i,F ∈ Q̃h(F ) have degrees of freedom∫

e

cQ
i,F ·τ dL =

∫
e

ci ·τ dL for all e ⊂ F.

Let CF ⊂ Q̃h(F ) be the linear span of {cQ
1,F , c

Q
2,F , c

Q
3,F}.

Remark 6.12. In the computer implementation we perform SVD on a certain matrix with
three columns in order to obtain an orthonormal basis of CF .

Let PCF
: Q̃h(F ) → CF be an orthogonal projection onto CF , and let P0 : Q̃h(F ) →

Qh(F ) be an orthogonal projection onto Qh(F ). Consider the eigenvalue problem

PCF
P0PCF

ψ = σ2ψ, 0 6= ψ ∈ CF .

It is easy to check that all eigenvalues σ2 lie in the segment [0, 1]. The eigenvalues are in fact
the squared cosines of the principal angles between CF and Qh(F ). The largest eigenvalue
will be 1 if F is non-planar but has planar boundary (then the spaces Qh(F ) and CF will
have non-trivial intersection). Or, if the boundary is “getting close” to being planar (but the
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whole coarse face “stays far” from being planar), the largest eigenvalue will approach one.
Given some tolerance γ (in practice we use γ = 0.01), we select those eigenvalues {σ2

i }mi=1,
m 6 3 which satisfy

σ2
i 6 1− γ. (6.18)

Choose DF ⊆ CF to be the linear span of the corresponding eigenvectors {ψi}mi=1. In our
numerical experiments we have observed only two scenarios: either DF coincided with CF ,
or DF had one dimension less.

To define the bilinear form of interest, we consider the orthogonal projection PDF
:

Q̃h(F )→ DF onto DF . The following coercivity property holds.

Lemma 6.13. For any q ∈ Qh(F ), we have(
q, (1− PDF

)q
)
> γ(q,q),

where γ is the tolerance level used in (6.18).

Proof. A detailed proof is given as an appendix.

6.3.3. Face Extension of the Edge-Based Basis Functions. Let F be a coarse face.
Here we describe the construction of the “edge-to-face” extension mapping IQF : Q̃h → Qh(F ).
We assume that PDF

is an orthogonal projection with respect to the ( · , ·)QF inner product
and the form ( · , (I − PDF

) ·)F is coercive on Qh(F ). Such a projector can be constructed as
described in Section 6.3.2.

For any q ∈ Q̃h, consider the pair qF ∈ Qh(F ), rF ∈ Rh(F ) solving the saddle-point
(mixed) system(

qF , (1− PDF
)p
)
F

+ (∇F×p, rF )F = −
(
q, (1− PDF

)p
)
F

for all p ∈ Qh(F ),

(∇F×qF , s)F =

∫
F

(∇×q) ·nF dA∫
F
νF ·nF dA

(νF , s)F − (∇F×q, s)F for all s ∈ Rh(F ).
(6.19)

The system (6.19) is uniquely solvable due to Lemma 4.1. Indeed, take V1 = Qh(F ). Due to
Lemma 6.13, ( · , (1−PDF

) ·)QF is an inner product on V1. Take V2 = Rh(F ), ( · , ·)2 = ( · , ·)RF ,
d1 = ∇F× , d2 = 0, V3 = {0}.

We define IQF q = qF . Note that

∇F×q = 0 =⇒ ∇F×(IQF q) = 0 (6.20)

for all q ∈ Q̃h, which follows from the second equation of (6.19) and from (6.11). Also note
that

IQF q = −q for all q ∈ Qh(F ). (6.21)

Identity (6.21) holds since the pair (qF = −q, rF = 0) solves (6.19), which can be easily
checked, taking into account the fact that∫

F

(∇×q) ·nF dA = 0 for all q ∈ Qh(F )

due to (3.8).
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Lemma 6.14. Suppose the function q ∈ Q̃h satisfies πQ
F q ∈ Qh(F ). Then

πQ
F (1 + IQF )q = 0.

In other words, if q vanishes on ∂F , then its extension q + qF is zero on F .

Proof. For any q ∈ Q̃h, we have
IQF q = IQF π

Q
F q, (6.22)

seen from (6.19), i.e., if we replace q in the right-hand side of (6.19) with πQ
F q, the solution

qF does not change (due to (6.9) and (6.10)). Also, IQF q = πQ
F I

Q
F q (since IQF q ∈ Qh(F )).

Consequently, using also the assumption that πQ
F q ∈ Qh(F ), we have

πQ
F (1 + IQF )q = (1 + IQF )πQ

F q
(6.21)
= πQ

F q− πQ
F q = 0.

Lemma 6.15. For any q ∈ Q̃h, recalling the definition (5.5) of the 1D projection ΠR
F,1, we

have
∇F×

(
1 +

∑
F ′

IQF ′
)
q = ΠR

F,1∇×q = ΠR
F,1∇F×q. (6.23)

Proof. Let q ∈ Q̃h. From (5.5) it follows that the function

z =

∫
F

(∇×q) ·nF dA∫
F
νF ·nF dA

νF −∇F×q = ΠR
F,1(∇F×q)−∇F×q

lies in Rh(F ), i.e.,
∫
F

z ·nF dA = 0. From (6.11) and the definition of IQF it follows that
∇F×IQF q also lies in Rh(F ). The second equation of (6.19) states that the difference
∇F×IQF q− z ∈ Rh(F ) is orthogonal to all Rh(F ). Thus ∇F×IQF q = z, i.e.,

∇F×(q + IQF q) = ΠR
F,1(∇F×q). (6.24)

From the definitions of the operators ∇F× , IQF , and ΠR
F,1 it follows that

ΠR
F,1∇F× = ΠR

F,1∇×

and
∇F×IQF ′ = 0, F ′ 6= F.

Using these identities and (6.24), we obtain (6.23).

Lemma 6.16. The operator(
1 +

∑
F

IQF
)

ΠQ
1 , where ΠQ

1 =
∑
E

ΠQ
E,

is a projector onto (
1 +

∑
F

IQF
)⊕

E

Q̃H(E).

Proof. For any coarse face F , any coarse edge E and any function q ∈ Qh(F ), we have
ΠQ

Eq = 0, since a coarse edge E cannot contain interior fine edges of F . Consequently
ΠQ

1 I
Q
F = 0, and the proof is finished by applying Lemma 4.3.
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6.3.4. Face Bubbles. To ensure the exact interpolation of the vector constants and the
exactness of (2.4), we associate with some coarse faces up to three “face-bubble” basis func-
tions, i.e., functions with vanishing degrees of freedom corresponding to the fine edges on
the boundary of the coarse face. Define the space Q1

H(F ) to be

Q1
H(F ) = IQF (CF ). (6.25)

We begin with the following auxiliary result.

Lemma 6.17. For any q ∈ DF , we have IQF q = 0.

Proof. We recall that DF ⊂ CF . Thus, there exists a vector constant c such that q = πQ
F c.

We then have ∇F×q = πR
F∇×c = 0. To complete the proof we show next that the pair

(qF = 0, rF = 0) solves (6.19). The first equation is satisfied:(
q, (1− PDF

)p
)
F

=
(
(1− PDF

)q,p
)
F

= 0,

since q ∈ DF . The second equation is satisfied because of ∇F×q = 0.

Lemma 6.17 implies that
IQF (CF ) = IQF (CF 	DF ), (6.26)

where CF 	DF is the ( · , ·)F -orthogonal complement of DF in CF , i.e.,

CF 	DF =
{
q ∈ CF : (q,p)F = 0 for all p ∈ DF

}
. (6.27)

Remark 6.18. In our computer implementation, to construct the basis of Q1
H(F ), we com-

pute a basis of CF 	 DF , apply IQF to each vector of the basis and perform SVD on the
resulting vectors. As mentioned previously, in Section 6.3.2, we have only encountered cases
when the dimension of CF 	DF is either one or zero.

Definition 6.19. Consider the operator JF : R̃h → Qh(F ), defined as follows. For any
r ∈ R̃h, let q ∈ Qh(F ) be the solution of(

q, (1− PDF
)p
)
F

+ (∇F×p, z)F = 0 for all p ∈ Qh(F ),

(∇F×q, s)F = (r, s)F for all s ∈ Rh(F ),
(6.28)

for some z ∈ Rh(F ). The system (6.28) is uniquely solvable for the same reasons as the
system (6.19). We define q = JF r. We further define

Q2
H(F ) = JF (RH(F )).

In a computer implementation, we construct a basis of RH(F ) and solve (6.28) for r equal
to each of the basis vectors.

We further define
QH(F ) = Q1

H(F )⊕Q2
H(F ). (6.29)

The sum above is indeed direct, since(
p, (1− PDF

)q
)
F

= 0 for all p ∈ Q1
H(F ), q ∈ Q2

H(F ). (6.30)

Indeed, due to (6.20), ∇F×p = 0 for any p ∈ Q1
H(F ). Because of that, (6.30) follows from

the first equation of (6.28).
We now define operator ΠQ

F : Q̃h → QH(F ), which turns out to be a projection (see
Lemma 6.21 below).
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Definition 6.20. Fix any q ∈ Q̃h. Let

p = −IQF q ∈ Qh(F ), (6.31)
p1 = JFΠR

F,0∇F×p,

and let p0 be the (unique) element of Q1
H(F ) satisfying(

p0, (1− PDF
)z
)
F

=
(
p, (1− PDF

)z
)

for all z ∈ Q1
H(F ). (6.32)

We define
ΠQ

Fq = p1 + p0. (6.33)
Note that the above definition of ΠQ

F implies

ΠQ
F cF = −IQF cF for all cF ∈ CF . (6.34)

Indeed, p = −IQF cF ∈ Q1
H(F ) and thus p0 = p. We also have ∇F×p = 0 due to (6.20), and

thus p1 = 0.
Lemma 6.21. ΠQ

F is a projector onto QH(F ).

Proof. From (6.33) it follows that ΠQ
F Q̃h ⊆ QH(F ). Let q ∈ QH(F ). Then, due to (6.21)

and (6.31), we have p ≡ −IQF q = q. From the definition (6.29) of QH(F ), we have

q = JF r + q0, r ∈ RH(F ), q0 ∈ Q1
H(F ).

Due to (6.30) and (6.32), we have p0 = q0 where p0 is from the decomposition (6.33),
ΠQ

Fq = p1 + p0.
It remains to prove that p1 = JF r. From the second equation of (6.28) and from (6.11)

it follows that
∇F×JF r = r for all r ∈ Rh(F ). (6.35)

We then have
∇F×q = ∇F×JF r +∇F×q0 = ∇F×JF r,

where we have used (6.20). Thus we have

p1 = JFΠR
F,0∇F×q = JFΠR

F,0∇F×JF r
via (6.35)

= JFΠR
F,0r

r∈RH(F )
= JF r.

From (6.21) and (6.31) we have the identity

ΠQ
FI

Q
F q = −ΠQ

Fq for all q ∈ Q̃h. (6.36)

Lemma 6.22. For any coarse faces F , F ′, and any q ∈ Q̃h, we have

∇F ′×ΠQ
Fq =

{
ΠR

F,0∇×q if F = F ′,

0 if F 6= F ′.

Proof. If F 6= F ′, then ΠQ
Fq ∈ Qh(F ) has vanishing degrees of freedom for all fine edges in

F ′. Consequently, ∇F ′×ΠQ
Fq = 0. From now on we assume that F = F ′. From (6.33) and

(6.35) it follows that
∇F×ΠQ

Fq = ΠR
F,0∇F×(−IQF q).

Since ΠR
F,0 is an orthogonal projector from R̃h(F ) onto RH(F ) (see (5.6)), it is now sufficient

to prove that (
∇F×(−IQF q), s

)
F

= (∇×q, s)F for all s ∈ RH(F ).

Let s ∈ RH(F ). Using the second equation of (6.19) and noting that νF ⊥ RH(F ), we obtain

−(∇F×IQF q, s)F = (∇F×q, s)F
(6.9)
= (∇×q, s)F .
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6.4. Projector ΠQ
2 and its Properties

Definition 6.23. We define

ΠQ
2 =

∑
F

ΠQ
F +

(
1 +

∑
F

IQF
)

ΠQ
1 .

(Recall that ΠQ
1 =

∑
E ΠQ

E.)

Lemma 6.24. ΠQ
2 is a projector onto the following direct sum of spaces:⊕

F

QH(F )⊕
(
1 +

∑
F

IQF
)⊕

E

Q̃H(E).

Proof. Let

A =
∑
F

ΠQ
F , B =

(
1 +

∑
F

IQF
)

ΠQ
1 .

It is easy to check that for distinct faces F 6= F ′ we have ΠQ
FΠQ

F ′ = 0. Each ΠQ
F is a projector

onto QH(F ). Then, by Lemma 4.2, A is a projector onto
⊕

F QH(F ). By Lemma 6.16, B is
a projector onto (

1 +
∑
F

IQF
)⊕

E

Q̃H(E).

It is therefore sufficient to prove that AB = BA = 0 and apply Lemma 4.2 to A + B. For
any coarse face F and any coarse edge E, we have ΠQ

EΠQ
F = 0, since fine edges of E cannot

be interior edges of F . Consequently

ΠQ
1

∑
F

ΠQ
F = ΠQ

1 A = 0 =⇒ BA = 0.

Distinct coarse faces cannot have common interior fine edges, thus

ΠQ
FI

Q
F ′ = 0, F 6= F ′.

Together with (6.36), this implies

ΠQ
F

(
1 +

∑
F ′

IQF ′
)

= 0.

By summing the above equation over F we obtain A(1 +
∑

F ′ I
Q
F ′) = 0 and thus AB = 0

which completes the proof.

6.4.1. Approximation Property on Coarse Faces.

Lemma 6.25. Let F be a coarse face. Let c be a vector constant. If q ∈ Q̃h satisfies
πQ
F q = πQ

F c, then we have πQ
F ΠQ

2 q = πQ
F c. In other words, if q “coincides” with c on F , so

does the projection ΠQ
2 q.
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Proof. For any coarse edge E ⊂ ∂F , we have πQ
EΠQ

1 q = πQ
Ec. This follows from the identity

πQ
Eq = πQ

Eπ
Q
F q = πQ

Eπ
Q
F c = πQ

Ec

and Lemma 6.6. Since any fine edge e ⊂ ∂F is a subset of some coarse edge E ⊂ F , we have

πQ
F (ΠQ

1 q− c) ∈ Qh(F ).

From Lemma 6.14 we have
πQ
F (1 + IQF )(ΠQ

1 q− c) = 0.

Hence, using (6.34), we obtain

πQ
F (1 + IQF )ΠQ

1 q = πQ
F (1 + IQF )c = πQ

F c− πQ
F ΠQ

F c. (6.37)

It is easy to check that ΠQ
F = ΠQ

Fπ
Q
F (based on (6.22)). Consequently

ΠQ
F c = ΠQ

Fπ
Q
F c = ΠQ

Fπ
Q
F q = ΠQ

Fq. (6.38)

Combining (6.37) with (6.38) we obtain

πQ
F

(
ΠQ

Fq + (1 + IQF )ΠQ
1 q
)

= πQ
F c.

Using the definition of ΠQ
2 and noting that πQ

F ΠQ
F ′ = πQ

F I
Q
F ′ = 0 for F 6= F ′, we conclude

that

πQ
F ΠQ

2 q = πQ
F

(∑
F ′

ΠQ
F ′q +

(
1 +

∑
F ′

IQF ′
)

ΠQ
1 q
)

= πQ
F

(
ΠQ

Fq + (1 + IQF )ΠQ
1 q
)

= πQ
F c.

6.4.2. Commutativity Property on Coarse Faces.

Definition 6.26. We define
∇2× =

∑
F

∇F× .

Lemma 6.27. We have
∇2×ΠQ

2 = ΠR
2∇× . (6.39)

Proof. Using Lemmas 6.22, 6.15, and 6.7, we obtain

∇2×ΠQ
2 =

∑
F

ΠR
F,0∇× +

∑
F

ΠR
F,1∇×ΠQ

1 =
∑
F

ΠR
F,0∇× +

∑
F

ΠR
F,1∇× = ΠR

2∇× .

6.5. Completing the Coarse Nédélec Space by Face-to-Interior Extension

Let T be a coarse element. We first prove that, under our assumptions on the agglomerates,
Assumption 3.1, the sequence (3.1) is exact at the term Rh(T ). We need this result to
establish the solvability of (6.43).

Lemma 6.28. Assumption 3.1 implies that

ker(∇·) ∩Rh(T ) = ∇×Qh(T ).
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Proof. We first prove ker(∇·) ∩ Rh(T ) ⊃ ∇×Qh(T ). Since ∇·∇× = 0, it is sufficient to
prove Rh(T ) ⊃ ∇×Qh(T ). That is, we need to prove that for any fine face f which is not
an interior face of T and for any function q ∈ Qh(T ) we have

∫
f
(∇×q) ·n dA = 0. This

however follows from the Stokes theorem applied to f , since by definition of Qh(T ), we have∫
e
q ·τ dL = 0 for any edge e, except interior edges of T .
It now remains to prove that the two spaces in question have the same dimension, i.e.,

dim(∇×Qh(T )) = dim
(
ker(∇·) ∩Rh(T )

)
.

We start by observing dimQh(T ) = N e
int(T ), dimSh(T ) = N v

int(T ), and dim M̃h(T ) = N t(T )
(see Assumption 3.1 for notation). Applying the rank-nullity theorem to operator ∇× :
Qh(T )→ Rh(T ) yields

dim(∇×Qh(T )) = dimQh(T )− dim
(
ker(∇×) ∩Qh(T )

)
= N e

int(T )− dim
(
ker(∇×) ∩Qh(T )

)
. (6.40)

Now, we use Lemmas 7.27 and 7.32 which are proven, independently of this result, in Sec-
tion 7.6 and 7.7, respectively. By Lemma 7.32, we have

dim
(
ker(∇×) ∩Qh(T )

)
= dim∇Sh(T ). (6.41)

Due to Lemma 7.27, the gradient operator has trivial kernel on Sh(T ), and consequently

dim∇Sh(T ) = dimSh(T ) = N v
int(T ). (6.42)

Combining (6.40), (6.41), and (6.42), we obtain

dim(∇×Qh(T )) = N e
int(T )−N v

int(T ).

By applying the rank-nullity theorem to the nonzero linear functional M̃h(T ) 3 w →
∫
T
w dV

we observe that dimMh(T ) = N t(T ) − 1. Now, applying the rank-nullity theorem to the
operator ∇· : Rh(T )→Mh(T ) and using Lemma 5.7, we obtain

dim
(
ker(∇·) ∩Rh(T )

)
= dimRh(T )− dim

(
∇·(Rh(T ))

)
= N f

int(T )− dim(Mh(T )) = N f
int(T )− (N t(T )− 1).

Due to Assumption 3.1,

E0(T ) = N v
int(T )−N e

int(T ) +N f
int(T )−N t(T ) = −1,

that is

dim(∇×Qh(T )) = N e
int(T )−N v

int(T )

= N f
int(T )− (N t(T )− 1) = dim

(
ker(∇·) ∩Rh(T )

)
,

which completes the proof.

Consider the volume extension mapping IQT : Q̃h → Qh(T ), defined as follows. For any
q ∈ Q̃h, let the pair qT ∈ Qh(T ), rT ∈ Rh(T ) solve the local mixed system

(qT ,p)T − (∇×p, rT )T = −(q,p)T for all p ∈ Qh(T ),

(∇×qT , s)T + (∇·rT ,∇·s)T = −(∇×q, s)T for all s ∈ Rh(T ).
(6.43)
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The system (6.43) is uniquely solvable due to Lemma 4.1. Indeed, take V1 = Qh(T ), V2 =
Rh(T ), V3 = Mh(T ) with the standard L2(T ) inner products, and use Lemma 6.28. We
define IQT q to be qT . Note that

IQT q = −q for all q ∈ Qh(T ), (6.44)

since for such q the pair (qT = −q, rT = 0) solves (6.43).

Definition 6.29. The coarse Nédélec (ND) space Q̃H is defined by

Q̃H =
(
1 +

∑
T

IQT
)(⊕

F

QH(F )⊕
(
1 +

∑
F

IQF
)⊕

E

Q̃H(E)
)
.

The operator ΠQ of our main interest (proven later on to be a projection) is defined to
be

ΠQ =
(
1 +

∑
T

IQT
)

ΠQ
2 =

(
1 +

∑
T

IQT
)(∑

F

ΠQ
F +

(
1 +

∑
F

IQF
)∑

E

ΠQ
E

)
.

Lemma 6.30. ΠQ is indeed a projector onto Q̃H .

Proof. For any coarse element T , we have

ΠQ
2 I

Q
T = 0,

since any function from Qh(T ) has vanishing degree of freedom corresponding to any fine
edge which is part of some coarse edge or coarse face. The desired result then follows from
Lemma 4.3.

Lemma 6.31. For any agglomerate T , we have

∇×IQT = IRT∇× . (6.45)

Proof. Fix q ∈ Q̃h. Let qT = IQT q. From the second equation of (6.43) and the identity
∇·∇× = 0 it follows that qT satisfies

(∇×qT , s)T + (∇·zT ,∇·s)T = −(∇×q, s)T for all s ∈ Rh(T ),

(∇·∇×qT , w)T = 0 for all w ∈Mh(T ),

for some zT ∈ Rh(T ). Note that ∇·zT ∈ Mh(T ), and the pair (∇×qT ,∇·zT ) solves the
mixed system (5.11) for r = ∇×q. Let rT = IRT∇×q. By definition of IRT , there exists
uT ∈Mh(T ) such that the pair (rT , uT ) solves (5.11) for r = ∇×q. Since (5.11) has a unique
solution, we conclude ∇×qT = rT , which implies (6.45).

Lemma 6.32. Let q ∈ Q̃h. Suppose πQ
T q ∈ Qh(T ). Then πQ

T (1 + IQT )q = 0.

Proof. It is straightforward to verify the identities

IQT q = πQ
T I

Q
T q = IQT π

Q
T q.

Using these identities, we obtain

πQ
T (1 + IQT )Q̃h = (1 + IQT )πQ

T q
(6.44)
= πQ

T q− πQ
T q = 0.
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Lemma 6.33. Let operator ∇2× be as in Definition 6.26. Then(
1 +

∑
T

IRT
)
∇2×q =

(
1 +

∑
T

IRT
)
∇×q for all q ∈ Q̃h. (6.46)

Proof. Fix q ∈ Q̃h. Both sides of (6.46) belong to R̃h, thus it is sufficient to prove that
for any fine face the corresponding degree of freedom (5.1) gives the same number when
evaluated on both sides of (6.46). Each fine face is a part of (at least one) coarse element,
thus it is sufficient to prove that for each agglomerate T we have

πR
T (1 + IRT )∇2×q = πR

T (1 + IRT )∇×q

(note that πR
T IRT ′ = 0 when T 6= T ′). This however follows from Lemma 5.9, since

πR
T (∇2×q−∇×q) ∈ Rh(T ),

i.e., since the degrees of freedom of both ∇2×q and ∇×q coincide on each coarse face.

Lemma 6.34. The following commutativity property holds:

∇×
(
1 +

∑
T

IQT
)
q =

(
1 +

∑
T

IRT
)
∇2×q for all q ∈ Q̃h. (6.47)

Proof. We have

∇×
(
1 +

∑
T

IQT
)
q

(6.45)
=
(
1 +

∑
T

IRT
)
∇×q

(6.46)
=
(
1 +

∑
T

IRT
)
∇2×q.

6.6. Main Commutativity and Exactness Properties

We are ready to prove the following main commutativity result.

Theorem 6.35. Consider the projection operators ΠQ : Q̃h 7→ Q̃H and ΠR : R̃h 7→ R̃H .
Then

∇×ΠQq = ΠR∇×q for all q ∈ Q̃h. (6.48)

Proof. Fix any q ∈ Q̃h. We have

∇×ΠQq = ∇×
(
1 +

∑
T

IQT
)

ΠQ
2 q

(6.47)
=
(
1 +

∑
T

IRT
)
∇2×ΠQ

2 q
(6.39)
=
(
1 +

∑
T

IRT
)

ΠR
2∇×q = ΠR∇×q.

Corollary 6.36 (Exactness property). If ∇×Q̃h = ker(∇·) ∩ R̃h, then

∇×Q̃H = ker(∇·) ∩ R̃H .

Proof. Let r ∈ ker(∇·) ∩ R̃H . Since r ∈ R̃H , we have r = ΠRr. Since R̃H ⊂ R̃h, we have
r ∈ ker(∇·) ∩ R̃h. Then, by assumption of the corollary, r = ∇×q for some q ∈ Q̃h. We
conclude

r = ΠRr = ΠR∇×q
(6.48)
= ∇×ΠQq.

Denoting p = ΠQq, we have proved that r = ∇×p for p ∈ Q̃H .
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6.7. Local Approximation Property of the Coarse ND Space

We begin with the following auxiliary result.

Lemma 6.37. For each constant vector c, we have

IQT c = 0 for all T.

Proof. We need to prove that there exists an rT ∈ Rh(T ) such that the pair (qT = 0, rT )
solves (6.43) for q = c. We use the representation

c = ∇×r, where r =
1

2
c×x, x is the position vector. (6.49)

Let p ∈ Qh(T ). Since p has zero tangential component on ∂T , the function r×p has zero
normal component on ∂T . By applying (3.4) to r×p, and using the identity

∇·(A×B) = B ·(∇×A)− A ·(∇×B),

we obtain
0 =

∫
T

∇·(r×p) dV =

∫
T

p ·(∇×r) dV −
∫
T

r ·(∇×p) dV. (6.50)

Let rT be the (L2(T ))3-orthogonal projection of r onto ker(∇·)∩Rh(T ). For any p ∈ Qh(T ),
we have ∇×p ∈ ker(∇·) ∩Rh(T ), and thus

(∇×p, rT )T = (∇×p, r)T
(6.50)
= (p,∇×r)T

(6.49)
= (p, c).

That is, the pair (qT = 0, rT ) satisfies the first equation of (6.43) for q = c. The second
equation is also satisfied by the pair, since ∇×c = 0 and by construction ∇·rT = 0.

Theorem 6.38 (Local approximation property). If a function q ∈ Q̃h equals a vector con-
stant c on a coarse element T , so does the projection ΠQq. Equivalently, if πQ

T q = πQ
T c, then

πQ
T ΠQq = πQ

T c.

Proof. For any coarse face F ⊂ ∂T , we have πQ
F ΠQ

2 q = πQ
F c. This follows from the identities

πQ
F q = πQ

F π
Q
T q = πQ

F π
Q
T c = πQ

F c

and Lemma 6.25. Since every fine edge e ⊂ ∂T is part of some coarse face F ⊂ ∂T , we have

πQ
T (ΠQ

2 q− c) ∈ Qh(T ).

By Lemmas 6.32 and 6.37 we have

πQ
T (1 + IQT )ΠQ

2 q = πQ
T (1 + IQT )c = πQ

T c.

Using the definition of ΠQ and noting that πQ
T I

Q
T ′ = 0 for T 6= T ′, we obtain

πQ
T ΠQq = πQ

T

(
1 +

∑
T ′

IQT ′
)

ΠQ
2 q = πQ

T (1 + IQT )ΠQ
2 q = πQ

T c.
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7. The Coarse H1-Conforming Space

Since S̃h is the space of continuous piecewise linear functions, an element of S̃h is completely
defined by values at all fine vertices.

Definition 7.1. For any θ ∈ S̃h and any coarse mesh “entity” K (coarse edge, coarse face
or coarse element), we define πS

Kθ ∈ S̃h to have the following values at fine vertices:

(πS
Kθ)(v) =

{
θ(v) if v ∈ K,
0 if v 6∈ K.

Recall that we treat all coarse entities as closed sets, i.e., a coarse edge E contains its
endpoints and so forth.

Definition 7.2. For any θ ∈ S̃h and any coarse mesh “entity” K, we define

∇Kθ = πQ
K∇θ.

That is, ∇Kθ ∈ Q̃h with only possibly non-zero dofs
∫
e
∇θ ·τ e dL that are associated with

the fine edges e ∈ K.

7.1. Basis Functions Associated with Coarse Vertices

Let V be a coarse vertex. Consider the function ηV ∈ S̃h with fine vertex values prescribed
as follows. Let E be any coarse edge incident to V . Assume that E consists of fine edges
e1, . . . , en and fine vertices v1, . . . , vn+1, where v1 = V and ei connects vi with vi+1. We
define ηV (v1) = 1, and for i > 1, we let

ηV (vi) = 1−
∑i−1

k=1

∫
ek
νE ·τE dL∫

E
νE ·τE dL

. (7.1)

Note that
∫
E
νE ·τE dL 6= 0 (see the argument below (6.3)). For any fine vertex v which is

not part of any coarse edge incident to V , we define ηV (v) = 0. This concludes the definition
of ηV . Note ηV (V ) = 1 and ηV (V ′) = 0 for any coarse vertex V ′ 6= V . Also, for any coarse
edge E, we have ∇EηV = ανE (α = 0 if E is not incident to V ).

Definition 7.3. For any function θ ∈ S̃h, define the coarse vertex interpolant

ΠS
V θ = θ(V )ηV .

Note that ΠS
V ηV = ηV , i.e., ΠS

V is a projector onto span(ηV ).

Lemma 7.4. For any θ ∈ S̃h and for any coarse edge E, we have

∇E

∑
V

ΠS
V θ = ΠQ

E,1∇θ. (7.2)

Proof. From the definition of∇E, ΠS
V , and ΠQ

E,1 it follows that both sides of (7.2) are multiples
of νE. Thus, it is sufficient to prove that∫

E

(
∇E

∑
V

ΠS
V θ
)
·τE dL =

∫
E

(ΠQ
E,1∇θ) ·τE dL.
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Let coarse vertices V1 and V2 be the “tail” and the “head” of E, respectively. We have∫
E

(
∇E

∑
V

ΠS
V θ
)
·τE dL

(3.3)
=
(∑

V

ΠS
V θ
)

(V2)−
(∑

V

ΠS
V θ
)

(V1) = θ(V2)− θ(V1).

On the other hand we have (see (6.5))∫
E

(ΠQ
E,1∇θ) ·τE dL =

∫
E

∇θ ·τE dL = θ(V2)− θ(V1).

7.2. Edge Bubbles

Let E be a coarse edge with endpoint coarse vertices V1 and V2. Define the space

SH(E) =
{
θ ∈ πS

E(S̃h) : θ(V1) = 0 and ∇Eθ ∈ QH(E)
}
.

Note that due to the definition (6.4) of QH(E) and formula (3.3), we have θ(V2) = θ(V1) = 0
for any θ ∈ SH(E).

Definition 7.5. For any η ∈ S̃h and any coarse edge E, let

ΠS
Eη = θ ∈ SH(E), where ∇Eθ = ΠQ

E,0∇η.

Note that for any q ∈ QH(E) there exists a unique θ ∈ SH(E) such that ∇Eθ = q. Existence
can be shown, e.g., by explicitly constructing θ in a manner similar to (7.1) (using the fact
that gradients of linear functions span all vector constants). Uniqueness follows from the
(assumed) connectivity of the coarse edge: if ∇Eθ1 = ∇Eθ2 then θ1 − θ2 is constant on E,
but then it has to be zero, since θ1(V1) = θ2(V1) = 0.

ΠS
E is a projection onto SH(E), since ΠQ

E,0 is a projector onto QH(E). By definition of
ΠS

E we have
∇EΠS

Eη = ΠQ
E,0∇η = ΠQ

E,0∇Eη for all η ∈ S̃h. (7.3)

7.3. Projector ΠS
1 and its Properties

Definition 7.6. We define
ΠS

1 =
∑
E

ΠS
E +

∑
V

ΠS
V .

Lemma 7.7. ΠS
1 is a projector onto⊕

E

SH(E)⊕
⊕
V

span(ηV )

Proof. The result follows from Lemma 4.2 and the identities

ΠS
EΠS

E′ = 0 for E 6= E ′,

ΠS
V ΠS

V ′ = 0 for V 6= V ′,

ΠS
EΠS

V = ΠS
V ΠS

E = 0 for all E, V.

The first two identities and the identity ΠS
V ΠS

E = 0 are straightforward. Let η ∈ S̃h. Denote
θ = ΠS

EΠS
V η. We claim that θ = 0. Since θ ∈ SH(E), it is sufficient to prove ∇Eθ = 0. By

(7.3) we have ∇Eθ = ΠQ
E,0∇EΠS

V η. By the definition of ΠS
V we have that ∇EΠS

V η is a multiple
of νE. However, by (6.4) and (6.6), we have ΠQ

E,0νE = 0.
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Definition 7.8. We define
∇1 =

∑
E

∇E.

Lemma 7.9. We have
∇1Π

S
1 η = ΠQ

1∇η. (7.4)

Proof. Combining (7.2) with (7.3), we obtain for any η ∈ S̃h

∇EΠS
1 η = ∇E

(∑
E′

ΠS
E′η +

∑
V

ΠS
V η
)

= ΠQ
E,0∇η + ΠQ

E,1∇η = ΠQ
E∇η. (7.5)

We used that ∇EΠS
E′ = 0 when E 6= E ′. By summing (7.5) over all coarse edges we obtain

(7.4).

7.4. Edge-to-Face Extension of Coarse H1 Basis Functions

Let F be a coarse face. Define
S̃h(F ) = πS

F (S̃h).

We also need the space Sh(F ) ⊂ S̃h(F ), defined as follows:

Sh(F ) :=
{
η ∈ S̃h(F ) : η(v) = 0 for any fine vertex v ∈ ∂F

}
.

To aid our analysis we introduce an inner product on S̃h(F ):

(θ, η)F =
∑
v∈F

θ(v)η(v) for all θ, η ∈ S̃h.

This inner product is only introduced for theoretical purposes (we do not use it in a computer
implementation). We stress that many other choices for this inner product would do just as
well.

Lemma 7.10. Let η ∈ Sh(F ). Then the condition ∇Fη = 0 implies η = 0.

Proof. The dual graph of F is connected (see Section 3.1). Since the boundary of a triangular
face is connected, the graph made of vertices and edges of F is also connected. The condition
∇Fη = 0 then implies that η has the same value at any vertex of F . Since η vanishes at
the boundary vertices of F (and F does have boundary vertices, as required in Section 3.1),
η = 0.

Let θ ∈ S̃h. Define θF ∈ Sh(F ) as the solution of(
∇F θF , (1− PDF

)∇Fη
)
F

= −
(
∇F θ, (1− PDF

)∇Fη
)
F

for all η ∈ Sh(F ), (7.6)

where the inner product ( · , ·)F = ( · , ·)QF and the projector PDF
are those defined in Sec-

tion 6.3. The equation (7.6) has a unique solution due to Lemma 7.10. We define

ISF θ = θF .

Lemma 7.11. The operator (1 +
∑

F ISF )ΠS
1 is a projector onto(

1 +
∑
F

ISF
)(⊕

E

SH(E)⊕
⊕
V

span(ηV )
)
.
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Proof. For any coarse face F , a function from Sh(F ) has vanishing degrees of freedom cor-
responding to all fine edges which are part of some coarse edge. Because of that

ΠS
1I

Q
F = 0.

The desired result now follows from Lemmas 7.7 and 4.3.

Lemma 7.12 (Exactness on coarse faces). For any coarse face F , we have

ker(∇F×) ∩Qh(F ) = ∇FSh(F ).

Proof. The proof is analogous to that of Lemma 6.28. Since for any fine face f∫
f

(
∇F×(∇F θ)

)
·nF dA = ±

∫
∂f

∇θ ·τ dL = 0,

we see that ∇F×∇F θ = 0 for any θ ∈ Sh(F ). The endpoints of each fine edge from ∂F also
lie on ∂F . Thus from (3.2) it follows that ∇F θ ∈ Qh(F ) for any θ ∈ Sh(F ). Overall, we have

∇FSh(F ) ⊆ ker(∇F×) ∩Qh(F ),

and it is now sufficient to prove that the dimension of ∇FSh(F ) equals that of ker(∇F×) ∩
Qh(F ). The dimension of Sh(F ) is N v

int(F ), the number of interior vertices of F . Applying
the rank-nullity theorem to the operator ∇F : Sh(F ) → Qh(F ) and taking into account
Lemma 7.10, we obtain

dim∇FSh(F ) = N v
int(F )− dim

(
ker(∇F ) ∩ Sh(F )

)
= N v

int(F ).

The space Rh(F ) is the kernel of a non-zero linear functional l(r) =
∫
F

r ·nF dA defined
on R̃h(F ). The dimension of R̃h(F ) is N f (F ), the number of fine faces in F . By rank-
nullity theorem applied to l, the dimension of Rh(F ) is N f (F )− 1. The dimension of Qh(F )
equals N e

int(F ), the number of interior edges of F . Applying the rank-nullity theorem to the
operator ∇F× : Qh(F )→ Rh(F ) and taking into account (6.12), we obtain

dim
(
ker(∇F×) ∩Qh(F )

)
= dimQh(F )− dim∇F×Qh(F )

= N e
int(F )− (N f (F )− 1) = N e

int(F )−N f (F ) + 1.

By Assumption 3.2, we have

N v
int(F )−N e

int(F ) +N f (F ) = 1 ⇐⇒ N v
int(F ) = N e

int(F )−N f (F ) + 1.

Therefore,
dim

(
ker(∇F×) ∩Qh(F )

)
= N v

int(F ),

which completes the proof.

Lemma 7.13 (Commutativity on coarse faces). For any θ ∈ S̃h and any coarse face F , we
have

∇FISF θ = IQF∇F θ. (7.7)
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Proof. Consider the mixed system for the unknowns σ ∈ Sh(F ) and z ∈ Qh(F ),

(σ, τ)F −
(
∇F τ, (1− PDF

)z
)
F

= −(θ, τ)F for all τ ∈ Sh(F ),(
∇Fσ, (1− PDF

)p
)
F

+ (∇F×z,∇F×p)F = −
(
∇F θ, (1− PDF

)p
)
F

for all p ∈ Qh(F ).
(7.8)

Due to Lemmas 7.12 and 4.1, the system is solvable. To apply Lemma 4.1 we take V1 =
Sh(F ), V2 = Qh(F ), V3 = Rh(F ), d1 = ∇F , and d2 = ∇F× .

Since for any η ∈ Sh(F ) we have p = ∇Fη ∈ Qh(F ) and ∇F×p = 0, σ also solves (7.6).
The latter equation has the unique solution θF = ISF θ, thus σ = θF . We now see that the
pair (qF = ∇F θF , rF = ∇F×z) solves the first equation of (6.19) for q = ∇F θ. The second
equation of (6.19) is trivially satisfied since ∇F×qF = ∇F×q = 0. Thus, qF = IQF q, which
is (7.7).

Note that in a computer implementation we can solve system (7.6), and not necessarily
(7.8).

We recall that a boundary fine edge of a coarse entity (face or element) is considered to
be a part of that coarse entity. Similarly to coarse edge gradient ∇1, we introduce the coarse
face gradient ∇2.

Definition 7.14. For any θ ∈ S̃h, define ∇2θ ∈ Q̃h to have the following degrees of freedom:∫
e

(∇2θ) ·τ dL =

{∫
e
∇θ ·τ dL if e is a part of some coarse face,

0 otherwise.

Note that ∇2 6=
∑

F ∇F , since distinct coarse faces can have common fine edges (of course,
each such common fine edge has to be part of some coarse edge).

Lemma 7.15. For any function θ ∈ S̃h, the following commutativity property holds:

∇2

(
1 +

∑
F ′

ISF ′
)
θ =

(
1 +

∑
F ′

IQF ′
)
∇1θ. (7.9)

In other words, one could say that edge-to-face extension commutes with applying the respec-
tive gradient operator.

Proof. Suppose that a fine edge is not part of any coarse face. Then the corresponding fine
degree of freedom (6.1) vanishes on both sides of (7.9). Consequently, it is sufficient to check
that for each coarse face F

πQ
F∇2

(
1 +

∑
F ′

ISF ′
)
θ

?
= πQ

F

(
1 +

∑
F ′

IQF ′
)
∇1θ. (7.10)

We have πQ
F∇2 = πQ

F∇F , as well as ∇FISF ′ = 0 and πQ
F I

Q
F ′ = 0 for F ′ 6= F . Therefore, (7.10)

is equivalent to
πQ
F∇F (1 + ISF )θ

?
= πQ

F (1 + IQF )∇1θ. (7.11)

From Lemma 7.13, we see that

πQ
F∇F (1 + ISF )θ = πQ

F (∇F θ + IQF∇F θ) = πQ
F (1 + IQF )∇F θ.

Since πQ
F (∇1θ −∇F θ) ∈ Qh(F ), by Lemma 6.14 we have

πQ
F (1 + IQF )∇F θ = πQ

F (1 + IQF )∇1θ,

hence, (7.11) holds, which completes the proof.
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7.4.1. Face Bubbles.

Definition 7.16. Define the space

LF =
{
η ∈ S̃h(F ) : ∇Fη ∈ CF 	DF and

∑
v∈F

η(v) = 0
}
,

where the sum is taken over all fine vertices in F . Refer to (6.27) for the definition of
CF 	DF .

Clearly, the dimension of LF equals that of CF 	 DF . As we have mentioned in Sec-
tion 6.3.2, in our numerical experiments the dimension of CF 	DF never exceeded one (for
most coarse faces we had LF = {0}, i.e., no face bubbles were added).

Definition 7.17. The face-bubble space is defined to be

SH(F ) = ISF (LF ).

In a computer implementation, we build a basis of LF , apply ISF to each basis vector
by solving the system (7.6), and perform SVD on the resulting vectors to extract a linearly
independent set.

Lemma 7.18. Let Q1
H(F ) = IQF (CF ) be as in (6.25). Then

∇FSH(F ) = Q1
H(F ).

Proof. We have

∇FSH(F ) = ∇FISF (LF )
(7.7)
= IQF∇FLF = IQF (CF 	DF )

(6.26)
= IQF CF = Q1

H(F ).

Lemma 7.19. We have

SH(F ) =
{
θ ∈ Sh(F ) : ∇F θ ∈ Q1

H(F )
}
.

Proof. If θ ∈ SH(F ) then clearly θ ∈ Sh(F ), and due to Lemma 7.18 we have ∇F θ ∈ Q1
H(F ).

Conversely, if ∇F θ ∈ Q1
H(F ), then due to Lemma 7.18 there exists a θ′ ∈ SH(F ) such that

∇F θ
′ = ∇F θ. Then, since both θ and θ′ lie in Sh(F ), we have θ = θ′ by Lemma 7.10.

Lemma 7.20. For any θ ∈ S̃h, we have ΠQ
F∇θ ∈ Q1

H(F ).

Proof. Let q = ∇F θ. Define p = −IQF q. Since ∇F×q = 0, we have (from (6.20)) that
∇F×p = −∇F×(IQF q) = 0. From Definition 6.20, we have ΠQ

Fq = p1 + p0 where p1 = 0
(since ∇F×p = −∇F×(IQF q) = 0) and p0 ∈ Q1

H(F ).

Definition 7.21. For any θ ∈ S̃h, let ΠS
F θ be the element of Sh(F ) satisfying

∇FΠS
F θ = ΠQ

F∇F θ. (7.12)

The existence of ΠS
F θ follows from Lemmas 7.20 and 7.18. The uniqueness follows from

Lemma 7.10.

Lemma 7.22. ΠS
F is a projector onto SH(F ).
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Proof. By Lemma 7.20, we have ∇FΠS
F θ = ΠQ

F∇F θ ∈ Q1
H(F ). Then, due to Lemma 7.19,

ΠS
F θ ∈ SH(F ). If θ ∈ SH(F ), then ∇F θ ∈ Q1

H(F ) ⊂ QH(F ), and thus ∇FΠS
F θ = ΠQ

F∇F θ =
∇F θ. Then, due to Lemma 7.10, ΠS

F θ = θ.

The last fact we need is stated next.

Lemma 7.23. We have
ΠS

FISF = −ΠS
F .

Proof. Due to Lemma 7.10, it is sufficient to prove that

∇FΠS
FISF = −∇FΠS

F .

We have
∇FΠS

FISF
(7.12)
= ΠQ

F∇FISF
(7.7)
= ΠQ

FI
Q
F∇F

(6.36)
= −ΠQ

F∇F
(7.12)
= −∇FΠS

F .

7.5. Projector ΠS
2 and its Properties

Definition 7.24. We define

ΠS
2 =

∑
F

ΠS
F +

(
1 +

∑
F

ISF
)

ΠS
1 .

Lemma 7.25. ΠS
2 is a projector onto⊕
F

SH(F )⊕
(
1 +

∑
F

ISF
)(⊕

E

SH(E)⊕
⊕
V

span(ηV )
)
.

Proof. Let
B =

(
1 +

∑
F

ISF
)

ΠS
1 .

It is straightforward to check that for distinct faces F 6= F ′ we have ΠS
FΠS

F ′ = 0. For any
coarse face F , a function from Sh(F ) has vanishing degrees of freedom corresponding to all
fine vertices which are part of some coarse edge (including the coarse vertices). We thus
have

ΠS
1 ΠS

F = 0 =⇒ BΠS
F = 0.

For distinct coarse faces F and F ′, the spaces S̃h(F ) and Sh(F ′) have a trivial intersection,
thus ΠS

FISF ′ = 0. Together with Lemma 7.23 this implies

ΠS
F

(
1 +

∑
F ′

ISF ′
)

= 0 =⇒ ΠS
FB = 0.

The desired result now follows from Lemmas 4.2, 7.11, and 7.22.

Lemma 7.26. We have
∇2Π

S
2 = ΠQ

2∇. (7.13)

Recall that ΠQ
2 =

∑
F ΠQ

F + (1 +
∑

F I
Q
F )ΠQ

1 was defined in Definition 6.23.
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Proof. Let F be any coarse face. For any θ ∈ Sh(F ), we have ∇2θ = ∇F θ, and thus
∇2Π

S
F = ∇FΠS

F . On the other hand, ΠS
F = ΠS

Fπ
S
F and thus ΠS

F∇F = ΠS
F∇. Combining this

with (7.12), we obtain
∇2Π

S
F = ΠQ

F∇. (7.14)

From (7.9) and (7.4) it follows that

∇2

(
1 +

∑
F

ISF
)

ΠS
1 =

(
1 +

∑
F

IQF
)
∇1Π

S
1 =

(
1 +

∑
F

IQF
)

ΠQ
1∇. (7.15)

By summing (7.14) over all coarse faces and adding the resulting equality to (7.15) we obtain
(7.13).

7.6. Volume Extension

Lemma 7.27. Let η ∈ Sh(T ). Then the condition ∇Fη = 0 implies η = 0.

Proof. The dual graph of T is connected by Assumption 3.1. Since the boundary of a
tetrahedral element is connected, the graph made of all (interior and boundary) fine vertices
and edges of T is also connected. The condition ∇Fη = 0 then implies that η has the same
value at any vertex of F . Since η vanishes at the boundary vertices of T , we have η = 0.

For any θ ∈ S̃h, define θT ∈ Sh(T ) as the solution of

(∇θT ,∇η)T = −(∇θ,∇η)T , (7.16)

where ( · , ·)T is the L2(T ) inner product. Due to Lemma 7.27 this problem has a unique
solution.

Definition 7.28. For a given θ ∈ S̃h, we define IST θ to be the corresponding θT from (7.16).

Definition 7.29. The coarse H1-conforming space is defined to be

S̃H =
(
1 +

∑
T

IST
)
×
(∑

F

SH(F ) +
(
1 +

∑
F

ISF
)(∑

E

SH(E) +
∑
V

span(ηV )
))
.

Definition 7.30. The main fine-to-coarse projector is defined to be

ΠS =
(
1 +

∑
T

IST
)

ΠS
2 .

7.7. Properties of ΠS

Lemma 7.31. ΠS is indeed a projector onto S̃H .

Proof. For any agglomerate T , any function from Sh(T ) vanishes at all boundary fine vertices
of T . Consequently, ΠS

2IST = 0. The desired result then follows from Lemma 4.3.

With the next result we complete the proof that the sequence (3.1) is exact.

Lemma 7.32 (Local exactness). For any agglomerate T , we have

ker(∇×) ∩Qh(T ) = ∇Sh(T ).
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Proof. Let q = ∇θ for some θ ∈ Sh(T ). The endpoints of each fine edge from ∂T also lie on
∂T . Thus from (3.2) it follows that q ∈ Qh(T ). Since ∇×∇ = 0, we also have q ∈ ker(∇×).

Now, let q ∈ ker(∇×)∩Qh(T ). Let Q̂h be the lowest order Nédélec space corresponding
to the mesh T̂h that covers a domain Ω̂. We recall that T̂h is introduced in the beginning of
Section 2. Let q̂ ∈ Q̂h have the following degrees of freedom:∫

e

q̂ ·τ dL =

{∫
e
q ·τ dL if fine edge e ∈ T,

0 if e 6∈ T.

Note that ∇×q̂ = 0 for any point in Ω̂ (since tangential component of q vanishes on ∂T ).
Let Ŝh be the space of scalar continuous piecewise linear functions associated with the mesh
T̂h. Since by assumption Ω̂ is homeomorphic to a ball, there exists a function θ̂ ∈ Ŝh such
that ∇θ̂ = q̂. The graph made of boundary fine edges and boundary fine vertices of T is
connected (by Assumption 3.1), and for each fine edge e ∈ ∂T we have∫

e

∇θ̂ ·τ dL =

∫
e

q̂ ·τ dL =

∫
e

q ·τ dL = 0.

Because of this and formula (3.2), the function θ̂ assumes the same constant value c at all
fine vertices on ∂T . Now, consider the function θ ∈ S̃h defined as follows:

θ(v) =

{
θ̂(v)− c if the fine vertex v ∈ T,
0 if v 6∈ T.

We have θ ∈ Sh(T ) and ∇θ = q.

Lemma 7.33. For any agglomerate T and any θ ∈ S̃h, we have

∇IST θ = IQT ∇θ. (7.17)

Proof. The proof is analogous to that of Lemma 7.13. Consider the linear system for the
unknowns σ ∈ Sh(T ) and z ∈ Qh(T ),

(σ, τ)T − (∇τ, z)T = −(θ, τ)T for all τ ∈ Sh(T ),

(∇σ,p)T + (∇×z,∇×p)T = −(∇θ,p)T for all p ∈ Qh(T ).
(7.18)

Due to Lemmas 7.32 and 4.1, the system is solvable. To apply Lemma 4.1, take V1 = Sh(T ),
V2 = Qh(T ), V3 = Rh(T ), d1 = ∇, and d2 = ∇× .

Since for any η ∈ Sh(T ) we have p = ∇η ∈ Qh(T ) and ∇×p = 0, σ also solves (7.16).
The latter equation has the unique solution θT = IST θ, thus σ = θT . We now see that the
pair (qT = ∇θT , rT = −∇×z) solves the first equation of (6.43) for q = ∇θ. The second
equation of (6.43) is trivially satisfied since ∇×qT = ∇×q = 0. Thus, qT = IQT q, which is
(7.17).

Note that in a computer implementation we can solve the system (7.16), and not neces-
sarily (7.18).

Lemma 7.34. For any function θ ∈ S̃h, we have

∇
(
1 +

∑
T

IST
)
θ =

(
1 +

∑
T

IQT
)
∇2θ. (7.19)
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Proof. The proof is essentially the same as that of Lemma 7.15.

Theorem 7.35 (Main commutativity property). For any θ ∈ S̃h, we have

∇ΠSθ = ΠQ∇θ.

Proof. We have

∇ΠSθ = ∇
(
1 +

∑
T

IST
)

ΠS
2 θ

(7.19)
=
(
1 +

∑
T

IQT
)
∇2Π

S
2 θ

(7.13)
=
(
1 +

∑
T

IQT
)

ΠQ
2∇θ = ΠQ∇θ.

Corollary 7.36 (Exactness of coarse spaces). If ∇S̃h = ker(∇×) ∩ Q̃h, then

∇S̃H = ker(∇×) ∩ Q̃H .

Proof. Let q ∈ ker(∇×) ∩ Q̃H . Since Q̃H ⊂ Q̃h, there exists an η ∈ S̃h such that q = ∇η.
Since q ∈ Q̃H ,

q = ΠQq = ΠQ∇η = ∇ΠSη ∈ ∇S̃H .

Conversely, let q ∈ ∇S̃H , i.e., q = ∇η, η ∈ S̃H . Clearly, q ∈ ker(∇×). We also have

q = ∇η = ∇ΠSη = ΠQ∇η ∈ Q̃H .

Corollary 7.37 (Local approximation property). If on a coarse element T a function η ∈ S̃h

equals an affine (linear) function ξ = c ·x + d ∈ P1(T ), so does the projection ΠSη.

Proof. Let ∇ξ = c, where c is a vector constant. We have πQ
T∇η = πQ

T c. Using Theorems
7.35 and 6.38 we can see that

πQ
T∇ΠSη = πQ

T ΠQ∇η = πQ
T c.

In other words, gradients of ΠSη and ξ coincide on T . By construction, ΠSη and ξ assume the
same value at each coarse vertex of T , and T has at least one coarse vertex (each agglomerate
has at least one coarse face, each coarse face is required to have boundary fine edges, each
boundary fine edge is part of some coarse edge and each coarse edge has two coarse vertices
as endpoints). If we consider the graph made of fine vertices and fine edges of T , this graph
is connected (since the dual graph of T is required to be connected, and each tetrahedron
has connected boundary). Consequently, ξ and ΠSη have to agree on all of T .

8. Numerical Results

In this section we provide a number of tests that illustrate the approximation properties of
the coarse spaces proposed in the paper. The PDEs we solve are the Poisson equation in
mixed form (i.e., Darcy flow), two discretizations of the vector Laplace operator, namely, the
H(curl) − H(div) and H1 − H(curl) formulations, and also the second order scalar elliptic
equation −∆u+ u = f (which we discretize using H1-conforming FE space).

All these PDEs can be written in the form Lu = f . We compute a corresponding right-
hand side f = Lu for a given exact solution u. For a given tetrahedral mesh Th, using
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Figure 1. Agglomerates for box–cylinder domain.

Figure 2. Agglomerates for unit cube with unstructured mesh.

element agglomeration, we create a coarse mesh TH (consisting of agglomerates). We then
compute the solution uH of the Galerkin discretization of Lu = f using the proposed coarse
spaces associated with the agglomerates in TH .

We study the behavior of the error eH = u−uH , as the original mesh Th is refined. That
is, we refine Th to obtain another tetrahedral mesh Th2 (h2 = h/2), build the corresponding
coarse mesh TH2 , compute the Galerkin approximation uH2 and the error eH2 = u− uH2 . In
a similar way, we refine Th2 to obtain Th3 , build the corresponding coarse mesh TH3 , compute
eH3 = u−uH3 and so forth. As we proceed, we keep the average number of tetrahedrons per
agglomerate fixed, i.e., in a sense the ratio Hk/hk stays approximately the same. We then
measure the convergence rate log2(‖eHk

‖/‖eHk+1
‖), k = 0, 1, 2, . . .

In all experiments involving mixed systems, we use the initial unstructured mesh on the
box–cylinder domain (domain scaled to fit into unit cube) seen in Figure 1. For the last
H1-tests, we also use the unit cube with unstructured mesh as shown in Figure 2.

8.1. Numerical Results for the Coarse Raviart–Thomas Space

The test PDE here is Darcy flow u = ∇p, ∇·u = f with exact solution

p = cos(πx) cos(πy) cos(πz)

and variational boundary conditions.
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# times u (flux): ‖·‖L2 u: | · |H(div) p (pressure): ‖·‖L2

refined conv. rate conv. rate conv. rate

0 — — —
1 1.02 0.59 0.58
2 1.05 0.90 0.90
3 1.04 0.82 0.82
4 1.02 0.97 0.97

Table 1. Results for coarse Raviart–Thomas spaces.

We solve the coarse mixed system, interpolate the flux and pressure to the fine grid and
measure the errors with respect to the exact solution. We observe the error behavior as
we refine the original mesh (this increases the number of agglomerates, since we keep the
agglomerate size constant). Some details for this set of experiments read:

• The finest mesh has 5,715,200 faces and 2,834,432 elements.

• We have approximately 77 fine-grid elements per agglomerate. The size of the coarse-
grid mixed system is approximately 5% of that of the fine-grid system. The number
of non-zeros in the coarse-grid matrix is at most 28% of that of the fine-grid one.

As it is clearly seen from Table 1, the expected first order of approximation is confirmed.

8.2. Numerical Results for Coarse Nédélec and Raviart–Thomas Spaces

Here, we consider H(curl)-H(div) mixed formulation of the vector Laplacian

σ = ∇×u in Ω,

−∇×σ +∇(∇·u) = f in Ω,

u×n and ∇·u are given on ∂Ω,

where Ω is the same box-cylinder domain as in the previous tests. The exact solution is

u =

cos(πx) sin(πy) sin(πz)
cos(πx) cos(πy) sin(πz)
cos(πx) cos(πy) cos(πz)

 .
As before, using Galerkin coarsening with our AMGe-constructed coarse Nédélec space to
approximate σ and the respective coarse Raviart–Thomas space to approximate u, we form
the coarse-grid mixed system.

We have the following characteristics of the coarse discretization:

• About 77 elements per agglomerate.

• After the last refinement, the fine mesh has 430,892 edges, 720,192 faces, 354,304
elements.

• The size of the coarse-grid mixed system is at most 10% of that of the fine-grid one
and the number of non-zeros in coarse-grid matrix is at most 60% of the fine-grid one.

As expected, Table 2 demonstrates the first order of approximation.
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# times σ: ‖·‖L2 σ: | · |H(curl) u: ‖·‖L2 u: | · |H(div)

refined conv. rate conv. rate conv. rate conv. rate

0 — — — —
1 0.87 0.74 0.78 0.58
2 0.84 0.83 0.86 0.80
3 0.98 0.92 0.97 0.91

Table 2. Tests for coarse Nédélec and Raviart–Thomas spaces.

8.3. Numerical Results for the Pair Coarse H1-Conforming and Nédélec Spaces

We consider the H1-H(curl) mixed formulation of the vector Laplacian

σ = −∇·u,
−∇σ −∇×∇×u = f in Ω,

u ·n and (∇×u)×n are given on ∂Ω,

again posed on the box-cylinder domain. The exact solution is

u =

cos(πx) sin(πy) sin(πz)
cos(πx) cos(πy) sin(πz)
cos(πx) cos(πy) cos(πz)

 .
We use the AMGe-constructed coarse H1-conforming space to approximate σ and the coarse
Nédélec space to approximate u. Here, we keep each agglomerate to contain about 450
fine-grid elements.

The characteristics of the discretization are:

• After the last refinement, the fine-grid mesh has 495,897 vertices, 3,376,664 edges,
5,715,200 faces and 2,834,432 elements.

• The size of the coarse-grid mixed system is at most 10% of that of the fine-grid one.

• The number of non-zeros in the coarse-grid matrix is at most 52% of the fine-grid one.

As seen from Table 3, the expected first order of approximation for the coarse Nédélec space is
clearly demonstrated. The same holds for the H1-norm of the error and close to second order
in the L2-norm (note that the domain we use is not convex). In the next subsection, we use,
in addition to the box-cylinder domain, a convex domain, for which we have full-regularity
of the solution of the Laplace equation.

8.4. Numerical Results for Coarse H1-Conforming Spaces

We solve the scalar equation −∆p + p = f , first on the box-cylinder domain with exact
solution p = cos(πx) cos(πy) cos(πz).

The AMGe-constructed coarse H1-conforming space is used in standard Galerkin approx-
imation procedure to generate the coarse discrete system. In the agglomeration procedure,
we keep about 679 fine-grid elements per agglomerate.

As before, Table 4 demonstrates first order of approximation in energy and less than
second order in L2 of the AMGe-constructed coarse H1-conforming spaces.
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# times σ: ‖·‖L2 σ: | · |H1 u: ‖·‖L2 u: | · |H(curl)

refined conv. rate conv. rate conv. rate conv. rate

0 — — — —
1 0.65 0.40 0.57 0.43
2 1.59 0.77 1.17 1.02
3 1.63 0.86 0.91 0.93
4 1.87 0.97 1.02 1.00

Table 3. Tests with pairs of coarse H1 and coarse Nédélec spaces.

# times p: ‖·‖L2 p: | · |H1

refined conv. rate conv. rate

0 — —
1 0.47 0.24
2 1.12 0.49
3 1.66 0.92
4 1.78 0.93

Table 4. Tests with coarse H1-conforming
spaces for box-cylinder domain.

# times p: ‖·‖L2 p: | · |H1

refined conv. rate conv. rate

0 — —
1 0.17 0.12
2 1.46 0.74
3 2.02 1.02
4 1.98 0.99

Table 5. Tests with coarse H1-conforming
spaces for unit cube with unstructured fine-grid
mesh.

Next, we solve the same problem, −∆p+ p = f , now on the unit cube with unstructured
mesh. The difference from the previous test is in the better behavior of the L2-error, as seen
in Table 5.

In the last test, the number of non-zeros in the coarse-grid matrix is about 80% of that in
fine-grid matrix, and the size of the coarse space is about 10 times smaller than the fine-grid
one.

9. Conclusions

In the present paper, we have extended the approach from [8], to complete the de Rham
sequence of finite element spaces, so that the resulting coarse spaces contain locally (on
each agglomerated element) either the vector constants (in the case of Nédélec and Raviart–
Thomas spaces) or the affine functions in the case of H1-conforming spaces. The results
hold if the agglomerates satisfy certain topological restrictions. We proved that the coarse
de Rham sequence is exact. Moreover, the coarse projection operators we constructed satisfy
important commutativity relations with the respective differential operators. Our numerical
results confirm the expected first order of approximation of the coarse spaces, a result that
makes them suitable for numerical upscaling, i.e., to be used as an accurate discretization
tool (in addition to being used in multigrid solvers) for general unstructured meshes.

The methodology we developed is naturally extendable to higher order elements and also
to adaptively incorporate into the coarse spaces any given set of fine-grid functions, details
of which will be given in a follow-up paper.
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A. Appendix

Here, we provide a proof (in a more general setting) of Lemma 6.13.

Lemma A.1. Let U , V , and Ũ be three finite dimensional spaces such that V ⊂ Ũ and
U ⊂ Ũ . Also, consider a given symmetric and positive definite bilinear form a( · , ·) : Ũ×Ũ .
Let PV : Ũ 7→ V and PU : Ũ 7→ U be the respective Galerkin (a( · , ·)-orthogonal) projections.
Consider the eigenproblem

PV PUPV q = σ2q, q ∈ V. (A.1)
For a given tolerance γ ∈ (0, 1), select all eigenvalues σ2

i , i = 1, . . . ,m, such that

σ2 6 1− γ,

and define the space D ⊂ V to be spanned by the respective eigenvectors qi, i = 1, . . . ,m.
Finally, let PD : Ũ 7→ D be the Galerkin (a( · , ·)-orthogonal) projection onto D. Then the
bilinear form a((I − PD)u,u) is coercive on U and the following coercivity estimate holds:

a((I − PD)u,u) > γa(u,u) for all u ∈ U.

Proof. We need to show that
a(PDu,u)

a(u,u)
6 1− γ for all u ∈ U.

Introduce bases in U and V represented by the columns of the respective matrices PU and
PV . Then if a( · , ·) gives rise to a symmetric positive definite matrix A (in some basis of
Ũ), we have the subspace matrices AU = PT

UAPU , AV = PT
V APV , and AD = PT

DAPD, where
PD = [q1, . . . , qm]. Using the above matrix notation, we have to show that

uTP T
UAPDA

−1
D P T

DAPUu 6 (1− γ) uTAUu.

Equivalently, using the fact that CT and C = A
− 1

2
D PT

DAPUA
− 1

2
U have the same norms, we

need to show that
dTPT

DAPUA
−1
U P

T
UAPDd 6 (1− γ) dTADd. (A.2)

Due to our choice of PD = [q1, . . . , qm], we have, rewriting (A.1) in matrix form,

dTPT
DAPVA

−1
V P

T
V APUA

−1
U P

T
UAPVA

−1
V P

T
V APDd 6 (1− γ) dTADd. (A.3)

We can choose PV = [PD,PD⊥ ], that is, the second block represents D⊥, the A-orthogonal
complement of D in V . Then

AV = PT
V APV =

[
AD 0
0 AD⊥

]
, where AD⊥ = (PD⊥)TAPD⊥ ,

and
PT

V APD =

[
AD

0

]
.

Hence

APVA
−1
V P

T
V APD = A[PD,PD⊥ ]

[
A−1D 0

0 A−1
D⊥

] [
AD

0

]
= A[PD,PD⊥ ]

[
I
0

]
= APD.

That is, estimate (A.3) simplifies to

dTP T
DAPUA

−1
U P

T
UAPDd 6 (1− γ) dTADd,

which is exactly the desired estimate (A.2).
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