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1 Introduction
In the last decade, a largenumber of papers dealingwith thenumerical analysis of singularly perturbeddi�er-
ential equationshave appeared in the research literature. A searchof theMathSciNet database for papers pub-
lished in the years 2005–2014 with MSC Primary Classi�cation 65 (viz., Numerical Analysis) and the phrase
“ singular* perturb* ” [in MathSciNet asterisks are wildcards] yields 879 published works. An overview of
this body of work is given in the monograph [81], in Linß’s book [60] on layer-adaptedmeshes, and in Roos’s
survey article [73].

Clearly there is a very healthy level of research activity in this area. But regrettably, the “new” results in
many recent papers aremerelyminor extensions and/or syntheses of older results. (Or worse, they are results
that were already known!) Perhaps this is an indication that our area of numerical analysis has reached a
mature stage in its development?

Despite this remarkable amount of activity, some old and fairly important research questions in the nu-
merical analysis of singularly perturbed di�erential equations remain unanswered. In this article we shall
describe some of these open problems – con�ning our attention to questions that we regard as interesting.
Of course, our selection is inevitably personal and re�ects our own main research interests. We hope that
our exposition will stimulate further worthwhile research on the numerical analysis of singularly perturbed
di�erential equations.

1.1 The Classes of Problems Considered

Our discussions in this paper centre on two classes of problems, which we now describe.
Let ε be a small positive parameter. In our di�erential equations, which are all second-order, this pa-

rameter will be the di�usion coe�cient and ε is a singular perturbation parameter. If instead one had ε = 1,
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then the di�erential equation would be di�usion-dominated and would be amenable to classical analysis
and to the standard numerical methods that one �nds in typical undergraduate textbooks. The interesting
and challenging case for numerical analysts is when ε is close to zero.

Our main focus is the convection-di�usion problem

Lu := −ε∆u − b ⋅ ∇u + cu = f in Ω ⊂ ℝn , (1.1a)
u = 0 on ∂Ω, (1.1b)

where b = (b1, b2, . . . , bn) and c are smooth functions (b models convection while c models reaction) and
f ∈ L2(Ω). Here Ω is some bounded domain with boundary ∂Ω, and n ≥ 1. Some additional hypotheses will
be needed to ensure that (1.1) has a unique solution in some suitable normed space. For example, in �nite
element analysis one typically assumes that

c + 1
2 divb ≥ α0 > 0 on Ω (1.2)

for some constant α0; then the problem (1.1), (1.2) has a unique solution u ∈ H1
0(Ω). Moreover, if Ω is convex

then u ∈ H2(Ω).
The problem (1.1) can also be called a convection-reaction-di�usion problem, re�ecting the presence of

the reaction term cu. Both names for (1.1) place di�usion last to emphasise that the in�uence of the highest-
order di�usion term is weakened by its small coe�cient.

The secondmain class of singularly perturbed di�erential equation in our sphere of interest is the (linear)
reaction-di�usion problem

Lu := −ε∆u + cu = f in Ω, (1.3a)
u = 0 on ∂Ω, (1.3b)

where c is a smooth function and f ∈ L2(Ω). The domain Ω is as above, and the condition (1.2) simpli�es
to c ≥ α0 > 0 on Ω. Results for problems in this class frequently can be extended to the semilinear reaction-
di�usion equation −ε∆u(x) + f(x, u) = 0 where one assumes that fu(x, u) ≥ α0 on ℝ × ℝ, possibly with addi-
tional hypotheses on f .

The reaction-di�usion problem (1.3) is more easily solved (and analysed) than the convection-di�usion
problem (1.1), but it does present some challenges to the numerical analyst, as we shall see.

Notation. Throughout the paper C denotes a generic positive constant that is independent of ε and of the
mesh diameter in any numerical method. Standard notation is used for the Lebesgue spaces Lp(Ω) and the
Sobolev spaces Hk(Ω), with their respective associated norms ‖ ⋅ ‖Lp and ‖ ⋅ ‖k, and the space H1

0(Ω) com-
prising those functions in H1(Ω) whose traces vanish on ∂Ω. We also use the Sobolev seminorms | ⋅ |j where
‖ ⋅ ‖k ≡ [∑k

j=0 | ⋅ |
2
j ]
1/2. Thus | ⋅ |0 = ‖ ⋅ ‖0 = ‖ ⋅ ‖L2 . The L2(Ω) inner product is denoted by ( ⋅ , ⋅ ).

We include here the �rst two of our open questions – even though they change the boundary conditions
in (1.1) and do not involve numerical analysis – because they are quite basic.

Question 1.1. Suppose that one has a homogeneous Neumann out�ow condition in (1.1), i.e., along that
part of ∂Ω where b points out of Ω, the boundary condition u = 0 is replaced by ∂u/∂n = 0 where n de-
notes the unit normal to ∂Ω. Suppose also that the characteristic boundary (where b is tangent to ∂Ω) is a
set of (n − 1)-dimensional measure zero. De�ne as in [81, Section III.1] the reduced solution u0 of (1.1) by
−b ⋅ ∇u0 + cu0 = f on Ω and u0 = 0 on the in�ow boundary of Ω (that part of ∂Ω where b points into Ω). Can
one show that ‖u − u0‖1 = O(ε1/2)?

A related problem, where n = 2, b = (1, 0), c is a positive constant and Ω = (0, 1)2, is analysed in [68].

Question 1.2. In the previous question, suppose that the Neumann condition is replaced by the condition
−b ⋅ ∇u + cu = f on the out�ow boundary (cf. [7]). What bound can one then prove for ‖u − u0‖1?
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1.2 Decompositions of the Solution

In the simplest convection-di�usion problem where n = 1 in (1.1) and b = b1 > β > 0 on [0, 1] for some con-
stant β, the solution u will have an exponential boundary layer at x = 0. That is, for x ∈ [0, 1] one has the
sharp bounds

|u(i)(x)| ≤ C[1 + ε−i exp(−βx/ε)] for i = 0, 1, . . . , q, (1.4)

where q depends on the regularity of the data of the problem. In [55] it is shown that (1.4) is equivalent to
the decomposition u = S + E where the smooth component S and the layer component E satisfy

|S(i)(x)| ≤ C, |E(i)(x)| ≤ Cε−i exp(−βx/ε) for i = 0, 1, . . . , q,

LS = f and LE = 0.

We call this an S-decomposition because it is originally due to Shishkin [86, 88, 89].
When n = 2 in (1.1), su�cient conditions for the existence of an S-decomposition of the convection-

di�usion solution u are known only for small values of q and provided that the locations and nature of the
layers in u are known. For problems where u has only exponential layers and for some problems with char-
acteristic layers, see [42, 43, 63, 69].

To analyse �nite di�erence or (linear and bilinear) �nite element methods for a two-dimensional
convection-di�usion problem posed on the unit square (i.e., Ω = (0, 1)2) with exponential layers, one as-
sumes typically that b > (β1, β2) > (0, 0) for some constants βi and

u = S + E1 + E2 + E12 (1.5a)
with

!!!!!!!!!

∂i+jS
∂xi∂yj

(x, y)
!!!!!!!!!
≤ C, (1.5b)

!!!!!!!!!

∂i+jE1
∂xi∂yj

(x, y)
!!!!!!!!!
≤ Cε−ie−β1x/ε ,

!!!!!!!!!

∂i+jE2
∂xi∂yj

(x, y)
!!!!!!!!!
≤ Cε−je−β2y/ε , (1.5c)

!!!!!!!!!

∂i+jE12
∂xi∂yj

(x, y)
!!!!!!!!!
≤ Cε−(i+j)e−(β1x+β2y)/ε (1.5d)

for all (x, y) ∈ Ω̄ and 0 ≤ i + j ≤ k, where k = 2 or 3. Note that increasing k also increases the number of com-
patibility conditions required of the data of (1.1) at the corners of the domain Ω, as described in the papers
cited above, but sometimes [47, Remark 3.3] it is possible to use fewer corner compatibility conditions than
in those papers.

To avoid the (possibly excessive) corner compatibility assumptions needed for the validity of (1.5) with
k = 3, for FEMs one can try to use the pointwise information of (1.5) for 0 ≤ i + j ≤ 2 only, combined with
weaker L2 information for certain third-order derivatives. We do not discuss this approach here; see [81] for
more details.

Remark 1.3. The remaining sections of this paper, which are largely independent of each other, will be pre-
sented in the order that is most convenient for our exposition. This order has nothing to do with their relative
importance.

2 Stabilised FEM L2 Errors: Is h1/2 Always Missing?
Choose a �nite element space Vh ⊂ H1

0(Ω), where h is the mesh diameter. Then the standard Galerkin �nite
element method for solving (1.1) is: Find uh ∈ Vh such that

aG(uh , vh) := ε(∇uh , ∇vh) − (b ⋅ ∇uh − cuh , vh) = (f, vh) for all vh ∈ Vh . (2.1)
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De�ne the ε-weighted H1(Ω) norm by
‖v‖ε := ε1/2|v|1 + ‖v‖0; (2.2)

this norm is natural for the analysis of �nite elementmethods for (1.1). One can prove easily that the Galerkin
solution uh satis�es the stability inequality

‖uh‖ε ≤ C‖f‖0 (2.3)

on quite general triangulations of diameter h. This bound is sharp, but the norm ‖ ⋅ ‖ε is so weak that in
practice the computed solution uh typically exhibits large oscillations when Vh comprises piecewise linear
or bilinear elements, and is therefore unsatisfactory.

This instability of the standardGalerkinmethodhas lead to the development of several types of stabilised
Galerkin methods when solving (1.1). Most stabilised methods are modi�cations of the standard Galerkin
method: Find uh ∈ Vh such that

ah(uh , vh) := aG(uh , vh) + ast(uh , vh) = fh(vh) for all vh ∈ Vh , (2.4)

where ast( ⋅ , ⋅ ) represents a stabilisation term and fh is some modi�cation of (f, vh). If the discrete bilinear
form ah( ⋅ , ⋅ ) is Vh-elliptic (or satis�es an inf-sup condition) that is uniform in ε with respect to some norm
||| ⋅ ||| that is stronger than ‖ ⋅ ‖ε, then typically one has

|||uh||| ≤ C‖f‖∗ (2.5)

for some norm ‖ ⋅ ‖∗. One constructs the stabilised method to yield a norm ||| ⋅ ||| that is so strong that large
oscillations in uh are excluded by (2.5); see for example [84].

As well as stability in our computed solutions, of course we also want accuracy. This is where our open
question arises. Take for example the best-known example of a stabilised FEM: the streamline di�usion �nite
element method (SDFEM), where in (2.4) one takes

ast(uh , vh) = ∑
K
δK(−ε∆uh − b ⋅ ∇uh + cuh , −b ⋅ ∇vh)K

with δK a user-chosen parameter that is constant on each �nite element K in the decomposition of Ω and
( ⋅ , ⋅ )K the L2(K) inner product. On shape-regular meshes, typically δk = O(hK). Then, de�ne the streamline
di�usion norm ||| ⋅ |||SD by

|||v|||SD := ‖v‖ε + (∑
K
δK‖b ⋅ ∇v‖20,K)

1/2
,

where ‖w‖20,K := (w, w)K . The usual analysis of the SDFEM – see for example [81, Section III.3.2.1] – leads
(under reasonable constraints on the formulation of the method) to the error bound

|||u − uh|||SD ≤ C(ε1/2 + h1/2)hk|u|k+1 (2.6)

when Vh contains all piecewise polynomials of degree k and u ∈ Hk+1(Ω). Here the presence of boundary
layers implies that the factor |u|k+1 is typically O(ε−k+1/2), which is very large when ε is near zero, so the
bound (2.6) is not by itself evidence of accuracy, but using cut-o� functions one can usually obtain analogous
bounds for stabilised methods on subdomains of Ω that exclude layers in u. Thus, we can expect that away
from the layers, the SDFEM solution uh satis�es

|||u − uh|||� ≤ C(ε1/2 + h1/2)hk , (2.7)

where the notation ||| ⋅ |||� means that ||| ⋅ ||| is restricted to some subdomain Ω� that does not intersect any layer
of u.

So far so good; but usually ε < h and as we are working with a �nite element method, one typically has
‖ ⋅ ‖L2(Ω�) ≤ C||| ⋅ |||� for some constant C. Thus, we can infer that

‖u − uh‖L2(Ω�) ≤ Chk+1/2. (2.8)
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But the optimal bound for the L2 error, when some standard interpolant ihu is used, is

‖u − ihu‖L2(Ω�) ≤ Chk+1. (2.9)

Why is (2.8) order h1/2 less than optimal?
One might surmise that (2.8) is due to a lack of sharpness in the analysis, but numerical experiments

in [102] for piecewise linears (so k = 1) show that for specially-chosen shape-regular meshes one can in-
deed have ‖u − uh‖L2(Ω�) = O(h3/2). Furthermore, a micro-analysis of the behaviour of the computed solution
in [102] proves rigorously that precisely this order of convergence is attained. This settles the issue for the
case k = 1 and piecewise linears in the SDFEM, but the case k > 1 remains open and will form part of our
Question 2.2 a little later.

We remark in passing that if one imposes a lot of structure on themesh one can then prove an optimal L2
result; for example, on a so-called three-directional mesh the inequality ‖u − uh‖0 ≤ Ch2|u|5 holds true [81,
Theorem 3.36].

When one goes on to consider the analyses of other stabilised FEMs on fairly general meshes for (1.1),
one encounters a similar phenomenon: for each stabilised FEM the main error bound that is derived in some
appropriate stronger norm implies a bound similar to (2.8), i.e., an error that is order h1/2 less than optimal
in L2. The stabilised FEMs in this observation includemethods basedon local projection stabilisation, various
discontinuous Galerkin FEMs, methods based on continuous interior penalty stabilisation, and the Galerkin
least squares method; see [14, 18, 44, 45, 81] .

Question 2.1. Zhou [102] has shown that for the SDFEM with piecewise linears, the known L2 estimate of
O(h3/2) is best possible. Can one devise examples showing for some value of k ≥ 1 that other known sub-
optimal L2 estimates are best possible? Special cases include (i) the SDFEM with piecewise bilinears where
O(h3/2) is known (ii) piecewise linears or bilinears for any of the other FEMs listed above, where O(h3/2) is
known.

Question 2.2. For general shape-regular meshes of diameter h and a �nite element space Vh that includes
all polynomials of degree k ≥ 1, can one construct a �nite element method whose solution uh ∈ Vh has the
optimal L2 error property

‖u − uh‖0 ≤ Chk+1‖u‖m for some m? (2.10)

At present no such method is known for any value of k.

3 The Il'in–Allen–Southwell Scheme in 2D
This famous �nite di�erence method (which is closely related to the Scharfetter–Gummel scheme), derived
independently byAllen andSouthwell [5] and Il'in [40] for the one-dimensional analogue of (1.1),was shown
by Il'in to be �rst-order convergent in the discrete maximum norm, uniformly in ε. This result is discussed,
for instance, in [81, Section I.2.1]. But what is known about the extension of this scheme to the case n = 2 in
(1.1)?

Suppose that n = 2 and Ω = (0, 1)2 in (1.1). Consider the equidistant mesh {(xi , yj) : i, j = 0, . . . , N}
where N ∈ ℕ, xi = i/N and yj = j/N. Set h = 1/N. Write gij for g(xi , yj), where g can be b1, b2, c or f . Denote
the �nite di�erence solution at (xi , yj) by uNij for i, j = 0, . . . , N. Then, at each node (xi , yj) with 0 < i, j < N,
the I-A-S scheme is

− ε
(b1)ijh
2ε coth((b1)ijh2ε )

uNi+1,j − 2uNij − uNi−1,j
h2

+ (b1)ij
uNi+1,j − u

N
i−1,j

h

− ε
(b2)ijh
2ε coth((b2)ijh2ε )

uNi,j+1 − 2uNij − uNi,j−1
h2

+ (b2)ij
uNi,j+1 − u

N
i,j−1

h + cijuNij = fij . (3.1)
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One also imposes the boundary condition from (1.1): uNij = 0 if either i or j equals 0 or N. Herewe have chosen
to write the scheme in a form that portrays it as an “arti�cial viscosity” scheme; alternatively, it could be
expressed in an upwinded form – cf. [81, p. 52] or see [79].

It is straightforward to verify that the matrix associated with (3.1) is an M-matrix, so the scheme satis�es
a discretemaximumprinciple. Numerical results in [37] show that the I-A-S scheme is often �rst-order conver-
gent, uniformly in ε, but may be less accurate when the solution u is less smooth because of incompatibility
of the data of (1.1) at the corners of the domain.

Assuming that b1 > 0, b2 > 0 and that u lies in the Hölder space Ck,λ(Ω̄), Emel'janov [21] proves that

max
i,j

|u(xi , yj) − uNij | ≤ Ch2/(4+λ). (3.2)

Note the strangeness of this bound: as λ increases – so the solution u becomes smoother – the rate of conver-
gence guaranteed by (3.2) decreases! Furthermore, the order of convergence in (3.2) is at bestO(h1/2), which
is inferior to the �rst-order convergence attained by the I-A-S scheme in 1D problems.

In fact Emel'janov’s result is derived for both the 2D and 3D versions of the I-A-S scheme.
A discussion of Emel'janov’s argument is given by Roos and Schopf [79]. They then improve his result:

assuming that (1.5) is valid for k = 3 and that b1 = b1(x), b2 = b2(y), bounds for the discrete Green’s function
associated with the I-A-S scheme are used to show that the scheme has the anisotropic stability property

max
ij

|uNij | ≤ C(max
ij

|(f0)ij| + h
N
∑
i=0

max
j

|(f1)ij| + h
N
∑
j=0

max
i

|(f2)ij|) (3.3)

for anydecomposition f = f0 + f1 + f2. This leads to the discretemaximumnorm�rst-order convergence result

max
i,j

|u(xi , yj) − uNij | ≤ Ch. (3.4)

Numerical results in [79] show that this rate of convergence can deteriorate if the solution u is less smooth
thanwas assumed in the analysis. Further numerical experiments carried out by the �rst author togetherwith
M. Schopfshow that, for u satisfying (1.5) for k = 3, apparently one still obtains �rst-order convergence in the
discrete maximum norm when b1 = b1(x, y), b2 = b2(x, y).

Question 3.1. (i) Can one prove (3.4) when b1 = b1(x, y), b2 = b2(x, y) and u satis�es (1.5) for k = 3?
(ii) Can one extend the result (3.4) to the 3Dcase?Note that the determination of the regularity of the solution

u and its decomposition then becomes more complicated; see [90].

Note that in the case b = (b1, 0, . . . , 0), c = 0 and for any n, Emel'janov [22] proves that for the I-A-S scheme
the bound (3.4) is valid in the subdomain [0, 1] × [d, 1 − d] × ⋅ ⋅ ⋅ × [d, 1 − d] for any �xed d ∈ (0, 1), i.e., out-
side the characteristic boundary layers one obtains �rst-order convergence that is uniform in ε.

4 Error Estimates on Layer-Adapted Meshes
Thederivativebound (1.4) has inspired the constructionof various layer-adaptedmeshes for one-dimensional
convection-di�usion problems with b > β > 0 on the interval [0, 1]. We now describe the main ideas in these
constructions.

The inequality (1.4) tells us essentially that u has a layer of the form exp(−βx/ε). This layer is located at
x = 0. As early as 1969, Bakhvalov [9] proposed a special mesh withmesh points xi near x = 0 de�ned by the
inverse function of this boundary layer; outside the layer an equidistant mesh is used.

We describe a simpler version of the Bakhvalov mesh that is known as a B-type mesh. Set xi = φ(i/N) for
i = 0, 1, . . . , N, where

φ(ξ) =
{{{
{{{
{

χ(ξ) := −
σε
β ln q − ξq for ξ ∈ [0, τ],

χ(τ) + ξ − τ1 − τ (1 − χ(τ)) for ξ ∈ [τ, 1].
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Here τ is a transition point between the �ne and coarse submeshes, the parameter q ∈ (0, 1) determines how
many mesh points are used to resolve the layer, and σ > 0 controls the spacing within the layer region.

Originally Bakhvalov chose τ to ensure that themesh generating function φ lay in C1[0, 1]with φ(1) = 1,
but this gives a nonlinear scalar equation for τ that must be solved numerically; instead, one can simplify the
mesh construction by de�ning explicitly

τ =
ãε
β |ln ε| for some user-chosen positive constant ã, so e−βτ/ε = εã.

For both these choices of τ, the layer function exp(−βx/ε) is small when x ≥ τ. But from the point of view of
numerical analysis, the choice of transition point τ should re�ect the smallness of the layer term component
of the discretisation error instead of the smallness of exp(−βx/ε). Assume the formal order of the numerical
method to be σ. Then imposing the condition

exp(−βτε ) = N−σ

yields the choice τ = (σε/β) lnN for the transition point. We call a mesh an S-type mesh if it is generated by

φ(ξ) =
{{
{{
{

σε
β φ̂(ξ) with φ̂(0) = 0, φ̂(1/2) = lnN for ξ ∈ [0, 1/2],

1 − 2(1 −
σε
β lnN)(1 − ξ) for ξ ∈ [1/2, 1],

(4.1)

where φ̂ is some monotonic function. For the particular choice φ̂(ξ) = 2(lnN)ξ , the mesh generated is piece-
wise equidistant; this S-mesh was introduced by Shishkin in 1988 [87].

More thorough discussions of layer-adaptedmeshes can be found in [56, 57, 60]. In 2D, when Ω = (0, 1)2
and b1 > 0, b2 > 0, then only exponential layers along the sides x = 0 and y = 0 of Ω are present, and one
takes a tensor product of the one-dimensional S-meshes or B-meshes to get the analogous rectangular mesh
on the unit square; see [60, 81] and Figure 1, where the mesh in the x direction is �ne on Ω12 ∪ Ω22 and
coarse on Ω11 ∪ Ω21, with analogous statements for the mesh in the y direction.

Ω22

Ω12

Ω21

Ω11

Ω11 := [τx , 1] × [τy , 1]

Ω12 := [0, τx] × [τy , 1]

Ω21 := [τx , 1] × [0, τy]

Ω22 := [0, τx] × [0, τy]

Figure 1.Mesh subregions of Ω when u has exponential layers.

If instead one has b1 > β1 > 0 and b2 ≡ 0, then as well as an exponential boundary layer along x = 0,
there are parabolic boundary layers along y = 0 and y = 1 and they have width O(ε1/2| ln ε|). Consequently,
a di�erent choice of transitionpoint ismade in the y-direction: τy = O(ε1/2 lnN), while τx = O(ε lnN) remains
unchanged. See [60, 81] and Figure 2 for more details.

The analysis of stable �nite di�erence schemes for 1D convection-di�usion problems in [57, 60] shows
that typically the maximum nodal error (i.e., the error measured in the discrete L∞ norm) of a particular
method on an S-mesh is O(N−1 lnN)σ for some constant σ > 0, and on a B-type mesh (and on S-type meshes
with certain optimality properties of the function φ̂) the error for the same scheme is O(N−σ). In 2D one can
prove that the maximum nodal error for the well-known simple upwind scheme isO(N−1 lnN) on the S-mesh
and O(N−1) on the particular S-type mesh for which φ̂(ξ) = − ln(1 − 2ξ(N − 1)/N) in (4.1); see [60, Theorem
9.1]. But for B-type meshes no similar result is known, which motivates our next question.
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Ω22

Ω12

Ω22

Ω21

Ω21

Ω11

Ω11 := [λx , 1] × [λy , 1 − λy]

Ω12 := [0, λx] × [λy , 1 − λy]

Ω21 := [λx , 1] × ([0, λy] ∪ [1 − λy , 1])

Ω22 := [0, λx] × ([0, λy] ∪ [1 − λy , 1])

Figure 2. Mesh subregions of Ω with u has exponential and parabolic layers.

Question 4.1. For an upwind �nite di�erence method applied on a B-type mesh to the convection-di�usion
problem (1.1) with n = 2, can one prove the discrete maximum norm convergence result

max
i,j

|u(xi , yj) − uNij | ≤ CN−1

under reasonable hypotheses on the data (e.g., if Ω = (0, 1)2, assume that (1.5) is valid for k = 3)? Here N
mesh intervals are used in each coordinate direction, and uNij denotes the computed solution at the point
(xi , yj).

For �nite element methods applied to convection-di�usion problems, the situation is as follows: while satis-
factory analyses (energy norm interpolation error and convergence result) on S-meshes are well established
even in two dimensions and for polynomials of higher degree for the Galerkin and SDFEM methods (see
[60, 93]), on B-type meshes one can derive optimal interpolation error bounds but no optimal convergence
results are known – with the exception of [72], where a special quasi-interpolant is used on a B-type mesh
for a two-point boundary value problem, but this technique cannot be extended to two dimensions.

Question 4.2. For the convection-di�usion problem (1.1) with n ≥ 2, under reasonable hypotheses on the
data (e.g., in the case n = 2 and Ω = (0, 1)2, assume that (1.5) is valid for k = 3), can one prove an optimal
convergence result of the form

‖u − uh‖ε ≤ CN−k ,

where uh is the solution computed by some FEM using piecewise polynomials of some degree k on a B-type
mesh?

The bound (5.2) below comes close to attaining the target set by Question 4.2 when k = 1.
In classical elliptic problems, it is more di�cult to derive error bounds in the L∞ norm than in the energy

norm. Of course one would expect the same to be true in singularly perturbed problems. In fact, singularly
perturbed problemsmay present even greater obstacles to L∞ analysis than classical problems, as illustrated
by the erratic behaviour of computed solutions described and analysed in Kopteva [50]. In this paper one
takes a two-dimensional reaction-di�usion problem (1.3) posed on the unit square with a pure layer solution
u(x) = exp(x/ε) and solves this problem by a standard Galerkin method on a tensor product S-type or B-type
mesh; the order of convergence of the L∞ error depends on how exactly one bisects the mesh rectangles into
triangles! This extraordinary result shows that the next question in our list cannot be easy.

Question 4.3. For the convection-di�usion problem (1.1) or the reaction-di�usion problem (1.3) with n ≥ 2,
under reasonable hypotheses on the data, can one prove a convergence result for ‖u − uh‖L∞ where uh is the
solution computed by some FEM on an S-type or B-type mesh?

5 Superclose Error Estimates
Much of the terminology used in this section comes from Section 4, while the norm ‖ ⋅ ‖ε and the SDFEM are
de�ned in Section 2.
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When the Galerkin �nite element method with linear or bilinear elements on Shishkin meshes with N
mesh intervals in each coordinate direction is applied to convection-di�usion problems on (0, 1)2 with expo-
nential layers, then [15, 91] the computed solution uN satis�es

‖u − uN‖ε ≤ C N−1 lnN. (5.1)

This bound is also valid on S-type meshes [75]. It is more di�cult to analyse the samemethod on Bakhvalov-
type meshes; so far, the only result [80] is

‖u − uN‖ε ≤ C N−1Q(ε, N), (5.2)

with Q ≤ √ln 10 for N ≥ 10 and ε ≥ 10−100. Durán and Lombardi [16] considered a similar problem using a
novel graded mesh for which they proved ‖u − uN‖ε ≤ C N−1|ln ε|2. For S-type meshes applied to problems
with characteristic/parabolic boundary layers, see Franz and Linß [29].

Linß and Stynes [64] were the �rst to observe numerically that for both the standard Galerkin FEM and
the SDFEM applied to this problem using a Shishkin mesh, the nodal L∞ convergence rates for linear and
bilinear elements on the layer regions Ω \ Ω11 of Figure 1 di�er signi�cantly: the rates for bilinears (almost
second order) are twice the rates for linears!

This phenomenon can be explained via the superconvergent property of supercloseness: if one can de�ne
in the �nite element space an interpolant or projection uI of u such that ‖uI − uN‖ converges at a faster rate
than ‖u − uN‖ asN → ∞ (here ‖ ⋅ ‖ is any norm),we then say that the �nite elementmethodhas the superclose
property in that norm. See [81, p. 395] for a comparison with other forms of superconvergence.

For the Galerkin FEM with bilinear elements on a Shishkin mesh and uI the standard Lagrange nodal
interpolant of u from the �nite element space, one has [54, 101] by comparisonwith (5.1) the supercloseness
result

‖uI − uN‖ε ≤ C(N−1 lnN)2. (5.3)

In contrast, linear elements do not enjoy this property.
The almost-optimal estimate ‖u − uN‖L2 ≤ C(N−1 lnN)2 follows easily from this supercloseness bound.

Furthermore, supercloseness enables a simple postprocessing of the computed solution uN that yields a so-
lution PuN for which ‖u − PuN‖ε ≪ ‖u − uN‖ε (see [92], where postprocessing is discussed for the SDFEM).
The so-called Lin identities for bilinears (see for instance [34]) are often used to prove supercloseness; alter-
natively, one can follow the simpler approach of Zlamal that is exploited in [17].

In [92] Stynes and Tobiska analysed the SDFEM for bilinears on an S-mesh. Assuming that ε ≤ CN−1, the
SD-parameter δK is speci�ed on each element K by

δK =
{
{
{

N−1 if K ⊂ Ω11,
0 otherwise.

(5.4)

Here a detailed analysis shows that for K ⊂ Ω \ Ω11 one should choose δK ≤ CεN−2. As this value is so much
smaller than the natural di�usion parameter ε, one can set δK = 0. Then, [92, Theorem 4.5] shows that

‖uI − uN‖SD ≤ C[εN−3/2 + (N−1 lnN)2], (5.5)
which implies trivially that

‖uI − uN‖ε ≤ C[εN−3/2 + (N−1 lnN)2]. (5.6)

Recalling (5.1), we see that the bound (5.6) is a supercloseness result.
When b1 > 0 and b2 ≡ 0 so u has characteristic boundary layers along y = 0 and y = 1, it is more di�cult

to tune the SD parameter δK . When K ⊂ Ω21 in Figure 2, the general recommendation often found in the
literature – that the SDFEM parameter should be proportional to the length of the element in the streamline
direction – gives δK = O(N−1), but this choice is in fact inappropriate [48]. For bilinears it is shown in [30]
that one should choose δ21 ≤ Cε−1/4N−2.

For the rest of Section 5, consider a convection-di�usion problem posed on (0, 1)2 whose solution u has
only exponential boundary layers as in (1.5).
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All the discussion so far in Section 5pertains to linear andbilinear elements.Whenpiecewise polynomial
higher-order �nite elements Qp with p > 1 are used in the SDFEM, one can use results from [93] to prove,
analogously to (5.1), that

‖u − uN‖ε ≤ C(N−1 lnN)p (5.7)

on Shishkin meshes, provided that (1.5) is satis�ed for su�ciently large k. Furthermore, it is shown in [93,
Theorem 15] that one has the supercloseness property

‖πu − uN‖ε ≤ ‖πu − uN‖SD ≤ CN−(p+1/2), (5.8)

where instead of the Lagrange nodal interpolant uI , a vertices-edge-cell interpolant πu is used. But note that
(5.8) gains only almost O(N−1/2) over (5.7), although for p = 1 the supercloseness result (5.5) gained almost
O(N−1); this inconsistency is explained in [93, p. 1801].

Somewhat similar results are obtained (in a norm appropriate to the method) for variants of the discon-
tinuous Galerkin method applied to this 2D problem with exponential layers in the papers [82] by Roos and
Zarin and [98, 99, 103, 104] by Zhang et al.

In [25], numerical experiments by Franz using Qp elements in the Galerkin and streamline di�usion �-
nite elementmethods yielded some surprising results. He investigated three di�erent interpolation operators
on each mesh element: Lagrange interpolation at uniformly distributed points (denoted by JNeq), Lagrange
interpolation at the Gauss–Lobatto points (JNGL) and vertex-edge-cell interpolation (π). (An identity relating
JNGL and π is derived in [26].) The numerical results showed for the Galerkin solution uNGal that

‖KNu − uNGal‖ε ≤ CN
−2 for p = 2 and KN = JNeq, JNGL, π, (5.9a)

‖JNequ − uNGal‖ε ≤ CN
−p for p ≥ 3 (5.9b)

and
‖JNGLu − uNGal‖ε + ‖πu − uNGal‖ε ≤ CN

−(p+1) for p ≥ 3. (5.9c)

For the SDFEM, it was seen that

N−1‖JNequ − uNSD‖ε + ‖JNGLu − uNGal‖ε + ‖πu − uNGal‖ε ≤ CN
−(p+1) for p ≥ 2. (5.10)

So far no theoretical proof of these observations is known. In [31] Franz and Roos prove that for odd p one
has the result

‖πu − uNGal‖ε ≤ C [(N
−1 lnN)p+1 + N−(p+1/4)] (5.11)

but this is weaker than (5.10).

Question 5.1. For the convection-di�usion problem (1.1) with n ≥ 2, under reasonable hypotheses on the
data (e.g., in the case n = 2 and Ω = (0, 1)2, assume that (1.5) is valid for k = 3), can one prove any of the
supercloseness bounds in (5.9) or (5.10)?

6 Defect Correction on Layer-Adapted Meshes
Techniques for convergence acceleration that are cheap to implement but yield enhanced orders of conver-
gence in computed solutions are evidently desirable. Twowell-known approaches in this area are Richardson
extrapolation and defect correction; the former is based on the use of di�erent meshes while the latter uses
di�erent discretisations. In this section we shall consider only defect correction on layer-adapted meshes.

We beginwith a general description of defect correction. Let the given boundary value problem be Lu = f
in Ω with u = 0 on ∂Ω. Consider two di�erent discretisations on the same mesh (where both discretisations
satisfy the boundary condition):

L1hu
1
h = f 1h and L2hu

2
h = f 2h ,
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where L1h is of lower order and stable while L2h is of higher order but unstable, and f
1
h , f

2
h are some discretisa-

tions of f . Defect correction attempts to exploit the good features of each scheme (stability of L1h and accuracy
of L2h) in the following way: First solve the stable low-order problem

L1hu
1
h = f 1h , u1h|∂Ω = 0.

Then compute the defect correction solution udch by

L1h(u
dc
h − u1h) = f

2
h − L2hu

1
h , udch |∂Ω = 0;

here we modify u1h using the “defect” L2hu
1
h − f

2
h , i.e., the amount by which u1h fails to be a solution of the

higher-order method. Note that in this method, discrete systems of equations are solved using only the stable
operator L1h.

One can describe defect correction in a variational setting. Let the given problem be

a(u, v) = (f, v) for all v ∈ V,

where a( ⋅ , ⋅ ) is a bilinear form. Using two bilinear forms a1( ⋅ , ⋅ ), a2( ⋅ , ⋅ ) we �rst solve

a1(u1h , vh) = (f 1h , v) for all vh ∈ Vh

and then correct u1h:
a1(udch − u1h , vh) = (f 2h , v) − a

2(u1h , vh) for all vh ∈ Vh .

Standard discretisations of singularly perturbed equations often have stability problems, and these can
be remedied at the cost of using a lower-order method; see for example the discussion of central di�erencing
(second-order but unstable) and simple upwinding (stable but only �rst-order) applied to 1D convection-
di�usion problems in [81, Section I.2.1]. Thus, it is natural to apply defect correction as �rst proposed in
1982 by Hemker [38]. In later papers [8, 24], Layton et al. present certain error estimates on standard (i.e.,
non-layer-adapted) meshes for �nite di�erence methods in 1D and �nite element methods in higher space
dimensions; they obtain – roughly speaking – good estimates for defect correction in subdomains away from
the layer regions.

It is natural to consider a defect correction method that combines the simple upwind operator L1 and
the central di�erence operator L2 on Shishkin meshes. Indeed, in [32] it was shown that for a 1D convection-
di�usion problemwith an exponential boundary layer, on a class of meshes that includes the Shishkin mesh
{xi : i = 0, 1, . . . , N}, the defect correction solution udcN satis�es

max
i

!!!!(u − udcN )(xi)!!!! ≤ C(N
−1 lnN)2. (6.1)

The proof of (6.1) decomposes the consistency error as

L1(u − udcN ) = (L1 − L2)(u − u1N) + (L2u − f 2h ). (6.2)

Here the �rst component on the right-hand side is the relative consistency error which is di�cult to analyse.
It is known [81, Lemma I.2.91] that in 1D the simple upwind operator L1 is (W−1,∞, L∞) stable, viz.,

‖vN‖∞,d ≤ C‖L1vN‖−1,∞,d . (6.3)

(These norms are discrete analogues of the standard Sobolev norms in L∞ andW−1,∞.) One can use (6.3) to
estimate ‖u − udcN ‖∞,d from (6.2) by �rst showing that

""""(L
1 − L2)(u − u1N)

""""−1,∞,d ≤ C(max|ej+1 − ej| + N−1 max|ej|), (6.4)

where ej is the error in the upwind solution at the mesh point xj. To estimate ej+1 − ej, one can use an ex-
pansion of Linß [60, Section 4.2.3] for the error in simple upwinding (see also the full discussion of defect
correction in [60, Section 4.3.3]). This expansion also facilitates the analysis of Richardson extrapolation in
1D.
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What about 2D? In [64], Linß and Stynes compare various numerical methods for (1.1) when Ω = (0, 1)2
and only exponential boundary layers appear in the solution. For the above defect correction method (up-
winding and central di�erencing on Shishkin meshes), they observe almost second-order convergence in the
norm ‖ ⋅ ‖∞,d and conclude that this “appears to be the most e�cient of the �nite di�erence methods consid-
ered". But for thismethod no rigorous proof of almost second-order uniform convergence on a Shishkinmesh
(or a more general layer-adapted mesh) is known.

Question 6.1. Consider the convection-di�usion problem (1.1) with Ω = (0, 1)2, under reasonable hypothe-
ses on the data (e.g., assume that (1.5) is valid for k = 3). Solve this problemnumerically using a defect correc-
tionmethod based on simple upwinding and central di�erencing on a Shishkinmesh (or other layer-adapted
mesh). Can one prove almost second-order convergence in the discrete maximum norm?

What are the di�culties in addressing Question 6.1? In 2D no stability result for simple upwinding that is
analogous to (6.3) is known, and consequently no analogue of (6.4) is available. Kopteva [47] provides an
error expansion for the upwind scheme on a Shishkin mesh in 2D:

uij − u(xi , yj) = HΦ(xi , yj) +
h
εΨ(xi , yj) + Rij (6.5)

which in 1D is a special case of the error expansion of Linß for general meshes. Here Φ and ψ are explicitly
known and the remainder Rij is second order:

|Rij| ≤ C N−2 Fij(1, Ω0; (lnN)2),

where close to the layers Fij is O(lnN)2 and otherwise it is O(1).
For �nite elements on Shishkin meshes or more general layer-adapted meshes it is unclear how best to

use defect correction. Could one combine viscosity stabilisation [60, Section 9.2.3] and the Galerkin �nite
element method? Should one combine SDFEM with a higher-order method?

Question 6.2. Consider the convection-di�usion problem (1.1) with Ω = (0, 1)2. Devise, implement and
analyse a defect correction �nite element method.

7 Adaptive Generation of Uniform Convergence
Adaptive �nite element methods compute an approximate solution to a given problem, then re�ne the mesh
(h-method) or change locally the polynomial degree (p-method) based on some a posteriori error estimator
η. This estimator should be locally computable from the computed numerical solution uh and the given data
of the problem. Ideally η should be equivalent to the numerical error in some norm:

dℓη ≤ ‖u − uh‖ ≤ duη for some constants dℓ, du . (7.1)

(Alternatively, in theDWRmethod [10] one tries to control some functional instead of a norm.) For a singularly
perturbed problem, if the constants dℓ, du are independent of ε, we then say that the estimator is robustwith
respect to ‖ ⋅ ‖; if the constant du is independent of ε but dl depends weakly on ε, we say the estimator is
semi-robust with respect to ‖ ⋅ ‖.

In this section we examine estimators for the convection-di�usion and reaction-di�usion problems (1.1)
and (1.3). First we discuss error estimators for energy and similar norms. Consider piecewise linear elements
and assume for simplicity that b, c, f are piecewise linear (otherwise, additional data error terms will ap-
pear). By a careful study of the dependence on ε of the constants in the standard residual error estimators,
Verfürth [94] discussed the residual estimator ηT de�ned by

η2T := α2T‖rT‖20,T + ∑
E(T)

ε−1/2αE‖rE‖20,E .
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Here rT := (f + ε∆uh − b∇uh − cuh)|T and rE := [ne ⋅ ∇uh]E are the standard element and edge residuals. The
weights αS for S = T, E are de�ned by

αS = min{hSε−1/2, α−1/20 },

where hT and hE are the element and edge diameters and α0 is the constant of (1.2). For reaction-di�usion
problems, Verfürth proved robustness of this estimator for ‖ ⋅ ‖ε. For convection-di�usion problems, unfortu-
nately the estimator is only semi-robust for this norm.

Nevertheless, for convection-di�usion problems the residual estimator ηT is robust with respect to the
so-called dual norm ||| ⋅ ||| de�ned by

|||v||| := ‖v‖ε + sup
φ

(b ⋅ ∇v, φ)
‖φ‖ε

.

This was �rst observed by Sangalli [83] for the residual-free bubble FEM and later analysed for the Galerkin
and streamline di�usion FEMs in [95]; see also [1–4, 6, 20]. Unfortunately, the norm ||| ⋅ ||| is not computable
so these results are of limited practical value.

Robust a posteriori estimators for Lebesgue norms are developed in [35, 36] and for the SDFEM norm
in [41].

Alternative a posteriori error estimators that are discussed in many papers are based on �ux reconstruc-
tion in the space H(div, Ω). Consider �rst, for simplicity, the reaction-di�usion problem (1.3) as in [11]. The
derivation of the error estimator starts from

a(u − uh , v) = (f − cuh − ∇ ⋅ σh , v) − (ε∇uh + σh , ∇v). (7.2)

Now σh ∈ H(div, Ω) is chosen to approximate the numerical �ux −ε∇uh. Additionally, σh is required to satisfy

(∇ ⋅ σh + cuh , 1)K = (f, 1)K for all mesh elements K. (7.3)

(For details of the computation of the recovered �ux σh, see [12].) The combination of the �rst term of the
right-hand side of (7.2) with (7.3) yields the residual part of the new estimator (where the weights mK are
speci�ed in [95])

ηK,res := mK‖f − cuh − ∇ ⋅ σh‖K .

The second term of (7.2) yields after somemanipulation (a direct application of the Cauchy-Schwarz inequal-
ity yields a non-robust estimator) amore complicated di�usive �ux estimator ηDF. The resulting full estimator
of [11] is robust and equivalent to Verfürth’s residual estimator for reaction-di�usion problems.

For convection-di�usion problems the derivation of estimators using �ux reconstructionworks similarly.
Consider a convection-di�usion problem of the form

−ε∆u + ∇ ⋅ (bu) + cu = f in Ω = (0, 1)2, (7.4a)
u = 0 on ∂Ω. (7.4b)

Now σh has to approximate −ε∇uh + buh and should again satisfy (7.3).
In [23] the authors extend the approach to an interior penalty discontinuous Galerkin method, introduc-

ing additional nonconformity, convection and upwinding estimators. They prove robustness in some aug-
mented norm similar as the dual norm above. See also [19, 97].

Some attempts have been made to derive pointwise a posteriori error estimates for singularly perturbed
problems. Using the Green’s function G of the continuous problem, the usual starting point is the represen-
tation

(u − uh)(x) = a(u − uh , G) = (f, G) − a(uh , G) (7.5)

or (in the strong form using distributions)

(u − uh)(x) = ∫ L(u − uh)G. (7.6)
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Linß [61] studies higher-order FEMs in 1D and derives estimates from (7.5) using L1-norm information about
G; his estimator contains discrete derivatives of the numerical solution uh.

Kopteva [49] considered a reaction-di�usion problem in 2D and obtained an a posteriori error bound
for a �nite di�erence method using (7.6). For convection-di�usion in 2D, detailed estimates of the Green’s
function G were proved in [27, 28]; these were used successfully in [13] to derive a posteriori error estimates
for �nite elements in 2D on isotropic meshes for reaction-di�usion problems.

Assuming that L∞ error estimators in space are available, in [51] the authors construct error estimators
in space and time for time-dependent problems with various time discretisations.

A good a posteriori error estimator tells uswhere themesh should be re�ned, but typically we do not have
additional information about the directional behaviour of the error that will guide how the mesh should be
re�ned. Some work in this direction appears in [39, 71], but currently in the singularly perturbed case there
seems to be no satisfactory theory of metric-based algorithms for mesh generation.

A posteriori error estimators are usually analysed with the underlying assumptions that the mesh is
shape-regular and locally uniform, but this excludes the long thin mesh elements that in practice are needed
to deal with layers in solutions. For anisotropic meshes, Kunert [53] developed an a posteriori theory of en-
ergy norm estimates which relies on a measure of alignment between mesh element and layer; this has been
used for example in [33], which examines hp-DG methods for convection-di�usion problems on anisotropic
meshes, and [100], which introduces a modi�ed alignment measure for nonconforming elements when solv-
ing reaction-di�usion problems.

Recently, Kopteva [46] derived residual-type a posteriori error estimates in themaximum normwhen lin-
ear �nite elements on anisotropic triangulations are used to solve singularly perturbed semilinear reaction-
di�usion equations posed in polygonal domains; signi�cantly, the error constants in her estimates are inde-
pendent of the diameters and aspect ratios of mesh elements and of the singular perturbation parameter ε;
perhaps surprisingly, no alignment measure appears in these estimates.

A survey of anisotropic re�nement methods in FEMs is given in [85]. Verfürth [96] presents in detail the
theory of a posteriori error estimation.

Question 7.1. Can one extend the results of [46] to convection-di�usion problems?

Question 7.2. For convection-di�usion or reaction-di�usion problems, using some a posteriori error estima-
tor combined with some strategy for mesh re�nement (or for changing the local polynomial degree in FEMs),
can one prove convergence of the computed solution in some norm, independently of the singular pertur-
bation parameter ε? (The only rigorous published result of this type is the adaptive mesh algorithm in [52]
for upwind �nite di�erences in 1D for which the authors prove �rst-order nodal convergence, uniformly in ε,
starting from an arbitrary mesh; while many other papers describe their methods as “adaptive” and prove
some convergence result, their analysis frequently makes the very strong assumption that the mesh is spe-
cially suited to the unknown solution u without any rigorous justi�cation that their algorithm will produce
such a mesh.)

8 Strongly Coupled Singularly Perturbed Systems
In 2009, Linß and Stynes [65] surveyed methods for the numerical solution of singularly perturbed systems.
Here we describe some recent results that are not in [65] and present some open questions.

First we sketch the situation for systems of reaction-di�usion equations of the form

−E2u�� + Au = f in (0, 1), u(0) = u(1) = 0,

where E and A = (aij) are ℓ × ℓmatrices and u is an ℓ × 1 column vector. The matrix E is diagonal, de�ned as
E = diag(ε1, ε2, . . . , εℓ)with 0 < ε1 ≤ ε2 ≤ ⋅ ⋅ ⋅ ≤ εℓ ≤ 1. Assume that A has positive diagonal entries and that
the matrix Γ = (ãij) de�ned by

ãii = 1, ãij = −
"""""""
aij
aii

"""""""∞
for i ̸= j
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is invertible with Γ−1 ≥ 0 (i.e., this inequality holds for each entry in Γ−1). Then [62, 65] one can decompose u
into a smooth component andboundary layers. Other authors assume thatA is anM-matrix or that (Ax, x) ≥ 0
where ( ⋅ , ⋅ ) is the inner product in ℝℓ. A connection between this positive de�nite property and Γ−1 ≥ 0 is
described in [65, Theorem 2.2]. In [67] a full asymptotic expansion is derived for positive de�nite A in the
case ℓ = 2, including information on analytic regularity. For systems of reaction-di�usion equations posed in
two dimensions there are some results concerning the layer structure [65, Section 3].

Systems of convection-di�usion equations aremore delicate to handle. Consider �rstweakly coupled sys-
tems (i.e., coupled only through their reaction terms) of the form

Lu := −Eu�� − diag(b)u� + Au = f, u(0) = u(1) = 0,

where u = (u1, . . . , uℓ)T and the matrix E is as above. Assume that |bi| ≥ βi > 0 for all i and Γ̃−1 ≥ 0, where
Γ̃ = (ã̃ij) with

ã̃ii = 1, ã̃ij = −min(
"""""""
aij
aii

"""""""∞
,
"""""""
aij
bi

"""""""∞
) for i ̸= j.

Then [58] for ν = 0, 1 one has

|u(ν)k (x)| ≤ C
{
{
{

1 + ε−νk e
−βk(1−x)/ε if bk < 0,

1 + ε−νk e
−βk x/ε if bk > 0.

Thus, when only �rst order-derivatives are considered, there is no strong interaction between the di�erent ui
(incidentally, this is simpler than the reaction-di�usion case).

But consider now a set of two equations with ε1 = ε2, b1 > 0 and b2 < 0. Then the layer at x = 1 in u1
generates a weak layer at x = 1 in u2, and the situation at x = 0 is analogous. Under certain conditions [77],
one can prove the following solution decomposition for ν ≤ 2 (α is some positive parameter):

u1 = S1 + E10 + E11,
u2 = S2 + E20 + E21

with

‖S(ν)1 ‖0 ≤ C, ‖S(ν)2 ‖0 ≤ C,

|E(ν)10 (x)| ≤ Cϵ
1−νe−α

x
ϵ , |E(ν)11 (x)| ≤ Cϵ

−νe−α
1−x
ϵ ,

|E(ν)20 (x)| ≤ Cϵ
−νe−α

x
ϵ , |E(ν)21 (x)| ≤ Cϵ

1−νe−α
1−x
ϵ .

For instance, this tells us that u1 has a strong layer at x = 1 and also a weak layer at x = 0.
The general case of ℓ weakly coupled convection-di�usion equations with bi ≥ βi > 0 for each i is dis-

cussed in detail in [78], and an error estimate for the Galerkin FEM with piecewise linear �nite elements on
a layer-adapted mesh is derived in the weighted energy norm ‖ ⋅ ‖ε.

For strongly coupled systems of convection-di�usion equations (i.e., coupled through their convection
terms) a full interaction between the layers of the various ui takes place. Consider the system of two equations

Lu := −εu�� − Bu� + Au = f, u(0) = u(1) = 0 (8.1)

assuming as in [76] that
(V1) B = B(x) is symmetric,
(V2) A + B�/2 is positive semide�nite,
(V3) the eigenvalues λ1, λ2 of B(x) satisfy min{|λ1|, |λ2|} > α > 0 for all x.
If both eigenvalues of B are positive, then u1 and u2 have overlapping layers at x = 0 and the reduced solution
of (8.1) is the solutions of an initial-value problem [70]. But if λ1 and λ2 have di�erent signs, then u1 and u2
each have strong layers at x = 0 and x = 1; we have full layer interaction.
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Let λ̃1 be the positive eigenvalue of B(0) with [α1, β1]T an associated eigenvector. Similarly let λ̃2 be the
negative eigenvalue of B(1)with eigenvector [α2, β2]T . Then [76] one cande�ne anasymptotic approximation
of u by

u0as(x) := w0(x) + wh(x)c̃0 + d1 [
α1
β1

] exp(−λ̃1x/ε) + d2 [
α2
β2

] exp(λ̃2(1 − x)/ε), (8.2)

wherew0 + wh c̃0, with an unknown vector c̃0, is the general solution of the reduced equation−Bw� + Aw = f .
One can compute c̃0 and the constants d1, d2 from the boundary conditions of (8.1). Neglecting the layer
terms in (8.2), we de�ne the “reduced solution” of (8.1) to be

u0 = w0 + whc0 with c0 = lim
ε→0

c̃0.

Note that – surprisingly – in general u0 does not satisfy any of the boundary conditions in (8.1).
Applying this analysis to the example

−εu�� − [
3 4
4 −3] u

� = [
1
2] , u(0) = u(1) = 0,

yields the reduced solution u0 = (u01, u02) where

u01 = 11/25x − 8/25, u02 = −2/25x − 4/25.

It was not observed in [76] that the correct boundary conditions for the reduced problem can be explicitly
described as

(u01 − 2u02)(0) = 0, (2u01 + u02)(1) = 0
and can be derived, for instance, from the decomposition B = B+ + B−, where B+ is positive semide�nite and
B− negative semide�nite. In our example, we have

(Bv, v) = 3v21 + 8v1v2 − 3v22 = (2v1 + v2)2 − (v1 − 2v2)2.

Question 8.1. Can one analyse the solution structure of the strongly coupled convection-di�usion system
(8.1) when one or more of the assumptions (V1), (V2), (V3) are violated? Can the results for (8.1) be extended
to the general case of ℓ ≥ 2 equations?

When strongly coupled systems of the form

− Eu�� − Bu� + Au = f, u(0) = u(1) = 0 (8.3)

have di�erent small parameters, i.e., E = diag(ε1, ε2, . . . , εℓ) with 0 < ε1 ≤ ε2 ≤ ⋅ ⋅ ⋅ ≤ εℓ ≤ 1, the situation is
even more complicated. Some a priori estimates can be found in [59], and some information about the layer
structure of u is derived in [66, 74] under restrictive conditions; many results – even the boundary conditions
for the reduced problem – depend on the relative scalings εi/εj of the singular perturbation parameters.

Question 8.2. For the strongly coupled system (8.3) of convection-di�usion equations on the interval [0, 1]
with di�erent small parameters, can one identify the location and structure of the layers in the solution u
without placing overly restrictive hypotheses on the problem? Can one then prove convergence, uniformly in
the εi, for some numerical method for (8.3)?

There are almost no published results for systems of strongly coupled convection-di�usion equations posed
in two (or more) dimensions. Consider the system

−ε∆u + A1
∂u
∂x1

+ A2
∂u
∂x2

+ ρ u = f in Ω, (8.4a)

u = 0 on Γ = ∂Ω, (8.4b)

assuming that the matrices A1, A2 ∈ C1(Ω) are symmetric and that the unit outer normal ν = (ν1, ν2) exists
almost everywhere on the boundary ∂Ω. Then only in simple cases do we have some information about lo-
cation and structures of layers. For instance, if A1 and A2 are simultaneously diagonalisable then the system
(8.4) can be decoupled.
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Question 8.3. Can one analyse the structure of the solution u of the strongly coupled system (8.4) posed in
some 2D domain Ω without restricting the problem to some extremely special situation? Can one then prove
convergence, uniformly in ε, for some numerical method for (8.4)?
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