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Abstract. By employing the infinite multilevel representation of the resid-
ual, we derive computable bounds to estimate the distance of finite element
approximations to the solution of the Poisson equation. If the finite element
approximation is a Galerkin solution, the derived error estimator coincides
with the standard element and edge based estimator. If Galerkin orthogonal-
ity is not satisfied, then the discrete residual additionally appears in terms of
the BPX preconditioner. As a by-product of the present analysis, conditions
are derived such that the hierarchical error estimation is reliable and efficient.

1. Introduction

Residual based a posteriori error estimators are by now a well established tool
for the efficient solution of boundary value problems [1, 2, 28]. They are used
to automatically design optimized meshes in the sense of achieving a given target
accuracy with a minimal number of degrees of freedom. The mesh generation
is generally steered by trying to equidistribute the local error contributions of a
residual error estimator. Convergence results, i.e., the error reduction by some
convergence factor, are however rather new. In the pioneering work [16, 17], a
strategy has been proposed which ensures convergence to any desired accuracy in
a finite number of refinement steps. It has significantly been improved in [22] by
the notion of data oscillation. Optimal computational complexity has firstly been
provided by means of wavelet theory [10, 11, 12]. These results and techniques
have been extended by many authors, see e.g. [6, 9, 25, 27, 29] and the references
therein.

The basic problem in constructing a posteriori error estimators is that the resid-
ual has to be measured in the dual space H−1(Ω). The standard trick to obtain
upper estimates of the error is to employ Galerkin orthogonality by introducing
a local (Clémont) interpolant. Duality together with an approximation property
provides the desired estimate. Nevertheless, an exact solution of the corresponding
discrete equations can be very costly, even though a linearly scaling iterative scheme
like a multigrid method is used. Hence, to find ways of estimating the discretiza-
tion error without having the discrete solution at hand is important, especially in
situations where the accurate solution of the discrete problem is expensive, e.g. in
case of eigenvalue and related problems.

If the discrete system is not solved exactly, Galerkin orthogonality does not hold
and cannot be employed to derive a posteriori estimates. However, the H−1(Ω)-
norm of the discrete residual, i.e., the residual with respect to the current Galerkin
solution, is computable by a preconditioner which is spectrally equivalent to the
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underlying operator, for example the BPX scheme [7]. Often one thus combines the
BPX preconditioner with the traditional error estimators to estimate the residual,
see e.g. [24] and the references therein. The reliability and efficiency of this error
estimator can be deduced with the help of the stability of the traditional error
estimator, see [27, Proposition 4.6].

In this article, we will provide an alternative technique for proving that the com-
bination of the traditional a posteriori error estimator with the BPX preconditioner
yields a reliable and efficient error estimator. The proof is based on a hypothetical
infinite and dense collection of nested finite element spaces. Then, according to
e.g. [20, 21, 23], the infinite BPX scheme provides a frame in H−1(Ω) which means
that

(1.1) ‖r‖2H−1(Ω) ∼
∑

j∈N0

∑

k∈△j

〈r, ϕj,k〉
2
L2(Ω).

Here, ϕj,k is the nodal finite element basis function on level j, normalized in the
H1(Ω)-norm, and the sum has to be taken over all levels. Moreover, the bilinear
form 〈·, ·〉L2(Ω) has to be understood as the continuous extension of the L2(Ω)-inner

product to the duality product H−1(Ω)×H1
0 (Ω) → R.

The infinite sum on the right hand side of (1.1) could be truncated at a certain
refinement level. In fact, the contribution of a sufficiently refined subsequent level
provides a bound of the residual from above. It also provides a lower bound which
is seen by using a technique as in [17, 18, 22]. It is some kind of stability estimate,
which could be provided by local stability estimates using sufficiently many bubble
functions. For technical reasons, to apply these arguments, we need two (three)
refinement levels in our proofs for piecewise (bi-) linear finite elements on triangles
(parallelograms).

It turns out, if we neglect data oscillations or if we have them under explicit
control, the H−1(Ω)-norm of the residual is split in the discrete part, which is easily
computed by means of the BPX preconditioner, and a continuous part, which yields
the traditional upper bound. Hence, during an iterative procedure, the discrete
residual can arbitrarily be balanced with the discretization error.

Furthermore, we can verify the hierarchical error estimation. If one incorporates
the data oscillation in the right hand side of (1.1), it is reasonable that the H−1(Ω)-
norm of the remaining residual can be recovered, up to a constant, by using a BPX
scheme applied on an appropriately refined grid. In this article, we will show how
this result can be proven rigorously.

To keep the arguments simple, we consider the Dirichlet problem for the Pois-
son equation on a two-dimensional polygonal domain, using linear or bilinear finite
elements, as model problem for demonstrating our arguments. We, however, em-
phasize that the present concept is quite general and can also be used to derive
error estimators in case of other (elliptic) partial differential operators.

We finally like to mention that we have not tried to optimize or sharpen the
constants which appear in the estimates. Moreover, we do not touch the question
of goal oriented error estimators, where in the framework of dual weighted residual
method [4] Galerkin orthogonality plays a crucial role.

The present article is organized as follows. The problem under consideration
is formulated in Section 2. Section 3 introduces briefly the multilevel frame con-
struction. In Section 4 it is shown how to switch between adaptive finite element
representations and frame representations. In Section 5 we prove the efficiency and
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reliability of the a posteriori estimator without having Galerkin orthogonality. This
result is used to derive the hierarchical estimator in Section 6.

Throughout the article, in order to avoid the repeated use of generic but unspec-
ified constants, by C . D we mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C & D is
defined as D . C, and C ∼ D as C . D and C & D.

2. Problem statement

Let Ω ⊂ R
2 denote a two-dimensional bounded polygonal domain with boundary

∂Ω. In the present article, given f ∈ L2(Ω), we intend to solve the Poisson equation

(2.1) −∆u = f in Ω, u = 0 on ∂Ω

by adaptive finite element methods. To do so, for a given finite element solution
uh, we need an error estimator, which estimates the residual r ∈ H−1(Ω), given by

〈r, v〉L2(Ω) =

∫

Ω

fv dx−

∫

Ω

∇uh∇v dx for all v ∈ H1
0 (Ω),

in the H−1(Ω)-norm. In general, to derive such error estimators, Galerkin orthog-
onality is employed.

Consider a shape regular triangulation Kh of the domain Ω by triangular or
parallelogrammic elements Kh. The set of all interior edges is indicated by Eh. The
space of continuous piecewise (bi-) linear elements will be denoted by Vh. Defining
for uh ∈ Vh the element residual

q := ∆uh + f for all elements K ∈ Kh

and the jumps at the edges

δ :=

[
∂uh
∂n

]
for all edges E ∈ Eh,

the standard error estimation in case of Galerkin orthogonality (cf. [1, 2, 28]) is

(2.2) ‖r‖H−1(Ω) ∼ ‖u− uh‖H1(Ω) .
∑

K∈Kh

h2K‖q‖2L2(K) +
∑

E∈Eh

hE‖δ‖
2
L2(E)

with hK and hE denoting the mesh sizes of the elements K and edges E, respec-
tively.

To numerically compute the approximate solution uh to (2.1), one employs a
finite element basis ΦΣ of the space Vh and obtains a linear system of equations

(2.3) AΣuΣ = fΣ.

If we solve this discrete system not exactly, Galerkin orthogonality cannot be em-
ployed if the discrete residual rΣ := fΣ −AΣuΣ is too large. We shall show in the
sequel that (2.2) still holds if the discrete residual is incorporated in terms of the
BPX preconditioner BPX(rΣ) (see (5.1) for a precise definition). By incorporating
data oscillations in a proper way, see e.g. [22], this estimator is shown to be reliable
and efficient.

Notice that for all K ∈ Kh the local lower estimate

h2K‖q‖2L2(K) +
∑

E∈∂K

hE‖δ‖
2
L2(E) . ‖u− uh‖

2
H1(ωK) +

∑

K′∈Kh: K = K′

or K and K′ have
a common edge

h2K‖f − fh‖
2
L2(K′)
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does always hold, i.e., without having Galerkin orthogonality. Here, the domain
ωK consists of the union of the element K and all elements which share an interior
edge with K. The function fh denotes the projection into the space of piecewise
constants with respect to the triangulation and thus the difference f − fh refers to
the data oscillation. For the proof of this estimate, we refer to e.g. [8, 28].

3. Multilevel frames

Let Ω ⊂ R
2 be a polygonal and bounded domain with coarse triangulation or

quadrangulation (by parallelograms) T0 = {τ0,k}. By dyadic refinement of each
element on level j − 1 into 4 elements on level j, we recursively obtain for any
j > 0 the triangulation or quadrangulation Tj = {τj,k}. On the mesh Tj , we
define standard Lagrangian piecewise linear or bilinear continuous finite elements
Φj = {ϕj,k : k ∈ △j}. This yields a nested sequence of finite dimensional trial
spaces

(3.1) V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ H1
0 (Ω),

where

Vj = span{ϕj,k : k ∈ △j}

= {u ∈ C(Ω) : u|τ is a (bi-) linear polynomial for all τ ∈ Tj}

(△j denotes an appropriate index set) and dimVj ∼ 4j. For our approach it is
convenient to normalize the Lagrangian finite elements with respect to the energy
space, i.e.,

(3.2) ‖ϕj,k‖H1(Ω) ∼ 1.

In view of this normalization, the stability of the basis functions implies the norm
equivalence

(3.3)
∑

k∈△j

〈vj , ϕj,k〉
2
L2(Ω) ∼ 2−2j‖vj‖

2
L2(Ω) for all vj ∈ Vj ,

which immediately yields

(3.4)
∑

k∈△j

〈v, ϕj,k〉
2
L2(Ω) . 2−2j‖v‖2L2(Ω) for all v ∈ L2(Ω).

From now on, we will indicate the basis functions by the multi-index λ = (j, k) ∈
Λ, where Λ = {λ = (j, k) : k ∈ △j , j ∈ N0} denotes the set of all such indices. The
notion |λ| := j indicates the scale.

In accordance with [21, 23], the collection of all basis functions ΦΛ = {ϕλ : λ ∈
Λ} defines a frame for H1

0 (Ω), which means that

(3.5)
∑

λ∈Λ

〈f, ϕλ〉
2
L2(Ω) ∼ ‖f‖2H−1(Ω) for all f ∈ H−1(Ω).

Notice that this frame underlies the construction of the so-called BPX precondi-
tioner, see e.g. [7, 15, 20].

A natural tree structure is imposed by the present multiscale hierarchy.

Definition 3.1 (Father-son relation). A basis function ϕλ is called a son of the
basis function ϕλ′ , if |λ′|+ 1 = |λ| and supp(ϕλ) ⊂ supp(ϕλ′). The basis function
ϕλ′ is then called the father of ϕλ. We call a basis function ϕλ a predecessor of ϕλ′ ,
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if there exists a path in the directed father-son graph which connects both functions.
Analogously the notion successor is defined.

Notice that this definition does not imply uniqueness of the father-son relation.
There exist basis functions which own more than one father. Moreover, for sake
of convenience, we will use the above father-son relation also in the context of the
related index sets.

4. Adaptive representations

Of course, on a computer, we can use only finite representations of functions.
Therefore, we shall consider functions uh =

∑
λ∈Σ uλϕλ = ΦΣuΣ with finite index

sets Σ ⊂ Λ. We have to impose some restrictions in order to ensure that the set
ΦΣ = {ϕλ : λ ∈ Σ} generates a standard finite element space. To that end, we note
that each basis function ϕλ is supported on a certain number of elements, i.e., it
holds

supp(ϕλ) =
⋃

k∈Jλ

τ |λ|,k

for a certain index set Jλ. Hence, a finite collection ΦΣ induces a mesh Kh on the
domain Ω via the collection of elements since

Ω =
⋃

λ∈Σ

⋃

k∈Jλ

τ |λ|,k.

Here and in what follows, A means the closure of the set A.

Definition 4.1 (Gradedness). The mesh Kh is called graded, if the levels of adja-
cent elements (that are elements with common edges or vertices) differ at most by
one.

Any non-graded mesh can be extended to a graded mesh by additional refine-
ment steps, cf. Figure 1. Let us remark that the present notion of gradedness is
somewhat more restrictive than the one-irregularity from [3] since there, in case of
parallelograms, the elements which share a common vertex may differ by two levels.

Figure 1. A nongraded mesh (left) and the corresponding graded
mesh (right).

As one readily infers, by our definitions, a graded mesh induces always a finite
element space Vh, and thus a basis ΦΣ, which belongs to a mesh with at most one
hanging node per edge. In Figure 2, we marked the degrees of freedom by “•” while
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“◦” indicates hanging nodes. Each degree of freedom is associated uniquely with a
basis function ϕλ if we demand that the level |λ| is the highest possible one relative
to the given mesh. An illustration can be found in Figure 3. Notice that this choice
induces that the value at the hanging node is given by linear interpolation from the
two vertex values of the particular edge.
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Figure 2. The degrees of freedom induced by a graded mesh.
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Figure 3. The finite element basis functions on a graded mesh.

5. Upper and lower error bounds

Consider a graded mesh and an associated finite element function uh ∈ Vh which
has the basis representation

∑
λ∈Σ uλϕλ = ΦΣuΣ. Our first theorem states an

upper bound of the residual r = ∆uh + f for f ∈ L2(Ω). Upper and lower bounds
will include the discrete residual

(5.1) BPX(rΣ)
2 :=

∑

λ∈{Σand all its
predecessors}

〈r, ϕλ〉
2
L2(Ω),

which can be computed by applying the standard BPX scheme [7] to the vector rΣ.
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Theorem 5.1 (Upper bound). Let r = q + δ ∈ H−1(Ω) be split in the interior
residual q ∈ L2(Ω) and the jump terms at the edges δ ∈ H−1(Ω). Then, the
residual is bounded by the sum of the discrete residual rΣ plus the interior residual
q and the jump δ across the edges:

‖r‖2H−1(Ω) . BPX(rΣ)
2 +

∑

K∈Kh

h2K‖q‖2L2(K) +
∑

E∈Eh

hE‖δ‖
2
L2(E).

Here, Kh denotes the set of elements and Eh the set of edges of the underlying
mesh.1 Moreover, hK := diam(K) for all K ∈ Kh and hE := diam(E) for all
E ∈ Eh are the related local mesh sizes.

Proof. We need to estimate the residual r = f +∆uh in the space H−1(Ω), which,
on account of the frame property (3.5), is given by

‖r‖2H−1(Ω) ∼
∑

λ∈Λ

〈r, ϕλ〉
2
L2(Ω).

We split the index set Λ into the set of inactive indices, that are all successors of
Σ, and the set of active indices, which includes Σ and all its predecessors:

‖r‖2H−1(Ω) ∼
∑

λ is active

〈r, ϕλ〉
2
L2(Ω)

︸ ︷︷ ︸
=BPX(rΣ)2

+
∑

λ is inactive

〈r, ϕλ〉
2
L2(Ω)

= BPX(rΣ)
2 +

∑

λ is inactive

∣∣∣∣∣
∑

K∈Kh

〈q, ϕλ〉L2(K) +
∑

E∈Eh

〈δ, ϕλ〉L2(E)

∣∣∣∣∣

2

.

From (a+ b)2 ≤ 2a2 + 2b2 we conclude

‖r‖2H−1(Ω) . BPX(rΣ)
2 +

∑

λ is inactive

∣∣∣∣∣
∑

K∈Kh

〈q, ϕλ〉L2(K)

∣∣∣∣∣

2

+
∑

λ is inactive

∣∣∣∣∣
∑

E∈Eh

〈δ, ϕλ〉L2(E)

∣∣∣∣∣

2

.

Since, due to the gradedness, each inactive basis function ϕλ is supported only on
O(1) elements from Kh, it follows that

∣∣∣∣∣
∑

K∈Kh

〈q, ϕλ〉L2(K)

∣∣∣∣∣

2

.
∑

K∈Kh

〈q, ϕλ〉
2
L2(K),

∣∣∣∣∣
∑

E∈Eh

〈δ, ϕλ〉L2(E)

∣∣∣∣∣

2

.
∑

E∈Eh

〈δ, ϕλ〉
2
L2(E).

Thus, we arrive at

‖r‖2H−1(Ω) . BPX(rΣ)
2 +

∑

K∈Kh

∑

λ is inactive

〈q, ϕλ〉
2
L2(K) +

∑

E∈Eh

∑

λ is inactive

〈δ, ϕλ〉
2
L2(E)

=: BPX(rΣ)
2 +

∑

K∈Kh

AK +
∑

E∈Eh

BE .

1If an element K ∈ Kh has a hanging node, this part of the boundary consists of two edges.
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Now, for fixed K and E, we estimate the terms AK and BE separately. To this
end, we denote by |K| and |E| the associated refinement level of the elements and
edges K and E, respectiveley. Then, by (3.4), we find

AK =
∑

λ is inactive

〈q, ϕλ〉
2
L2(K) ≤

∑

j≥|K|

∑

k∈△j

〈q, ϕj,k〉
2
L2(K) .

∑

j≥|K|

2−2j‖q‖2L2(K)

∼ 2−2|K|‖q‖2L2(K).

Similarly, by applying the argument (3.4) to the finite element spaces Vj
∣∣
E
, we

conclude

BE =
∑

λ is inactive

〈δ, ϕλ〉
2
L2(E) ≤

∑

j≥|E|

∑

k∈△j

〈δ, ϕj,k〉
2
L2(E) .

∑

j≥|E|

2−j‖δ‖2L2(E)

∼ 2−|E|‖δ‖2L2(E).

This finishes the proof due to 2−|K| ∼ hK and 2−|E| ∼ hE . �

We emphasize that this error estimator is not computable since the norms
‖q‖L2(K) can generally not be computed exactly. To obtain computable bounds,

we shall introduce the notion of L2-data oscillation.

Definition 5.2 (Data oscillation). Let V (K) denote the space of linear (in case
of triangles) or bilinear (in case of parallelograms) polynomials on the element K.
Then, for all K ∈ Kh we define

osc(f,K) := ‖f − PKf‖L2(K),

where PK : L2(K) → V (K) denotes the L2-orthogonal projection onto the space
V (K).

Our definition of the data oscillation differs from the usual one where a projec-
tion onto piecewise constant functions is employed. But in order to ensure (5.3),
we require a projection onto (possibly discontinuous) piecewise (bi-) linear func-
tions. In case of Galerkin orthogonality, the discrete residual is not present and a
projection onto piecewise constant functions will clearly be sufficient.

By using the data oscillations, we have the decomposition

(5.2) ‖q‖2L2(K) = ‖∆uh + f‖2L2(K) = ‖∆uh + PKf‖
2
L2(K) + osc(f,K)2.

Moreover, we shall introduce the projected residual

rh := qh + δ, where qh =
∑

K∈Kh

∆uh + PKf.

In particular, there holds

(5.3) 〈r, ϕλ〉L2(Ω) = 〈rh, ϕλ〉L2(Ω) for all active λ,

which means that r and rh lead to the same discrete residual BPX(rΣ). Conse-
quently, applying the identity (5.2) in each element K ∈ Kh yields immediately the
following corollary.
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Corollary 5.3. It holds that

‖r‖2H−1(Ω) . BPX(rΣ)
2 +

∑

K∈Kh

h2K‖qh‖
2
L2(K)

+
∑

E∈Eh

hE‖δ‖
2
L2(E) +

∑

K∈Kh

h2K osc(f,K)2.

If the data oscillation is small, i.e., if the details of the right hand side f are
resolved by the current finite element mesh, then one may neglect the last term
in this bound. Then, the a-posteriori error estimator is computable by exploit-
ing a quadrature formula which is exact for piecewise linear or bilinear functions,
respectively.

To prove lower bounds, we need the following bubble property which is a well
known technique (e.g. [18, 28]) in the derivation of error estimates.

Lemma 5.4 (Bubble property). Let V (E) denote the space of linear polynomials
on E. Then, for all edges E it holds that

(5.4) hE‖ψ‖
2
L2(E) ∼

∑

λ∈bubble(E)

〈ψ, ϕλ〉
2
L2(E) for all ψ ∈ V (E)

with bubble(E) denoting the indices of all functions on level |E| + 2 which are
completely supported inside the element, i.e.,

bubble(E) :=
{
|λ| = |E|+ 2 : (suppϕλ)

∣∣
E
⊂ E

}
.

The analogous result holds with respect to the elements K, i.e.,

(5.5) h2K‖ψ‖2L2(K) ∼
∑

λ∈bubble(K)

〈ψ, ϕλ〉
2
L2(K) for all ψ ∈ V (K)

with
bubble(K) := {|λ| = |K|+ 2 : suppϕλ ⊂ K}.

Proof. The lower bounds in (5.4) and (5.5) are straightforward since the Riesz
stability induces that

hE‖ψ‖
2
L2(E) ∼

∑

|λ|=|E|+2

〈ψ, ϕλ〉
2
L2(E) ≥

∑

λ∈bubble(E)

〈ψ, ϕλ〉
2
L2(E), ψ ∈ V (E),

and likewise for elements K.
To show the upper bound of (5.4), we consider the edge E := [0, 4] and piecewise

linear nodal ansatz functions {ϕ0, ϕ1, . . . , ϕ4} with respect to the step width 1.
Assume that there is a linear polynomial p = α+ β(x − 2) such that

‖p‖2L2([0,1]) = 1 and

3∑

i=1

〈p, ϕi〉
2
L2(E) = 0.

The latter condition leads to 〈p, ϕi〉L2(E) = 0, i = 1, 2, 3, which, in view of

p = (α− 2β)ϕ0 + (α − β)ϕ1 + αϕ2 + (α+ β)ϕ3 + (α + 2β)ϕ4,

is equivalent to



1/6 2/3 1/6

1/6 2/3 1/6
1/6 2/3 1/6







α− 2β
α− β
α

α+ β
α+ 2β



=



α− β
α

α+ β


 = 0.
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However, this equation holds only if α = β = 0, which is a contradiction to
‖p‖L2([0,1]) = 1. This proves that

3∑

i=1

〈p, ϕi〉
2
L2(E) ≥ γ‖p‖2L2(E)

for some γ > 0, which is the desired upper bound in case of edges.
By using standard tensor product arguments, we obtain the assertion in case

of parallelogrammic elements K. In case of triangular elements, a direct calcula-
tion yields the assertion likewise to above, since V (K) is three dimensional while
bubble(K) consists of three linearly independent ansatz functions. �

Similar results can be obtained without major difficulties for other kind of finite
element basis functions as well. In this regard, one has only to consider a reference
triangle and sufficiently many refinement steps. We would like to skip the details
and confine ourselves to the present setting.

Theorem 5.5 (Lower bound). There holds

BPX(rΣ)
2 +

∑

K∈Kh

h2K‖qh‖
2
L2(K) +

∑

E∈Eh

hE‖δ‖
2
L2(E)

. ‖r‖2H−1(Ω) +
∑

K∈Kh

h2K osc(f,K)2.

Proof. It holds due to the Lemma 5.4 that
∑

K∈Kh

h2K‖qh‖
2
L2(K) ∼

∑

K∈Kh

∑

λ∈bubble(K)

〈qh, ϕλ〉
2
L2(K)

=
∑

K∈Kh

∑

λ∈bubble(K)

(
〈q, ϕλ〉L2(K) − 〈q − qh, ϕλ〉L2(K)

)2

.
∑

K∈Kh

∑

λ∈bubble(K)

(
〈q, ϕλ〉

2
L2(K) + 〈q − qh, ϕλ〉

2
L2(K)

)
.

Herein, we can estimate

〈q − qh, ϕλ〉
2
L2(K) ≤ ‖q − qh‖

2
L2(K)‖ϕλ‖

2
L2(K) . h2K osc(f,K)2

since |λ| = |K|+ 2 for all λ ∈ bubble(K). Due to #bubble(K) = O(1) and

〈q, ϕλ〉L2(K) = 〈r, ϕλ〉L2(Ω) for all λ ∈ bubble(K),

we therefore conclude that

(5.6)

∑

K∈Kh

h2K‖qh‖
2
L2(K) .

∑

K∈Kh

∑

λ∈bubble(K)

〈r, ϕλ〉
2
L2(Ω) +

∑

K∈Kh

h2K osc(f,K)2

≤
∑

λ∈Λ

〈r, ϕλ〉
2
L2(Ω) +

∑

K∈Kh

h2K osc(f,K)2

∼ ‖r‖2H−1(Ω) +
∑

K∈Kh

h2K osc(f,K)2.
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Since the jump terms at the edges are at most linear functions, the bubble property
(5.4) applied to the spaces Vj

∣∣
E
yields

(5.7)
∑

E∈Eh

hE‖δ‖
2
L2(E) ∼

∑

E∈Eh

∑

λ∈bubble(E)

〈δ, ϕλ〉
2
L2(E).

We shall now use that each edge E belongs to two neighbouring elements K1(E)
and K2(E) whose levels differ at most by one from the edge level. Hence, for
λ ∈ bubble(E), we arrive at the estimate

〈δ, ϕλ〉
2
L2(E) = 〈δ, ϕλ〉

2
L2(Ω)

=

(
〈r, ϕλ〉L2(Ω) − 〈q − qh, ϕλ〉L2(K1(E)∪K2(E)) − 〈qh, ϕλ〉L2(K1(E)∪K2(E))

)2

. 〈r, ϕλ〉
2
L2(Ω) + 〈q − qh, ϕλ〉

2
L2(K1(E)) + 〈q − qh, ϕλ〉

2
L2(K2(E))

+ 〈qh, ϕλ〉
2
L2(K1(E)) + 〈qh, ϕλ〉

2
L2(K2(E))

. 〈r, ϕλ〉
2
L2(Ω) + h2K1(E)‖q − qh‖

2
L2(K1(E)) + h2K2(E)‖q − qh‖

2
L2(K2(E))

+ h2K1(E)‖qh‖
2
L2(K1(E)) + h2K2(E)‖qh‖

2
L2(K2(E)).

Inserting this expression into (5.7) and replacing ‖q − qh‖L2(K) by osc(f,K), we
arrive at

∑

E∈Eh

hE‖δ‖
2
L2(E) .

∑

E∈Eh

∑

λ∈bubble(E)

(
〈r, ϕλ〉

2
L2(Ω) + h2K1(E) osc

(
f,K1(E)

)2

+ h2K2(E) osc
(
f,K2(E)

)2
+ h2K1(E)‖qh‖

2
L2(K1(E)) + h2K2(E)‖qh‖

2
L2(K2(E))

)

.
∑

λ∈Λ

〈r, ϕλ〉
2
L2(Ω) +

∑

K∈Kh

h2K‖qh‖
2
L2(K) +

∑

K∈Kh

h2K osc(f,K)2.

By virtue of (3.5) and (5.6), we finally get
∑

E∈Eh

hE‖δ‖
2
L2(E) . ‖r‖2H−1(Ω) +

∑

K∈Kh

h2K osc(f,K)2.

This finishes the proof in view of BPX(rΣ) . ‖r‖H−1(Ω). �

Hence, under the usual assumption that the data oscillation is resolved, we have
proved a computable a-posteriori bound on the error for an arbitrarily given finite
element function uh which is efficient and reliable.

Remark 5.6. The discrete BPX scheme for computing the term BPX(rΣ) can
be replaced by any other method which provides the H−1(Ω)-norm of the discrete
residual rΣ. Specifically, a multiplicative multigrid method can be used as well, see
e.g. [30] and the references therein.

6. Hierarchical error estimation

To derive a hierarchical error estimator we shall consider the union of the three
subsequent generations Γ of Σ which stem from three uniform subdivisions of the
actual mesh, hence Γ ⊂ Λ and Γ∩Σ = ∅. Then, despite of the presence of hanging
nodes, there are at least five degrees of freedom per edge. Consequently, the set Γ
contains for allK ∈ Kh and E ∈ Eh the bubble functions bubble(K) and bubble(E).



12 HELMUT HARBRECHT AND REINHOLD SCHNEIDER

Theorem 6.1 (Estimator equivalence). It holds

(6.1)
∑

K∈Kh

h2K‖qh‖
2
L2(K) +

∑

E∈Eh

hE‖δ‖
2
L2(E) ∼

∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω).

Proof. We prove first that the right hand side is an upper bound of the left hand
side.

By using the bubble property (Lemma 5.4) together with the identity

〈qh, ϕλ〉L2(K) = 〈rh, ϕλ〉L2(Ω) for all λ ∈ bubble(K),

we arrive at

(6.2)
∑

K∈Kh

h2K‖qh‖
2
L2(K) ∼

∑

K∈Kh

∑

λ∈bubble(K)

〈rh, ϕλ〉
2
L2(Ω) .

∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω).

Next, mimicking the arguments of the proof of the corresponding bound in Theo-
rem 5.5, we can estimate

∑

E∈Eh

hE‖δ‖
2
L2(E) ∼

∑

E∈Eh

∑

λ∈bubble(E)

〈δ, ϕλ〉
2
L2(Ω)

.
∑

E∈Eh

∑

λ∈bubble(E)

(
〈rh, ϕλ〉L2(Ω) − 〈qh, ϕλ〉L2(K1(E)∪K2(E))

)2

.
∑

E∈Eh

∑

λ∈bubble(E)

(
〈rh, ϕλ〉

2
L2(Ω) + 〈qh, ϕλ〉

2
L2(K1)

+ 〈qh, ϕλ〉
2
L2(K2)

)

.
∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω) +

∑

K∈Kh

h2K‖qh‖
2
L2(K).

By virtue of the above estimate (6.2), this gives again
∑

E∈Eh

hE‖δ‖
2
L2(E) .

∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω).

It remains to prove that the right hand side of (6.1) is also a lower bound of the
left hand side. To this end, we estimate

∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω) .

∑

λ∈Γ

(
〈qh, ϕλ〉

2
L2(Ω) + 〈δ, ϕλ〉

2
L2(Ω)

)
.

Like in the proof of Theorem 5.1, the gradedness implies
∑

λ∈Γ

〈rh, ϕλ〉
2
L2(Ω) .

∑

K∈Kh

∑

λ∈Γ

〈qh, ϕλ〉
2
L2(K) +

∑

E∈Eh

∑

λ∈Γ

〈δ, ϕλ〉
2
L2(E)

.
∑

K∈Kh

h2K‖qh‖
2
L2(K) +

∑

E∈Eh

hE‖δ‖
2
L2(E),

which completes the proof. �

Remark 6.2. In case of triangles, the jump term δ is constant relative to the edges,
whereas the interior residual qh is an elementwise linear polynomial. Since only one
refinement step is required to prove Lemma 5.4 in case of constant functions ψ on
edges, in case of triangles two refinement steps would suffice to create all bubble
functions that are necessary to catch the essential terms of the residual.

Combining (6.1) with Corollary 5.3 and Theorem 5.5 implies the following state-
ment for the computation of the complete residual.
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Corollary 6.3 (Hierachical error estimator). Let ΦΞ be the finite element basis
which stems from three dyadic subdivisions of the actual mesh, i.e., Ξ ⊂ Γ is the
finest mesh related to Γ. Let

rΞ :=
[
〈rh, ϕλ〉L2(Ω)

]
λ∈Ξ

denote the discrete residual computed with respect to this finite element basis. Then,
there holds

BPX(rΞ)
2 −

∑

K∈Kh

h2K osc(f,K)2

. ‖r‖2H−1(Ω) . BPX(rΞ)
2 +

∑

K∈Kh

h2K osc(f,K)2.

Remark 6.4. If we replace the right hand side f by its L2-orthogonal projection fh
onto Vh, then the term with the data oscillation disappears while the finite element
solution uh does not change. It follows then simply

‖r‖H−1(Ω) ∼ BPX(rΞ).

Due to the nonlocal nature of the BPX multilevel scheme, this error estimator is
non-local, as it is the case for all estimators presented here if an algebraic residual
is apparent. Therefore, we have to address how the present estimators could be
used for an adaptive refinement scheme.

Of course, the refinement will be steered only by the error on the present finest
grid Ξ. Perhaps there are several possibilities to perform this. For example, one
may consider only the fine level portions, which are local, and use the usual mark-
ing strategy [17]. One may also iterate without ’ mesh refinement as long as the
algebraic error is dominating the estimated error.

Presently, we advice to a strategy which mimics the best N -term strategy of
wavelet schemes, allowing also for a coarsening. Indeed, by going into frame co-
ordinates one can directly apply optimal adaptive algorithms as in the multi-scale
framework in terms of wavelet bases [10, 11, 19], see also [13, 14, 26] for a direct
treatment in frame coordinates.

A simple strategy is given by switching between frame coordinates and finite
element bases. One step of a possible realization might be formulated as follows:

(i) Refine the given mesh two times in case of triangles and three times in case
of parallelograms, respectively, to get the finite element basis Ξ. For the
tree

Θ := Ξ ∪ {all predecessors of Ξ}

compute the discrete residual in frame coordinates

r :=
[
〈r, ϕλ〉L2(Ω)

]
λ∈Θ

.

(ii) For a given 0 < ϑ < 1 compute the smallest graded tree Σ ⊂ Θ̂ ⊂ Θ such
that

(6.3)
∥∥r|Θ̂

∥∥
2
≥ ϑ‖r‖2.

(iii) Refine the finite element mesh by taking into account the set of leaves of

Θ̂ and solve the associated Galerkin system with sufficient accuracy.
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The tree computation in item (ii) can efficiently be performed by the tree algo-
rithms proposed in [5]. The above algorithm will converge due to (6.3) and the fact
that ‖r‖2 ∼ ‖r‖H−1(Ω).

7. Conclusion

In this article, we provided a new proof for the standard error estimator if no
Galerkin orthogonality is given. This proof is based on an infinite BPX scheme
which is applied to the residual. The derived error estimator consists of the sum of
the standard element and edge based estimator and H−1-norm of the the discrete
residual, given in terms of the BPX scheme. As a byproduct of the present analysis,
hierarchical error estimation is shown for the first time to be reliable and efficient.
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Center (grant id 1228) on the occasion of the Chinese-German Workshop on Com-
putational and Applied Mathematics in Augsburg 2015.
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