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The regularizing properties of multistep methods for first
kind Volterra integral equations with smooth kernels

Robert Plato∗

October 17, 2018

Abstract

We study quadrature methods for solving Volterra integral equations of the first kind with smooth
kernels under the presence of noise in the right-hand sides,with the quadrature methods being gen-
erated by linear multistep methods. The regularizing properties of an a priori choice of the step size
are analyzed, with the smoothness of the involved functionscarefully taken into consideration. The
balancing principle as an adaptive choice of the step size isalso studied. It is considered in a ver-
sion which sometimes requires less amount of computationalwork than the standard version of this
principle. Numerical results are included.

1 Introduction

In this paper we consider linear Volterra integral equations of the following form,

(Au)(x) =

∫ x

a

k(x, y)u(y) dy = f(x) for a ≤ x ≤ b, (1)

with a sufficiently smooth kernel functionk : { (x, y) ∈ R2 | a ≤ y ≤ x ≤ b } → R. Moreover, the
functionf : [a, b ] → R is supposed to be approximately given, and a functionu : [a, b ] → R satisfying
equation (1) needs to be determined.

In the sequel we suppose that the kernel function does not vanish on the diagonala ≤ x = y ≤ b,
and without loss of generality we may assume that

k(x, x) = 1 for a ≤ x ≤ b

holds.
Composite quadrature methods for the approximate solutionof equation (1) are well-investigated if

the right-hand sidef is exactly given, see e.g., Brunner /van der Houwen [3], Brunner [2], Lamm [14],
Linz [16] or Hoog/Weiss [4] and the references therein. A special class of composite quadrature meth-
ods for the approximate solution of (1) is obtained by using in an appropriate manner multistep methods
that usually are used to solve initial value problems for first order ordinary differential equations. That
class of methods is considered thoroughly in Wolkenfelt ([25], [26]). A related survey is given in
Brunner /van der Houwen [3], and see Holyhead / McKee /Taylor[11], Holyhead/McKee [10] and Tay-
lor [24] for related results. In the present paper, the results and techniques presented in the two papers by
Wolkenfelt are modified and extended in order to analyze the regularizing properties of those multistep
methods for Volterra integral equations (1) when perturbedright-hand sides are available only. An a
priori choice of the step size is considered, followed by thebalancing principle as an adaptive choice of
the step size. Finally, some numerical illustrations are presented.

∗Department of Mathematics, University of Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany.
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2 Numerical integration based on multistep methods

In this section, as a preparation for the numerical solutionof Volterra integral equations of the first
kind (1) with smooth kernels, we introduce linear multistepmethods for solving the associated direct
problem. For this purpose we consider equidistant nodes

xs = a+ sh, s = 0, 1, . . . , N, with h = b−a
N , (2)

whereN denotes a positive integer. In a first step we consider – for each1 ≤ n ≤ N – the integral

(Iψ)(xn) :=

∫ xn

a

ψ(y) dy, (3)

whereψ : [a, xn ] → R is a given continuous function which may depend onn. In the course of this
paper, this integral will be considered for the special caseψ(y) = k(xn, y)u(y), a ≤ x ≤ xn; see
Section 3 for the details.

The integral (3) can be computed by solving the elementary ordinary differential equation

ϕ′(y) = ψ(y) for a ≤ y ≤ xn, ϕ(a) = 0, (4)

and then obviously(Iψ)(xn) = ϕ(xn). Next we briefly introduce some basic facts about linear multi-
step methods to solve initial value problems for ordinary differential equations, with a notation that is
adapted to the simple situation considered in (4). For a thorough presentation of multistep methods (to
solve initial value problems for ordinary differential equations in its general form), see e.g., [21], Hairer
/ Nørsett /Wanner [7], Henrici [8], or Iserles [12].

2.1 Introduction of multistep methods

A linearm-step method, with an integerm ≥ 1, is determined by coefficientsaj ∈ R andbj ∈ R for
j = 0, 1, . . . ,m, wheream 6= 0 and and|a0 |+ |b0 | 6= 0. When applied to problem (4), this scheme is
of the form

m∑

j=0

ajϕr+j = h
m∑

j=0

bjψr+j for r = 0, 1, . . . , n−m, (5)

wheren ≥ m, andψs = ψ(xs), s = 0, 1, . . . , n are given, and the step sizeh and the nodesxs are
given by (2). In addition we haveϕ0 = 0, and the other starting valuesϕs ≈ ϕ(xs) for s = 1, 2,
. . . ,m − 1 are determined by some procedure specified below (see Example 2.7). The scheme (5) is
used to compute approximationsϕr+m ≈ ϕ(xr+m) for r = 0, 1, . . . , n−m.

Example 2.1 (a) We first consider a well-known class of multistep methodsof the form (5), depending
on three integersτ, µ andm, with 1 ≤ τ ≤ m and0 ≤ µ ≤ m. It is obtained by integrating, for
each0 ≤ r ≤ n − m, the ordinary differential equation (4) fromxr+m−τ to xr+m. For the integral
of the resulting right-hand side, an interpolatory numerical integration scheme with interpolation nodes
xr, xr+1, . . . , xr+m−µ is applied afterwards. This leads to

ϕr+m − ϕr+m−τ =

∫ xr+m

xr+m−τ

Pr(y) dy, r = 0, 1, . . . , n−m, (6)

wherePr ∈ Πm−µ satisfiesPr(xs) = ψs for s = r, r + 1, . . . , r + m − µ. This means thatτh is
the length of the interval used for the local integration, andm− µ+ 1 is the number of nodes used for
the interpolation of the functionψ. Prominent examples are obtained forµ ∈ {0, 1} andτ ∈ {1, 2}.
Next some special cases are considered very briefly. For moredetails see, e.g., the references given just
before the present subsection.

2



The Adams–Bashfort methods are obtained forτ = 1, µ = 1 andm ≥ 1; for the special casem = 1
this in fact gives the composite forward rectangular rule. The Adams–Moulton methods are obtained for
τ = 1, µ = 0 andm ≥ 1, with the composite trapezoidal rule obtained for the special casem = 1. The
Nyström methods are given byτ = 2, µ = 1 andm ≥ 2. Form = 2 this gives the repeated midpoint
rule. Finally, the Milne–Simpson methods are obtained byτ = 2, µ = 0 andm ≥ 2, with the repeated
Simpson’s rule obtained in the casem = 2. Each of these methods is in fact of the form (5) and leads to
a repeated quadrature method for solving (3), with interpolation polynomialsPr that, form > τ , have
nodes outside the local integration interval[xr+m−τ , xr+m ].

(b) Another class of linear multistep methods of the form (5)are BDF methods (backward differentiation
formulas), where the left-hand side in (4) is replaced by a finite difference scheme. More precisely, for
m fixed, approximationsϕr+m ≈ ϕ(xr+m) for r = 0, 1, . . . , n−m are given byϕr+m = P(xr+m),
whereP ∈ Πm satisfiesP(xs) = ϕs for s = r, r + 1, . . . , r +m − 1 andP ′(xr+m) = ψr+m. For
m = 1 this leads to the composite backward rectangular rule.△

2.2 Null stability, order of the method

We next recall some basic notation for multistep methods applied to the simple initial value prob-
lem (4).

(a) The considered multistep method is called nullstable, if the corresponding first characteristic poly-
nomial

̺(ξ) = amξ
m + am−1ξ

m−1 + · · ·+ a0 (7)

is a simple von Neumann polynomial, i. e.,

(i) ̺(ξ) = 0 implies|ξ| ≤ 1, (ii) ̺(ξ) = 0, |ξ| = 1 implies̺′(ξ) 6= 0. (8)

This means that all roots of the characteristic polynomial̺ belong to the closed unit disk, and each root
on the unit circle is simple.

(b) We next consider the local truncation error of the considered multistep method. For technical reasons
it is introduced here on arbitrary intervals[c, d ] which in fact can be[a, xn ] as above, or an interval of
fixed length.

For a continuous functionψ : [c, d ] → R the local truncation error is given by

η(ψ, y, h) :=
m∑

j=0

ajϕ(y + jh)− h
m∑

j=0

bjψ(y + jh), c ≤ y ≤ d−mh, h > 0, (9)

whereϕ : [c, d ] → R satisfiesϕ′(y) = ψ(y) for c ≤ y ≤ d andϕ(c) = 0. The multistep method (4) is
by definition of (consistency) orderp with an integerp ≥ 1, if on a fixed test interval[c, d ] and for each
sufficiently smooth functionψ : [c, d] → R and eachc ≤ y < d, the estimateη(ψ, y, h) = O(hp+1) as
h → 0 holds. A multistep method is by definition of maximal orderp0 ≥ 1 if it is of orderp = p0 and
not of orderp = p0 + 1.

Example 2.2 (a) Each multistep method of the special form (6) is clearly nullstable. The order of this
multistep method is at leastp = m − µ + 1. The maximal orderp0 may be larger in some cases. For
example, forτ = 2, µ = 0 andm = 2 (the Simpson’s rule from the class of Milne–Simpson methods),
the maximal order isp0 = 4. For those values ofτ andµ, them-step methods coincide form = 2 and
m = 3 in fact.

(b) The BDF methods are nullstable for1 ≤ m ≤ 6, with respective maximal orderp0 = m.

Next we consider the local truncation error (9) on variable intervals[c, d ] = [a, xn ] and present uniform
estimates. As a preparation we introduce forp ≥ 0 andL ≥ 0 the spaceCp

L[c, d] of functionsu :
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[c, d ] → R that arep-times differentiable and in addition satisfy|u(p)(y1) − u(p)(y2)| ≤ L|y1 − y2 |
for y1, y2 ∈ [c, d ]. Occasionally we also use the notation

Ĉp[c, d] = ∪
L>0

Cp
L[c, d].

Lemma 2.3 Consider a linear multistep method (5) of maximal orderp0 ≥ 1 for solving the initial
value problem (4). Then for each Lipschitz constantL > 0 and each1 ≤ p ≤ p0, the following estimate
for the local truncation error holds:

η(ψ, y, h) = O(hp+1) ash = b−a
N → 0, (10)

uniformly forn, ψ andy satisfyingm ≤ n ≤ N,ψ ∈ Cp−1
L [a, xn], anda ≤ y ≤ xn −mh.

PROOF. A Taylor expansion of a functionf ∈ Cp
L[c, d] on an interval[c, d ] gives, forc ≤ y and

y+h < d, the following representation for the remainder:R(f, p, y, h) := f(y+h)−
∑p

s=0
f(s)(y)

s! hk =
f(p)(ξ)−f(p)(y)

p! hp. This meansR(f, p, y, h) = O(hp+1) ash > 0, h → 0, uniformly for arbitrary finite
intervals[c, d ], for f ∈ Cp

L[c, d], andc ≤ y < d. After these preparations we now consider the
special situation in the lemma. From appropriate Taylor expansions forψ andϕ, and making use of
the consistency equations corresponding to the multistep method (5) for solving (4), we finally arrive
at η(ψ, y, h) =

∑m
j=0 ajRj − h

∑m
j=0 bjR̃j = O(hp+1), uniformly for n, ψ andy as given in the

statement of the lemma, whereRj = R(ϕ, p, y, jh) andR̃j = R(ψ, p− 1, y, jh). ✷

We note that the considered intervals[a, xn] in Lemma 2.3 depend onh, and we do not requirexn to
be fixed. This causes no problem in (10), however, since the estimates of the local truncation error are
considered uniformly there.

The basic convergence result in multistep method theory is as follows: each nullstable linear multi-
step method (5) of orderp ≥ 1 is convergent of orderp. Details are given in Section 2.4.

2.3 Reflected coefficients / polynomials

As a preparation we introduce some more notation. We assume that at least one of the coefficients on
the right-hand side of (5) does not vanish, and we identify the leading nonvanishing coefficient then: let
0 ≤ µ ≤ m such that

bm−µ+1 = · · · = bm−1 = bm = 0, bm−µ 6= 0. (11)

In the sequel we make use of a relation between linear difference equations and discrete convolution
equations. As a preparation we consider infinite sequences of reflected coefficients(αj)j≥0 and(βj)j≥0

of the multistep method under consideration:

αj =

{
am−j, j ≤ m,

0, j > m,
βj =

{
bm−µ−j, j ≤ m− µ,

0, j > m+ µ.
(12)

In addition we introduce sequencesα(−1)

0 , α(−1)

1 , . . . andγ0, γ1, . . . by the following discrete convolution
equations:

r∑

s=0

αr−sα
(−1)

s = δ0r,

r∑

s=0

αr−sγs = βr, for r = 0, 1, . . . , (13)

whereδ0r denotes the Kronecker symbol, i. e., we haveδ00 = 1 andδ0r = 0 for eachr 6= 0. There is
a relation between those discrete convolutions and the products of the associated (formal) power series:
for

α(ξ) =
m∑

n=0

αnξ
n, β(ξ) =

m−µ∑

n=0

βnξ
n, γ(ξ) =

∞∑

n=0

γnξ
n, (14)
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we have

1

α(ξ)
=

∞∑

n=0

α(−1)

n ξn, α(ξ)γ(ξ) = β(ξ).

In addition, there is a relation between products of (formal) power series considered in (14) on one side
and the products of associated semicirculant matrices on the other side. This relation will be tacitly used
in the sequel. For an introduction to that topic, see, e.g., Henrici [9].

It follows from (13) and standard results for difference equations (see, e.g., Lemma 5.5 on p. 242 in
Henrici [8]) that a nullstable multistep method satisfies

α(−1)

n = O(1), γn = O(1) as n→ ∞. (15)

In the stability analysis to be considered, the coefficientsof the inverse power series1/β(ξ) and1/γ(ξ)
also play a significant role. Their behavior will be considered later.

2.4 A global error representation

We next present a global error representation in terms of linear combinations of local truncation errors,
as well as the starting errors. This representation will be crucial in the subsequent analysis.

Lemma 2.4 Consider a nullstable linear multistep method (5) for solving the initial value problem (4).
Then we have the error representation

ϕn = (Iψ)(xn)−

n−m∑

s=0

α(−1)

n−m−sη(ψ, xs, h) +R, |R | ≤ C max
0≤r≤m−1

|ϕr − ϕ(xr)|, (16)

wheren ≥ m, andη(ψ, xs, h) denotes the local truncation error at the nodexs, cf. (9). The constantC
in (16) depends onm and the bounds for(αn)n≥0 and(α(−1)

n )n≥0 only.

PROOF. Let er = ϕr−ϕ(xr) for r = 0, 1, . . . , n. We have
∑m

j=0 ajer+j = gr for r = 0, 1, . . . , n−m,

wheregr := −η(ψ, xr, h). A reformulation gives
∑r

i=0 αr−iei+m = gr −
∑−1

i=r−m αr−iei+m for
r = 0, 1, . . . , n−m, which in matrix formulation reads as follows:




α0 0 · · · · · · · · · · · · 0

α1 α0
. . .

...
...

. . .
. . .

. . .
...

αm
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 αm · · · α1 α0







em
em+1

...

...

...

...
en




=




g0 +O
(

max0≤r≤m−1 |er |
)

...
gm−1 +O

(
max0≤r≤m−1 |er |

)

gm
...
...

gn−m




.

The desired result now follows from the fact that the inverseof the semicirculant system matrix is given
by




α(−1)

0 0 · · · 0

α(−1)

1 α(−1)

0

. . .
...

...
. . .

. . . 0
α(−1)

n−m · · · α(−1)

1 α(−1)

0



.

This completes the proof.✷
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Remark 2.5 It immediately follows from Lemmas 2.3 and 2.4 as well from (15) that, under the condi-
tions stated in those lemmas, we haveϕn = (Iψ)(xn) + O(hp) for n ≥ m, provided that the starting
errors areO(hp). This result, however, does not allow optimal error estimates for the approximate in-
version of Volterra integral equations of the first kind to beconsidered in this paper, so we make use
of (16) instead. We note that in the papers by Wolkenfelt ([25], [26]), a global error expansion with
an integral representation is used for the inversion process to obtain best possible error estimates. The
latter approach, however, requires stronger smoothness assumptions on the involved functions than our
approach based on (16) does.△

2.5 Explicit representation of the valuesϕr

For the numerical analysis to be considered later on we need to express the valuesϕm, ϕm+1, . . . , ϕn

generated by the multistep method (5) in terms of the numbersψs and the starting valuesϕ1, ϕ2,
. . . , ϕm−1 (as indicated, we always chooseϕ0 = 0). To simplify notation somewhat and to adapt
our notation to the existing literature on the topic, we shall assume that the starting values are of the
form

ϕr = h
m−1∑

s=0

wrsψs, r = 1, 2, . . . ,m− 1, (17)

wherewrs ∈ R for r = 1, 2, . . . ,m − 1 and s = 0, 1, . . . ,m − 1, are starting weights which are
independent ofh and which will be specified below. We note that in (17), each starting valueϕr (1 ≤
r ≤ m − 2) obviously may depend on future states, in general, which israther unnatural for a Volterra
type problem. Such an approach, however, allows sufficiently good accuracy of those starting values.

As a further preparation for Lemma 2.6 considered below, we introduce weights needed in that
lemma:

(a) Consider

wns = γn−µ−s form ≤ s ≤ n− µ, m+ µ ≤ n <∞, (18)

where the numbersγs are given by (13).

(b) Forn ≥ m we next consider starting weightswns, 0 ≤ s ≤ m− 1. Fors fixed, they are recursively
determined by the following inhomogeneous discrete convolution equation,

n∑

t=0

αn−twts =

{
βn−µ−s, n ≥ µ+ s,

0, n < µ+ s,
n = m,m+ 1, . . . . (19)

The weights introduced in (18), (19) are uniformly bounded in case of a nullstable method, i. e.,

sup
m+µ≤n<∞
0≤s≤n−µ

|wns | <∞. (20)

This follows, similarly to (15), (18), from standard results for difference equations.

We are now in a position to represent the multistep method (5)in quadrature form. Note that the numbers
ψ0, ψ1, . . . , ψn−µ considered in the following lemma do not necessarily coincide with the values of the
previously considered functionψ : [a, xn ] → R at the given nodes.

Lemma 2.6 Letϕ1, ϕ2, . . . , ϕn andψ0, ψ1, . . . , ψn−µ be arbitrary two sequences of real numbers sat-
isfying (17) and the multistep method recurrence (5) withn ≥ m+ µ andϕ0 = 0. Then the following
identity holds:

ϕn = h
n−µ∑

s=0

wnsψs, (21)

where the weightswns are given by (18) and (19).
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PROOF. It follows by induction that a representation of the form (21) with some weightswns exists
in general. The special representations of the weights given in (18) and (19) are then obtained by
considering in (21) the standard basis ofR

n−µ+1 to representψ0, ψ1, . . . , ψn−µ. Details are omitted.✷

A quadrature method (21) generated by a multistep method (5)with starting values as in (17) is called
(̺, σ)-reducible; see, e.g., Brunner /van der Houwen [3], Taylor [24] or Wolkenfelt ([25], [26]).

2.6 A starting quadrature procedure

For multistep methods (5) to solve the initial value problem(4), we next consider, form ≥ 2, the deter-
mination of starting valuesϕ1, ϕ2, . . . , ϕm−1 of the form (17) that have the approximation properties
required in Lemma 2.4. A standard procedure is presented in the following example.

Example 2.7 We consider (17) for fixedr ∈ { 1, 2, . . . ,m } with m ≥ 1. The caser = m is not
considered there in fact but this will be needed for the computation of initial approximations to the
solution of the Volterra integral equation of the first kind (1) considered below. Note also that in the
caser = m there is a notational conflict with (20), forn = m there. We will take care of this in every
application.

We now consider an interpolatory quadrature method for the integral
∫ xr

a ψ(y)dy using interpolation
nodes x0, x1, . . . , xm−1. This in fact means that the resulting quadrature schemeϕr =
h
∑m−1

s=0 wrsψ(xs) ≈
∫ xr

a
ψ(y)dy is exact for all polynomialsψ of degree≤ m − 1, with quadra-

ture weights that are given by the following nonsingular linear system of equations:



1 1 1 · · · 1
0 1 2 · · · m− 1
0 1 4 · · · (m− 1)2

0 1 9 · · · (m− 1)3

...
...

...
...

0 1 2m−1 · · · (m− 1)m−1







wr0

wr1

wr2

...
wr,m−1




=




r
r2/2
r3/3

...
rm/m



. (22)

We next study the error of this quadrature scheme, and for this purpose let1 ≤ p ≤ m andL > 0 be
fixed. For functionsψ ∈ Cp−1

L [a, xm] andP ∈ Πm with P(xs) = ψ(xs) for s = 0, 1, . . . ,m− 1, we
have

max{ |P(y)− ψ(y)| | a ≤ y ≤ xm } = O(hp) (23)

uniformly with respect to the considered class of functionsψ. This follows from elementary interpola-
tion theory: for eachy 6∈ { x0, x1, . . . , xm−1 } we haveP(y) − ψ(y) = ψ[x0, x1, . . . , xm−1, y]w(y),
where the first factor on the right-hand side denotes a divided difference, andw(y) = (y − x0) · · · (y −
xm−1). It follows by induction that|ψ[x0, . . . , xm−1, y] | ≤ κ/hm−p holds, with the constantκ =
2m−pL/(m− 1)!. This finally gives (23).

From (23) we immediately obtainϕr−
∫ xr

a
ψ(y)dy = O(hp+1) for r = 1, 2, . . . ,m uniformly with

respect to the considered class of functionsψ. Note that the assumptionp ≤ m made here is no serious
restriction; see Remark 3.2 below for details. Note also that the starting weightswrs given by (22) do
not depend onh andn.

We summarize the results of Lemma 2.4, Lemma 2.6 and Example 2.7.

Corollary 2.8 Consider a nullstable linear multistep method (5), withn ≥ m. Let the weightsωns

for n ≥ m be given by (18) and (19), with starting weightsωns for n ≤ m − 1 be given by as in
Example 2.7. Then for each1 ≤ p ≤ m and each Lipschitz constantL > 0 we have

h

n−µ∑

s=0

wnsψ(xs) = (Iψ)(xn)−

n−m∑

s=0

α(−1)

n−m−sη(ψ, xs, h) +O(hp+1)

uniformly forn andψ satisfyingm+ µ ≤ n ≤ N andψ ∈ Cp−1
L [a, xn].
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3 Linear multistep methods for perturbed first kind Volterra inte-
gral equations

3.1 Some preparations

We now return to the first kind Volterra integral equation (1). For the numerical approximation we
consider this equation at equidistant nodesxn = a + nh, n = 1, 2, . . . , N with h = b−a

N , cf. (2). For
eachn = m,m+ 1, . . . , N , the resulting integral(Iψ)(xn) =

∫ xn

a
ψ(y) dy with ψ(y) = k(xn, y)u(y)

for a ≤ y ≤ xn is approximated by the multistep method (5) under consideration.
In the sequel we suppose that the right-hand side of equation(1) is only approximately given, with

|f δ
n − f(xn)| ≤ δ for n = 1, 2, . . . , N, (24)

whereδ > 0 is a known noise level.
For the main convergence results we impose the following conditions.

Assumption 3.1 For the Volterra integral equation (1) of the first kind and a givenm-step method with
m ≥ 1 (see (5)), we introduce the following assumptions and notations.

(a) The consideredm-step method withm ≥ 1 is nullstable and has maximal order1 ≤ p0 ≤ m.

(b) The second characteristic polynomial

σ(ξ) := bm−µξ
m−µ + bm−µ−1ξ

m−µ−1 + · · ·+ b0, (25)

with µ as in (11), is a Schur polynomial:

σ(ξ) = 0 =⇒ |ξ| < 1 (ξ ∈ C), (26)

i. e., all roots of the polynomialσ belong to the open unit disk.

(c) There exists a solutionu : [a, b ] → R to the integral equation (1), withu ∈ Ĉp−1[a, b] for some
1 ≤ p ≤ p0 (for the definition of the considered function space, see Section 2.2).

(d) For some integerNmin ≥ m andhmax = b−a
Nmin

, the kernel function satisfiesk ∈ Cp(E), where
E = { (x, y) | a ≤ y ≤ x ≤ b or a ≤ x, y ≤ a+mhmax}.

(e) There holdsk(x, x) = 1 for eacha ≤ x ≤ b.

(f) For a given step sizeh = b−a
N with some integerN ≥ Nmin, let x0, x1, . . . , xN be uniformly

distributed nodes given by (2).

(g) The values of the right-hand side of equation (1) are approximately given by (24).

Next we give some comments on the Schur polynomial property considered in item (b) of Assump-
tion 3.1.

Remark 3.2 (a) In the stability analysis to be considered, the coefficients of the inverse power series

1

β(ξ)
=

∞∑

n=0

β(−1)

n ξn,
1

γ(ξ)
=

α(ξ)

β(ξ)
=

∞∑

n=0

γ(−1)

n ξn, (27)

of the generating functionsβ(ξ) andγ(ξ), respectively (see (14)), play a significant role. The Schur
polynomial condition (26) implies that1/β(ξ) is analytic in an open set of the complex plane that
contains a disk{ ξ ∈ C | |ξ | ≤ R } for someR > 1, and Cauchy’s integral theorem then implies that
the coefficientsβ(−1)

n in (27) decay exponentially, i. e.,

β(−1)

n = O(τn) as n→ ∞ for some0 < τ < 1, (28)

with τ = 1/R in fact. From thisγ(−1)
n = O(τn) asn→ ∞ follows easily.
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(b) It is easy to see that for them-step Adams–Bashfort methods with1 ≤ m ≤ 3, and them-step
Nyström method with2 ≤ m ≤ 3 as well, the second characteristic polynomialσ is a Schur polynomial
(see condition (26)), respectively. In addition, (26) is obviously satisfied by the BDF methods.

(c) The Schur polynomial condition (26) is violated for eachmultistep method of class (6) withµ = 0
(the implicit case) and with maximal orderp0 > m. More generally, it is an essential observation made
by Gladwin/Jeltsch [6] that the second characteristic polynomialσ is even not a simple von Neumann
polynomial in that situation, with the casem = τ = 1 (the repeated trapezoidal rule) as an exception. In
addition, the associated scheme for solving Volterra integral equations of the first kind introduced below
is necessarily divergent then, in general. For the mentioned exceptionm = τ = 1, the associated second
characteristic polynomial is obviously a simple von Neumann polynomial but not a Schur polynomial.

As a consequence of the observations made in the beginning ofpart (c) of this remark, in the special sit-
uationµ = 0 in the local quadrature approach (6), it is no loss of generality to restrict the considerations
tom-step methods of maximal order1 ≤ p0 ≤ m (see item (a) of Assumption 3.1).

(d) We note that in Wolkenfelt ([25], [26]), the second characteristic polynomialσ is required to be a
von Neumann polynomial, not a Schur polynomial which is the assumption made in the present paper
(see condition (26)). The latter assumption results in noise amplification terms which in general are
smaller than for Neumann polynomialsσ. Those terms in fact are, up to some factor, of the formδ/h.
In addition, the Schur polynomial assumption onσ allows to use a proof technique which in part is
much simpler than the elaborated technique used in [25].△

3.2 The numerical scheme

We now consider, under the conditions given in Assumption 3.1, the following scheme for the numerical
solution of a Volterra integral equation (1):

Algorithm 3.3 (a) Determinem initial approximationsuδs ≈ u(xs) for s = 0, 1, . . . ,m− 1 by solving
the following linear system ofm equations,

h
m−1∑

s=0

wnsk(xn, xs)u
δ
s = f δ

n, n = 1, 2, . . . ,m, (29)

where the starting weightswns are given by (22), withr replaced byn there.

(b) Determine then recursively, withµ given by (11), approximationsuδn−µ ≈ u(xn−µ) for n = m +
µ, . . . , N with N ≥ Nmin by the following scheme.

For n fixed anduδm, u
δ
m+1, . . . , u

δ
n−µ−1 already being computed, the following steps have to be em-

ployed to determineuδn−µ:

• Setψδ
s = k(xn, xs)u

δ
s for s = 0, 1, . . . , n− µ− 1,

• setϕδ
0 = 0, and compute (form ≥ 2) ϕδ

r = h
∑m−1

s=0 wrsψ
δ
s for r = 1, 2, . . . ,m− 1, cf. (17), where

the starting weightswrs are given by (22),
• compute recursivelyϕδ

r+m for r = 0, 1, . . . , n−m−1 by using on the interval[a, xn] the perturbed
version of the multistep scheme (5):

m∑

j=0

ajϕ
δ
r+j = h

m−µ∑

j=0

bjψ
δ
r+j for r = 0, 1, . . . , n−m− 1, (30)

• setϕδ
n = f δ

n,
• computeψδ

n−µ by using the identity (30) forr = n−m,
• computeuδn−µ = ψδ

n−µ/k(xn, xn−µ). △
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Remark 3.4 (a) Note that due to (e) in Assumption 3.1, forh sufficiently small we have|k(xn, xn−µ)|
≥ C > 0 for eachn, independently ofh. Thus the numerical procedure considered above can in fact be
used for the stable computation ofuδn−µ.

(b) The scheme (29) results from the quadrature method considered in Example 2.7, applied to the
integral

∫ xn

a
k(xn, y)u(y)dy for n = 1, 2, . . . ,m.

(c) It immediately follows from Lemma 2.6 that the approximations obtained by Algorithm 3.3 satisfy

h
n−µ∑

s=0

wnsk(xn, xs)u
δ
s = f δ

n, n = m+ µ, . . . , N, (31)

where the weightsωns are given by (18) and (19), respectively. The representation (31) will be used
in the proof of the main result, cf. Theorem 3.7. In addition,for multistep methods of the form (6),
those weights can also be easily computed in practice, and (31) can then be used for the practical
implementation of (30). For an illustration see Example 5.3below.

(d) The considered numerical scheme in Algorithm 3.3 is quite universal and can be simplified in special
cases. For example, for the backward rectangular rule (which is the 1-step BDF method) considered in
part (b) of Example 2.1, an implementation of Algorithm 3.3 without the starting procedure considered
in (a) there is possible. This means, however, that no approximationuδ0 will be available then. △

3.3 Uniqueness, existence and approximation properties ofthe initial approxi-
mations

We now consider uniqueness, existence as well as the approximation properties of the initial approxi-
mationsuδ0, u

δ
1, . . . , u

δ
m−1. In a first step we consider in more detail the corresponding linear system of

equations (29). This system of equations can be written in the form

h

=: Sh︷ ︸︸ ︷


w10k(x1, x0) w11k(x1, x1) · · · w1,m−1k(x1, xm−1)

w20k(x2, x0) w21k(x2, x1) · · · w2,m−1k(x2, xm−1)

...
...

...

wm0k(xm, x0) wm1k(xm, x1) · · · wm,m−1k(xm, xm−1)







uδ0

uδ1
...

uδm−1




=




f δ
1

f δ
2

...

f δ
m



. (32)

Note that the matrixSh ∈ Rm×m introduced in (32) depends on the stepsizeh.

Proposition 3.5 The system matrixSh in (32) is regular for sufficiently small values ofh, and‖S−1
h ‖∞ =

O(1) ash→ 0.

PROOF. We first consider the situationk ≡ 1. In a first step we observe that (22) applied forr = 1, 2,
. . . ,m, and a subsequent transposition implies the identity




w10 w11 · · · w1,m−1

w20 w21 · · · w2,m−1

...
...

...

wm0 wm1 · · · wm,m−1




︸ ︷︷ ︸
=: T

M = BD, (33)
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whereM ∈ Rm×m denotes the transpose of the system matrix in (22), and

D = diag
(
1
τ : τ = 1, 2, . . . ,m

)
∈ R

m×m, B = (nτ )n=1,...,m
τ=1,...,m

∈ R
m×m.

The matricesD,B andM are regular, and hence the matrixT ∈ R
m×m introduced in (33) is regular.

In the casek ≡ 1, the latter matrix coincides with the matrixSh.
We now consider the general case fork. We havek(x, x) = 1 andxn = a + O(h) for n = 1, 2,

. . . ,m − 1, and thusk(xn, xs) = 1 + O(h) for n = 1, . . . ,m ands = 0, . . . ,m − 1. We thus have
Sh = T +O(h) for h→ 0, and from this the proposition immediately follows. ✷

Next we consider the approximation properties of the initial approximations.

Theorem 3.6 Let the conditions of Assumptions 3.1 be satisfied. Then the initial approximationsuδ0,
uδ1, . . . , u

δ
m−1, determined by (29) forh sufficiently small, satisfy

max
n=0,1,...,m−1

|uδn − u(xn)| = O(hp + δ/h) as (h, δ) → 0.

PROOF. It is clear from (32) and Proposition 3.5 that the initial approximationsuδ0, u
δ
1, . . . , u

δ
m−1 exist

and are uniquely determined forh sufficiently small. We have

h
m−1∑

s=0

wns k(xn, xs)e
δ
s = O(hp+1 + δ) for n = 1, 2, . . . ,m, (34)

where

eδs = uδs − u(xs), s = 0, 1, . . . ,m− 1,

denote the approximation errors. This follows from the considerations in Example 2.7, with the notation
r = n and forψ(y) = k(xn, y)u(y) for a ≤ y ≤ xm. A matrix-vector formulation of (34) yields
hSh∆

δ
h = O(hp+1 + δ) ash → 0, with ∆δ

h := (eδ0, e
δ
1, . . . , e

δ
m−1)

⊤ ∈ Rm, and with the matrixSh

from (32). According to Proposition 3.5, this matrixSh is regular for sufficiently small values ofh, and
‖S−1

h ‖∞ = O(1) ash→ 0. From this the statement of the theorem follows. ✷

3.4 The main result

We next present the main result of this paper which extends the results by Wolkenfelt ([25], [26]) to the
case of perturbed right-hand sides.

Theorem 3.7 Let the conditions of Assumption 3.1 be satisfied, and let theapproximationsuδ0, u
δ
1,

. . . , uδN−µ be determined by Algorithm 3.3, forh sufficiently small. Then the following error estimate
holds,

max
n=0,1,...,N−µ

|uδn − u(xn)| = O(hp + δ/h) as (h, δ) → 0. (35)

PROOF. The initial approximation errors are already covered by Theorem 3.6, so it remains to estimate
the erroruδn − u(xn) for n = m,m + 1, . . . , N − µ. For this we may assumeN ≥ m + µ, since
otherwise nothing is to be done for.

(1) In a first step we observe that the following system of error equations holds:

h
n−µ∑

s=m

γn−µ−sk(xn, xs)e
δ
s = rh(xn) +O(hp+1 + δ) for n = m+ µ, . . . , N, (36)
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uniformly in n, where

eδs = uδs − u(xs), s = m, . . . , N − µ,

rh(xn) =

n−m∑

s=µ

α(−1)

n−m−sgh(xn, xs), n = m+ µ, . . . , N. (37)

Furthermore,

gh(x, y) := η(z 7→ k(x, z)u(z), y, h), a ≤ y ≤ x−mh, a < x ≤ b, (38)

denotes the truncation error corresponding to the functionψ(y) = k(x, y)u(y), a ≤ y ≤ x. The error
representation (36) follows by considering the differenceof the representation (31) on one side and the
representations in Corollary 2.8 on the other side. We have taken (34) and

∑µ−1
s=0 α

(−1)

n−m−sgh(xn, xs) =
O(hp+1) into consideration here. This allows to start summation in (37) withs = µ.

(2) We next consider a matrix-vector formulation of (36). Asa preparation we introduce the notation

N1 := N −m− µ+ 1 (39)

and consider the system matrixAh ∈ RN1×N1 given by

Ah =




γ0km+µ,m 0 · · · · · · 0

γ1km+µ+1,m γ0km+µ+1,m+1
. .. 0

... γ1km+µ+2,m+1
. ..

. . .
...

...
. ..

. . . 0

γN−m−µkNm · · · · · · γ1kN,N−µ−1 γ0kN,N−µ




, (40)

with the notation

kns = k(xn, xs) for m ≤ s ≤ n− µ, m+ µ ≤ n ≤ N.

In addition we consider the vectors

∆δ
h = (eδs)s=m,...,N−µ, Rh = (rh(xn))n=m+µ,...,N . (41)

Using these notations, the linear system of equations (36) obviously takes the form

hAh∆
δ
h = Rh +Gδ

h, with someGδ
h ∈ R

N1 , ‖Gδ
h‖∞ = O(hp+1 + δ), (42)

where‖ · ‖∞ denotes the maximum norm onRN1 .
(3) For a further treatment of the identity (42), let the matricesWh ∈ RN1×N1 and its inverse

W−1
h ∈ RN1×N1 be given by

Wh =




γ0 0 · · · 0

γ1 γ0
. . .

...
...

. . .
. . . 0

γN−m−µ · · · γ1 γ0




, W−1
h =




γ(−1)

0 0 · · · 0

γ(−1)

1 γ(−1)

0

. . .
...

...
. . .

. . . 0

γ(−1)

N−m−µ · · · γ(−1)

1 γ(−1)

0




. (43)
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We next show that

‖W−1
h ‖∞ = O(1), ‖A−1

h Wh‖∞ = O(1), ‖A−1
h ‖∞ = O(1) as h→ 0, (44)

where‖·‖∞ denotes the matrix norm induced by the maximum vector norm onR
N1 . In fact, the estimate

‖W−1
h ‖∞ = O(1) ash → 0 follows immediately from the exponential decay of the coefficients of the

inverse of the generating functionγ(ξ), cf. part (a) of Remark 3.2. For the proof of the second statement
in (44), below it will be shown that the matrixW−1

h Ah can be written in the form

W−1
h Ah = Ih + Lh, (45)

whereIh ∈ RN1×N1 denotes the identity matrix, andLh = (ℓnj(h)) ∈ RN1×N1 denotes some lower
triangular matrix which satisfies max0≤j≤n≤N−m−µ |ℓnj(h)| = O(h) ash → 0. The representation
(45) shows that the matrixW−1

h Ah is nonsingular forh small enough, and the discrete version of
Gronwall’s inequality then yields‖A−1

h Wh‖∞ = O(1) ash → 0. The third estimate in (44) follows
immediately from the other two estimates considered in (44).

In the sequel it will be shown that the representation (45) isvalid, and for this purpose we consider the
lower triangular matrix

W−1
h Ah = (bnj) ∈ R

N1×N1 (46)

in more detail. In fact, we have for0 ≤ j < n ≤ N −m− µ

bnj =
n∑

ℓ=j

γ(−1)

n−ℓγℓ−jk(xm+µ+ℓ, xm+j) =
n−j∑

ℓ=0

γ(−1)

n−j−ℓγℓk(xm+µ+ℓ+j , xm+j)

= k(xm+µ+n, xm+j)

= 0︷ ︸︸ ︷
n−j∑

ℓ=0

γ(−1)

n−j−ℓγℓ

+
n−j−1∑

ℓ=0

[
γ(−1)

n−j−ℓγℓ
(
k(xm+µ+ℓ+j , xm+j)− k(xm+µ+n, xm+j)

)]
.

Thus we have

|bnj | = O
(
h

n−j−1∑

ℓ=0

|γ(−1)

n−j−ℓ ||γℓ |(n− j − ℓ)

︸ ︷︷ ︸
(∗)
= O(1)

)
= O(h) for 0 ≤ j < n ≤ N −m− µ (47)

uniformly with respect toj andn, where(∗) follows immediately from (15) and the end of part (a) of
Remark 3.2. Moreover we have

bnn = γ(−1)

0 k(xn+m+µ, xn+m)γ0 = 1 +O(h) for n = 0, 1, . . . , N −m− µ, (48)

which follows from the identitiesγ(−1)

0 = 1/γ0 andk(x, x) ≡ 1, cf. (e) in Assumption 3.1. The
statements (47) and (48) show that the lower triangular matrix W−1

h Ah in fact can be written as in (45).
(4) We still have to take a closer look at the vectorRh ∈ RN1 considered in (41). It can be written

as follows,

Rh = BhEh, (49)
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whereBh ∈ RN1×N1 is the following matrix,



α(−1)

0 gh(xm+µ, xµ) 0 · · · 0

α(−1)

1 gh(xm+µ+1, xµ) α(−1)

0 gh(xm+µ+1, xµ+1)
. . .

...

... α(−1)

1 gh(xm+µ+2, xµ+1)
. . .

...

...
. . . 0

α(−1)

N−m−µgh(xN , xµ) · · · α(−1)

1 gh(xN , xN−m−1) α(−1)

0 gh(xN , xN−m)




,

andEh = (1, 1, . . . , 1) ∈ RN1 . The representations (42) and (49) givehAh∆
δ
h = BhEh +Gδ

h, and due
to (44) it remains to show that

‖W−1
h Bh‖∞ = O(hp+1) as h→ 0 (50)

holds. For this purpose we introduce the notation

Uh =




α0 0 · · · · · · · · · 0
...

. . .
. . .

. . .
...

αm
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 αm · · · α0




, U−1
h =




α(−1)

0 0 · · · 0

α(−1)

1 α(−1)

0

. . .
...

...
. . .

. . . 0

α(−1)

N−m−µ · · · α(−1)

1 α(−1)

0




∈ R
N1×N1 ,

Vh =




β0 0 · · · · · · · · · 0
...

.. .
. . .

. . .
...

βm−µ
. . .

. . .
...

0
.. .

. . .
. . .

...
...

.. .
. . .

. . .
. . . 0

0 · · · 0 βm−µ · · · β0




, V −1
h =




β(−1)

0 0 · · · 0

β(−1)

1 β(−1)

0

. . .
...

...
. . .

. . . 0

β(−1)

N−m−µ · · · β(−1)

1 β(−1)

0




∈ R
N1×N1 ,

and observe that

Wh = VhU
−1
h , W−1

h = V −1
h Uh, (51)

holds. From the fact that the second characteristic polynomial (see (26)) is a Schur polynomial it follows

‖V −1
h ‖∞ = O(1) ash→ 0. (52)

In the sequel we consider the lower triangular matrixUhBh in more detail. It can be written as follows,
UhBh = Mh + Ch with the diagonal matrixMh = diag(gh(xm+n, xn) : n = µ, µ + 1, . . . , N −m),
with ‖Mh‖∞ = O(hp+1) ash → 0. In addition,Ch = (cnj(h)) ∈ RN1×N1 denotes some strictly
lower triangular matrix with max0≤j<n≤N−m−µ |cnj(h)| = O(hp+2). See the third part of this proof
for similar results with respect to the matrixW−1

h Ah. Here we additionally use the mean value theorem
with respect to the first variable ofg and the fact that the local truncation errorg defined in (38) satisfies

∂
∂xgh(x, y) = η

(
z 7→ ∂

∂xk(x, z)u(z), y, h
)
= O(hp+1)
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uniformly for a ≤ y ≤ x−mh anda < x ≤ b.
This in particular means‖UhBh‖∞ = O(hp+1) ash → 0, and this together with (51) and (52)

implies (50).
The statement of the theorem now follows easily from the error representation (36) and its matrix

version (41), (42), from the stability estimates in (44), and from the considerations in part (4) of this
proof.✷

Remark 3.8 The stability analysis presented in the third part of the proof of Theorem 3.7 uses tech-
niques similar to those used in Eggermont [5]; see also Lubich [18] as well as [22] and [23].

In the sequel, for step sizesh = h(δ) = b−a
N , withN = N(δ), with a slight abuse of notation we write

h ∼ δβ asδ → 0, if there exist real constantsc2 ≥ c1 > 0 such thatc1h ≤ δβ ≤ c2h holds forδ → 0.
As an immediate consequence of Theorem 3.7 we obtain the following main result of this paper.

Corollary 3.9 Let Assumption 3.1 be satisfied. Forh = h(δ) ∼ δ1/(p+1) we have

max
n=0,1,...,N−µ

|uδn − u(xn)| = O(δp/(p+1)) as δ → 0,

where the approximationsuδ0, u
δ
1, . . . , u

δ
N−µ are determined by Algorithm 3.3.

We conclude this section with some remarks.

Remark 3.10 (a) Assumption 3.1 and Corollary 3.9 imply that the order of the method should be cho-
sen as large as possible to allow best possible estimates fora wide range of smoothness degrees of
solutions. Note that, form fixed, both the computational complexity and the number of function evalu-
ations for the implementation of Algorithm 3.3 areO(N2) asN → ∞. Thus the number of stepsm in
the considered multistep method has no impact here.

(b) For results on the regularization properties of the composite midpoint rule, see e. g. Apartsin [1] or
Kaltenbacher [13]. For other special regularization methods for the approximate solution of Volterra in-
tegral equations of the first kind with smooth kernels and perturbed right-hand sides, see e.g., Lamm [14].

4 The balancing principle

4.1 Preparations

The a priori choice of the step sizeh considered in Corollary 3.9 requires knowledge of the smoothness
of the exact solutionu : [a, b ] → R. The balancing principle as an a posteriori strategy for choosingh
has no such requirement and thus seems to be an interesting alternative. Its implementation, however,
requires a determination of the coefficient of the error propagation termδ/h that appears in the basic
error estimate (35). This is the subject of the following proposition.

Proposition 4.1 Under the conditions of Assumption 3.1 we have

max
n=0,1,...,N−µ

|uδn − u(xn)| ≤ C1h
p + C2

δ
h for 0 < h ≤ h, (53)

whereC1 andC2 denote some constants chosen independently ofh, andh is chosen sufficiently small.
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The constantC2 may be chosen as follows:

C2 = max
{
C2a, C2b

(
1 + C2a‖k‖∞ max

m+µ≤n≤N

m−1∑

s=0

|wns |
)}
, where

C2a = (1 + L)‖T−1‖∞, C2b = (1 + µL)
( ∞∑

s=0

|γ(−1)

s |
)
exp

(
(1 + µL)C3L(b− a)

)

with C3 =
{
sup
r≥0

|γr|
} ∞∑

s=1

|γ(−1)

s |s,

where the notation‖k‖∞ = max(x,y)∈E |k(x, y)| is used, andL ≥ 0 denotes a Lipschitz constant of
the kernelk with respect to the first variable. In addition, for the definition of the sequence(γ(−1)

s ) and
the matrixT , see (27) and (33), respectively.

Moreover,h in (53) can be chosen as follows,h = min{ 1
m(1+L)cond∞(T ) , hmax}, wherehmax is taken

from Assumption 3.1. In the special casek ≡ 1, the estimate (53) holds withh = hmax.

PROOF. Let eδs = uδs − u(xs) for s = 0, . . . , N − µ. We first consider the starting error. A closer look
at the proof of Theorem 3.6 shows that

max
s=0,...,m−1

|eδs | ≤ ‖S−1
h ‖∞(C4h

p + δ
h ) for h > 0, (54)

whereSh denotes the system matrix considered in (32) and (34), andh is chosen so small (details are
given below) such that the inverse matrix ofSh exists. In addition,C4 denotes some constant that may
be chosen independently ofh. So we need to estimate‖S−1

h ‖∞ which is done below. First we consider
the error of the present multistep scheme. A closer look at the reasoning of (36) shows that

h
n−µ∑

s=m

γn−µ−sk(xn, xs)e
δ
s = f δ

n − f(xn) + rh(xn)− h
m−1∑

s=0

wnsk(xn, xs)e
δ
s +O(hp+1)

holds uniformly forn = m+ µ, . . . , N , whereγ0, γ1, . . . are given by (13). Representation (42) in the
proof of Theorem 3.7 thus can be written as

hAh∆
δ
h = Rh +Gh,1 +Gδ

h,2, with someGh,1 ∈ R
N1 , ‖Gh,1‖∞ = O(hp+1), (55)

and some vectorGδ
h,2 ∈ RN1 with

‖Gδ
h,2‖∞ ≤ δ + h‖k‖∞

{
max

m+µ≤n≤N

m−1∑

s=0

|wns |
}

max
0≤s≤m−1

|eδs |. (56)

So in view of (54)–(56) we need to provide upper bounds for‖S−1
h ‖∞ and‖A−1

h ‖∞. For this purpose
letL ≥ 0 denote a Lipschitz constant of the kernelk with respect to the first variable, i.e.,

|k(x1, y)− k(x2, y)| ≤ L|x1 − x2| for (x1, y), (x2, y) ∈ E,

where the setE is introduced in Assumption 3.1. Then the matrixSh, h ≤ hmax, can be written in the
formSh = T +Fh, where the perturbation matrixFh ∈ Rm×m satisfies‖Fh‖∞ ≤ ‖T ‖∞mLh. It then
follows from standard perturbation results for matrices that

‖S−1
h ‖∞ ≤ (1 + L)‖T−1‖∞ = C2a for 0 < h ≤

1

m(1 + L)cond∞(T )
, (57)

where cond∞(T ) = ‖T ‖∞‖T−1‖∞, and the upper bound forh in (57) can be ignored ifL = 0.
For the estimation of‖A−1

h ‖∞ we have to take a closer look at part (3) of the proof of Theorem3.7.
We obviously have‖W−1

h ‖∞ ≤
∑∞

s=0 |γ
(−1)
s | for h > 0, and we next estimate the entries ofW−1

h Ah =
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(bnj) (cf. (46)). Continuing from (48) gives|bnn| ≥ 1 − L|xn+m+µ − xn+m| = 1 − µLh ≥ 1
1+µL

for h ≤ 1
1+µL . Proceeding from (47) yields|bnj| ≤ C3Lh for j < n, where the constantC3 is chosen

as in the statement of the proposition. An application of thediscrete version of Gronwall’s lemma now
results in

‖A−1
h ‖∞ ≤ ‖(W−1

h Ah)
−1‖∞‖W−1

h ‖∞

≤ (1 + µL)
( ∞∑

s=0

|γ(−1)

s |
)
exp((1 + µL)C3L(b− a)) = C2b for 0 < h ≤ 1

1+µL ,

where the considered upper bound forh can be ignored ifµ = 0 or L = 0 holds. Note also that this
upper bound forh is not smaller than the upper bound forh given in (57) which justifies the definition
of h given in the proposition. This completes the proof. ✷

4.2 Implementation of the balancing principle

In the sequel we assume that the conditions of Assumption 3.1are satisfied. It is convenient to introduce
new notation for the set of nodes and for the approximations generated by the considered multistep
method to indicate dependence on the step sizeh:

∆(h) = { xn = a+ nh | n = 0, 1, . . . , N − µ }, whereh = b−a
N , N ≥ Nmin,

uδ(·, h) : ∆(h) → R, xn 7→ uδn. (58)

In the sequel we consider the following sequence of geometrically increasing step sizes:

hs =
b−a
Ns

, Ns = N2κ(s−s) for s = 0, 1, . . . , s, (59)

wheres = s(δ) ≥ 0 andN = N(δ) ≥ 1 are some integers that may depend onδ, andκ ≥ 1 is some
fixed integer. The set of those step sizes will be denoted byΣ, i. e.,

Σ = { h0 < h1 < · · · < hs }.

Note that due to the special form of the step sizes we have

∆(hs) ⊂ ∆(hs−1) ⊂ · · · ⊂ ∆(h0).

In the sequel we assume thats ≥ 0 andN ≥ 1 are chosen so that the step sizesh0 andhs are respectively
sufficiently small and sufficiently large. More precisely, we assume the following:

h0 ≤ c∗δ
1/2, c∗∗δ

1/(p0+1) ≤ hs ≤ h (0 < δ ≤ δ0), (60)

wherec∗, c∗∗ andδ0 > 0 denote some constants, andh is chosen as in Proposition 4.1. In addition,c∗∗
is chosen sufficiently small such anhs satisfying (60) exists.

We consider the following a posteriori choice of the step sizeh = h(δ):

h(δ) = maxHδ, whereHδ := { h∗ ∈ Σ : for h, h′ ∈ Σ with h < h′ ≤ h∗ we have

max
y∈∆(h′)

|uδ(y, h′)− uδ(y, h)| ≤ β δ
h }, (61)

whereβ > 2C2 holds, withC2 chosen as in Proposition 4.1. Note that by definition we haveh0 =
minΣ ∈ Hδ so thatHδ 6= ∅, and thush(δ) in (61) is well-defined. The adaptive choice of the
step size given by (61) is in fact a balancing principle. For ageneral introduction to this class of a
posteriori parameter choice strategies see, e.g., Lepskiı̆ [15], Mathé [19], Pereverzev/Schock [20], or
Lu/Pereverzev [17].
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Remark 4.2 The strategy (61) is in fact a nonstandard balancing principle. We recall that the classical
balancing principle chooses, in our framework, the maximumfrom the setH̃δ := { h′ ∈ Σ : |uδ(y, h′)−
uδ(y, h)| ≤ β δ

h for y ∈ ∆(h′), h ∈ Σ, h < h′ }. The latter maximum may be larger thanh(δ)
introduced in (61), in general. In turns out, however, that the step sizeh(δ) is sufficiently large to get
similar estimates as for the standard balancing principle;see the following theorem for details.

The nonstandard version (61) of the balancing principle is considered for computational reasons:
it may require less computational amount than the standard version. In fact, a possible strategy to
determineh(δ) is to verify for s = 1, 2, . . . whetherhs ∈ H̃δ is satisfied, and this procedure stops if
hs 6∈ H̃δ holds for the first time, or ifs = s. In the former case we haveh(δ) = hs−1, and then there is
no need to consider the step sizeshs+1, hs+2, . . . , hs.

We have the following convergence result:

Theorem 4.3 Let Assumption 3.1 be satisfied, and letuδ(·, h) and h(δ) be given by (58) and (61),
respectively. Then the following estimates hold,

max
y∈∆(h(δ))

|uδ(y, h(δ))− u(y)| = O(δp/(p+1)) as δ → 0, (62)

h(δ) ≥ Cδ1/(p+1), (63)

whereC > 0 denotes some constant which is independent ofδ.

PROOF. The proof is a compilation of techniques used, e.g., in Lu/Pereverzev [17], and we thus give a
sketch of a proof only. A basic ingredient in the following analysis is provided by the following estimate,
which follows from Proposition 4.1 and (61):

max
y∈∆(h(δ))

|uδ(y, h(δ))− u(y)| ≤ max
y∈∆(h(δ))

|uδ(y, h(δ))− uδ(y, h)|+ max
y∈∆(h)

|uδ(y, h)− u(y)|

≤ C1h
p + (β + C2)

δ

h
for eachh ∈ Σ, h ≤ h(δ). (64)

It now remains to determine someh ∈ Σ with h ≤ h(δ) andh ∼ δ1/(p+1); the estimates (62)–(63) then
easily follow from (64). For this purpose we consider the set

M δ := { h ∈ Σ : hp+1 ≤ C3δ },

whereC3 > 0 is chosen so small such that2(C1C3 + C2) ≤ β holds, withC1 andC2 being chosen as
in Proposition 4.1. That choice ofC3 guarantees

M δ ⊂ Hδ

which is shown in the sequel. For this purpose leth∗ ∈ M δ andh, h′ ∈ Σ with h < h′ ≤ h∗. We then
have

max
y∈∆(h′)

|uδ(y, h′)− uδ(y, h)| ≤ max
y∈∆(h′)

|uδ(y, h′)− u(y)|+ max
y∈∆(h)

|uδ(y, h)− u(y)|

≤ C1h
′p + C2

δ

h′
+ C1h

p + C2
δ

h
≤ 2(C1C3 + C2)

δ

h
,

whereh, h′ ∈ M δ is taken into account. This showsh∗ ∈ Hδ and completes the proof of the relation
M δ ⊂ Hδ.

We are now in a position to verify (62)–(63), and for this we consider two situations. In the case
M δ 6= ∅ we defineh+(δ) = maxM δ and obtain

h+(δ) ≤ h(δ), h+(δ) ∼ δ1/(p+1), (65)

where we assume thatδ ≤ δ0 holds. The first statement in (65) follows immediately fromM δ ⊂ Hδ

and the definition ofh(δ), see (61). The second statement in (65) follows in the caseh+(δ) = maxΣ
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(which ishs in fact) from the second estimate in (60), and in the caseh+(δ) < maxΣ it follows from
2κh+(δ) ∈ Σ\M δ. Estimate (63) is an immediate consequence of (65), and estimate (62) then follows
easily from estimate (64), applied withh = h+(δ).

On the other hand,M δ = ∅ meansminΣ = h0 6∈ M δ, and the first estimate in (60) then implies
minΣ ∼ δ1/(p+1) for 0 < δ ≤ δ0. This shows (63), and estimate (62) follows easily from (64), applied
with h = minΣ. ✷

5 Numerical experiments

As an illustration of the main results considered in Corollary 3.9 and Theorem 4.3, we next present
the results of numerical experiments for four Volterra integral equations of the first kind with smooth
kernels of the form (1), treated by different kind of multistep methods, respectively.

Here are two comments on the first three numerical tests, where a priori choices of the step size are
considered in fact:

• Numerical experiments on the interval[a, b ] = [0, 1] are employed for step sizesh = 1/2ν for
ν = 5, 6, . . . , 12, with the exception of the order 4 BDF method. In the latter method, the influence
of rounding errors becomes clearly visible forν ≥ 10.

• For each considered step sizeh and each considered multistep method with maximal orderp0, we
consider (1) with some functionu ∈ Ĉp0−1[0, 1], and the noise levelδ = h1/(p0+1) is considered.

In all numerical experiments, the perturbations are of the formf δ
n = f(xn) + ∆fn with uniformly

distributed random values∆fn with |∆fn | ≤ δ.

Example 5.1 First we consider the repeated midpoint rule which in fact coincides with the 2-step
Nyström method (see Example 2.1). In the formulation (5), this quadrature method reads as follows,
ϕr+2 − ϕr = 2hψr+1 for r = 0, 1, . . . , n− 2. This method is applied to the following linear Volterra
integral equation of the first kind,

∫ x

0

cos(x − y)u(y) dy = sinx =: f(x) for 0 ≤ x ≤ 1, (66)

with exact solutionu(y) = 1 for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied with
m = p0 = p = 2. The numerical results are shown in Table 1. There,‖f‖∞ denotes the maximum
norm of the functionf . All numerical experiments are employed using the program system OCTAVE

(http://www.octave.org).

N δ 100 · δ/‖f‖∞ maxn |uδn − u(xn)| maxn |uδn − u(xn)| /δ
2/3

32 3.1 · 10−5 3.70 · 10−3 1.05 · 10−3 1.07
64 3.8 · 10−6 4.58 · 10−4 3.09 · 10−4 1.27

128 4.8 · 10−7 5.70 · 10−5 6.56 · 10−5 1.08
256 6.0 · 10−8 7.10 · 10−6 1.69 · 10−5 1.11
512 7.5 · 10−9 8.87 · 10−7 7.25 · 10−6 1.90
1024 9.3 · 10−10 1.11 · 10−7 1.09 · 10−6 1.14
2048 1.2 · 10−10 1.38 · 10−8 2.71 · 10−7 1.14
4096 1.5 · 10−11 1.73 · 10−9 6.71 · 10−8 1.13

Table 1: Numerical results of the repeated midpoint rule applied to equation (66)

Example 5.2 Next we present some numerical results for the order 4 BDF method which in the formu-
lation (5) reads as follows,112 (25ϕr+4 − 48ϕr+3 + 36ϕr+2 − 16ϕr+1 + 3ϕr) = hψr+4 for r = 0, 1,
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. . . , n− 4. This method is applied to the same operator as for the first numerical experiment but with a
different right-hand side:

∫ x

0

cos(x− y)u(y) dy = 1− cosx︸ ︷︷ ︸
=: f(x)

for 0 ≤ x ≤ 1, (67)

with exact solutionu(y) = y for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied with
m = p0 = p = 4. Step sizes, noise levels, initial approximations and starting values are chosen similar
to the example considered above. The results are shown in Table 2.

N δ 100 · δ/‖f‖∞ maxn |uδn − u(xn)| maxn |uδn − u(xn)| /δ
4/5

32 3.0 · 10−8 6.48 · 10−6 7.14 · 10−6 7.48
64 9.3 · 10−10 2.03 · 10−7 4.85 · 10−7 8.14

128 2.9 · 10−11 6.33 · 10−9 2.85 · 10−8 7.65
256 9.1 · 10−13 1.98 · 10−10 2.11 · 10−9 9.07
512 2.8 · 10−14 6.18 · 10−12 1.28 · 10−10 8.83
1024 8.9 · 10−16 1.93 · 10−13 2.32 · 10−11 25.50

Table 2: Numerical results of the 4th order BDF method applied to equation (67)

Example 5.3 Next we present the results of numerical experiments with the second order Adams–
Bashfort methodϕr+2 − ϕr+1 = h

2 (3ψr+1 − ψr) for r = 0, 1, . . . , n − 2. The quadrature scheme
formulation of this method, see (31), isϕn = h

2 (3ψn−1+2ψn−2+ · · ·+2ψ1−ψ0)+ϕ1 = h
2 (3ψn−1+

2ψn−2 + · · · + 2ψ2 + 3ψ1), where the latter identity follows from the fact thatw10 = w11 = 1
2 , see

(22).
This method is applied to the following test problem:

∫ x

0

(1 + x− y)u(y) dy = x− 1 + e−x

︸ ︷︷ ︸
=: f(x)

for 0 ≤ x ≤ 1, (68)

with exact solutionu(y) = ye−y for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied with
m = p0 = p = 2. Step sizes, noise levels, initial approximations and starting values are chosen similar
to the example considered above. The results are shown in Table 3.

N δ 100 · δ/‖f‖∞ maxn |uδn − u(xn)| maxn |uδn − u(xn)| /δ
2/3

32 3.1 · 10−5 8.76 · 10−3 1.93 · 10−3 1.98
64 3.8 · 10−6 1.07 · 10−3 5.21 · 10−4 2.13

128 4.8 · 10−7 1.31 · 10−4 1.29 · 10−4 2.11
256 6.0 · 10−8 1.63 · 10−5 3.84 · 10−5 2.52
512 7.5 · 10−9 2.03 · 10−6 8.99 · 10−6 2.36
1024 9.3 · 10−10 2.54 · 10−7 2.36 · 10−6 2.47
2048 1.2 · 10−10 3.17 · 10−8 5.95 · 10−7 2.50
4096 1.5 · 10−11 3.96 · 10−9 1.60 · 10−7 2.68

Table 3: Numerical results of the 2nd order Adams–Bashfort method applied to equation (68)

Note that the relative errors in the right-hand side presented in the third column (of all three tables in
fact) are rather small, respectively.

20



Example 5.4 Here we consider again the second order Adams–Bashfort method, see Example 5.3, this
time applied to the problem of numerical differentiation:

∫ x

0

u(y) dy = f(x) for 0 ≤ x ≤ 1, with u(y) =

{
2y, 0 ≤ y ≤ 1

2 ,
2(1− y), 1

2 < y ≤ 1,
(69)

which meansu ∈ Ĉ0[0, 1] in fact. We consider the balancing principle, and for this weneed to take a
closer look at Proposition 4.1. Elementary computations show that‖T−1‖∞ = 5

2 and
∑∞

s=0 |γ
(−1)
s | =

4
3 . This shows that estimate (53) holds withC2 = 19

3 , and thus we may chooseβ = 13.0 in (61).
For each considered noise levelδ, the integerss andN are chosen such thath0 is the largest step

size≤ δ1/2, andhs is the smallest step size satisfying≥ δ1/3 (see (60)). We chooseκ = 1 in (59). The
results of the numerical experiments are shown in Table 4.

δ 100 · δ/‖f‖∞ N(δ) h(δ)/δ1/2 maxn |eδn | maxn |eδn | /δ
1/2

1.0 · 10−5 2.00 · 10−3 92 3.44 1.45 · 10−2 4.60
2.5 · 10−6 5.00 · 10−4 146 4.33 9.10 · 10−3 5.76
6.2 · 10−7 1.25 · 10−4 232 5.45 5.77 · 10−3 7.30
1.6 · 10−7 3.13 · 10−5 740 3.42 1.80 · 10−3 4.55
3.9 · 10−8 7.81 · 10−6 1176 4.30 1.15 · 10−3 5.83

Table 4: Numerical results of the 2nd order Adams–Bashfort method, applied to equation (69)

6 Conclusions

In the present paper we consider the regularization of linear first-kind Volterra integral equations with
smooth kernels and perturbed given right-hand sides. As regularization scheme we consider quadrature
methods that are generated by linear multistep methods for solving ODEs, with an appropriate starting
procedure. The regularizing properties of an a priori choice of the step size as well as the balancing
principle as an adaptive choice of the step size are analyzed, with a variant of the balancing principle
which sometimes requires less amount of computational workthan the standard version of this principle.

In the case of exact data, the considered scheme is similar tothat in Wolkenfelt ([25], [26]). How-
ever, our analysis is different from that in those two papersand allows less smoothness of the involved
functions in fact. All used smoothness assumptions in the present paper are of the form̂Cp−1 instead of
Cp which enlarge the classes of admissible functions further.

It turns out that an application of the balancing principle for the choice of the step size is possible,
but for general kernelsk the coefficient of the error propagation termδ/h turns out to be rather large
which in fact results from an application of the discrete Gronwall inequality in the proof of Theorem 3.7.
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