Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 6, 2017

Semi-Discrete Galerkin Finite Element Method for the Diffusive Peterlin Viscoelastic Model

  • Yao-Lin Jiang EMAIL logo and Yun-Bo Yang

Abstract

In this paper, a semi-discrete Galerkin finite element method is applied to the two-dimensional diffusive Peterlin viscoelastic model which can describe the unsteady behavior of some incompressible ploymeric fluids. For the derived semi-discrete finite element spatial discretization scheme, the a priori bounds are given that does not rely on the mesh width restriction. Further, with the help of the a priori error bounds of the Stokes and Ritz projections, optimal error estimates for the velocity, the conformation tensor and the pressure are presented, respectively. Finally, in order to implement the proposed semi-discrete numerical scheme, we derive three kinds of fully discrete schemes, e.g., Newton’s iterative scheme, Picard’s iterative scheme and implicit-explicit time-stepping scheme. Finally, several numerical experiments are conducted to confirm our theoretical results.

Award Identifier / Grant number: 11371287

Award Identifier / Grant number: 61663043

Funding statement: This work was supported by the Natural Science Foundation of China (11371287, 61663043) and the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM5077).

Acknowledgements

The authors would like to thank the editor and anonymous referees for their careful reading and valuable comments, which led to great improvement of the present article.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier, Amsterdam, 2003. Search in Google Scholar

[2] S. Bajpai, N. Nataraj, A. K. Pani, P. Damazio and J. Y. Yuan, Semidiscrete Galerkin method for equations of motion arising in Kelvin–Voigt model of viscoelastic fluid flow, Numer. Methods Partial Differential Equations 29 (2013), no. 3, 857–883. 10.1002/num.21735Search in Google Scholar

[3] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar

[4] M. A. Case, V. J. Ervin, A. Linke and L. G. Rebholz, A connection between Scott–Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations, SIAM J. Numer. Anal. 49 (2011), no. 4, 1461–1481. 10.1137/100794250Search in Google Scholar

[5] X. Chen, H. Marschall, M. Schäfer and D. Bothe, A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow, Int. J. Comput. Fluid Dyn. 27 (2013), no. 6–7, 229–250. 10.1080/10618562.2013.829916Search in Google Scholar

[6] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Search in Google Scholar

[7] M. Fortin, Calcul numérique des écoulements de fluides de Bingham et des fluides newtoniens incompressibles par la méthode des éléments finis, Ph.D. thesis, 1972. Search in Google Scholar

[8] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar

[9] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms, Academic Press, Boston, 1989. 10.1016/B978-0-12-307350-1.50009-0Search in Google Scholar

[10] F. Hecht, New development in Freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251–265. 10.1515/jnum-2012-0013Search in Google Scholar

[11] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311. 10.1137/0719018Search in Google Scholar

[12] P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B 21 (2000), no. 2, 131–146. 10.1142/S0252959900000170Search in Google Scholar

[13] M. Lukáčová Medvid’ová, H. Mizerová and Š. Nečasová, Global existence and uniqueness result for the diffusive Peterlin viscoelastic model, Nonlinear Anal. 120 (2015), 154–170. 10.1016/j.na.2015.03.001Search in Google Scholar

[14] M. Lukáčová-Medviďová, H. Mizerová, H. Notsu and M. Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part I: A nonlinear scheme, ESAIM Math. Model. Numer. Anal. (2016), 10.1051/m2an/2016078. 10.1051/m2an/2016078Search in Google Scholar

[15] M. Lukáčová-Medviďová, H. Mizerová, H. Notsu and M. Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme, preprint (2016) https://arxiv.org/abs/1603.01074. Search in Google Scholar

[16] M. Lukáčová Medviďová, H. Mizerová, B. She and J. Stebel, Error analysis of finite element and finite volume methods for some viscoelastic fluids, J. Numer. Math. 24 (2016), no. 2, 105–123. 10.1515/jnma-2014-0057Search in Google Scholar

[17] M. Lukáčová Medviďová, H. Notsu and B. She, Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid, Internat. J. Numer. Methods Fluids 81 (2016), no. 9, 523–557. 10.1002/fld.4195Search in Google Scholar

[18] M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Vol. 2, Cambridge University Press, Cambridge, 2009. 10.1017/CBO9780511810947Search in Google Scholar

[19] H. Mizerová, Analysis and numerical solution of the Peterlin viscoelastic model, Ph.D. thesis, Mainz University, 2015. Search in Google Scholar

[20] H. Notsu and M. Tabata, Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations, J. Sci. Comput. 65 (2015), no. 3, 940–955. 10.1007/s10915-015-9992-8Search in Google Scholar

[21] A. K. Pany, S. Bajpai and A. K. Pani, Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by Kelvin–Voigt viscoelastic fluid flow model, J. Comput. Appl. Math. 302 (2016), 234–257. 10.1016/j.cam.2016.01.037Search in Google Scholar

[22] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, Berlin, 1994. 10.1007/978-3-540-85268-1Search in Google Scholar

[23] S. S. Ravindran, An analysis of the blended three-step backward differentiation formula time-stepping scheme for the Navier–Stokes-type system related to Soret convection, Numer. Funct. Anal. Optim. 36 (2015), no. 5, 658–686. 10.1080/01630563.2015.1013555Search in Google Scholar

[24] M. Renardy, Mathematical Analysis of Viscoelastic Flows, CBMS-NSF Regional Conf. Ser. in Appl. Math. 73, Society for Industrial and Applied Mathematics, Philadelphia, 2000. 10.1137/1.9780898719413Search in Google Scholar

[25] C. Taylor and P. Hood, A numerical solution of the Navier–Stokes equations using the finite element technique, Internat. J. Comput. & Fluids 1 (1973), no. 1, 73–100. 10.1016/0045-7930(73)90027-3Search in Google Scholar

[26] R. Temam, Navier–Stokes Equations, 3rd ed., Stud. Math. Appl. 2, North-Holland, Amsterdam, 1984. Search in Google Scholar

[27] Y.-B. Yang and Y.-L. Jiang, Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem, Comput. Methods Appl. Math. 16 (2016), no. 2, 321–344. 10.1515/cmam-2016-0006Search in Google Scholar

[28] Y. B. Yang and Y. L. Jiang, Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure, Int. J. Comput. Math. (2017), 10.1080/00207160.2017.1294688. 10.1080/00207160.2017.1294688Search in Google Scholar

Received: 2016-12-19
Revised: 2017-6-2
Accepted: 2017-6-19
Published Online: 2017-7-6
Published in Print: 2018-4-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2017-0021/html
Scroll to top button