
Spectral approximation of fractional PDEs
in image processing and phase field

modeling ∗

Harbir Antil† Sören Bartels‡
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Abstract Fractional differential operators provide an attractive mathematical tool to
model effects with limited regularity properties. Particular examples are image process-
ing and phase field models in which jumps across lower dimensional subsets and sharp
transitions across interfaces are of interest. The numerical solution of corresponding
model problems via a spectral method is analyzed. Its efficiency and features of the
model problems are illustrated by numerical experiments.
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1 Introduction

Let Td, d ≥ 1, be the d-dimensional torus. The purpose of this paper is to study the
approximation of problems involving the fractional Laplace operator of order 2s

(−∆)s ≡ (−∆Td)s

using the Fourier spectral method and to illustrate the importance of fractional dif-
ferential operators. Such operators appear in various models with periodic boundary
conditions, see [18, 28, 32]. The approach discussed here extends to problems with
other boundary conditions such as Dirichlet or Neumann boundary conditions. For a
discussion on nonhomogeneous boundary conditions we refer to [2].
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Spectral Approximation of Fractional PDEs

Motivated by applications including fracture mechanics and turbulence, see [24, 16,
21], problems with fractional derivatives have recently gained a lot of interest. Several
experiments suggest the presence of fractional derivatives, for instance, the electrical
signal propagation in a cardiac tissue [10]. The appearance of fractional derivatives
there is attributed to the heterogeneity of the underlying medium. A question arises:
can one, for example, tailor the diffusion coefficient in [10] to get the same effects as
the fractional model? Indeed to arrive at a direct evidence justifying the presence of
fractional derivatives is a difficult question to address. This paper is an attempt to
partially address this question by considering two specific applications where the presence
of spectral fractional operators makes a significant difference. In particular, we illustrate
the effect and advantages of fractional derivatives on two, by now, classical problems:
image denoising and phase field modeling.

A well-known total variation based image denoising model is the so-called Rudin–
Osher–Fatemi (ROF) model [33] which seeks a minimizer u ∈ BV (Td) ∩ L2(Td) for

E(u) = |Du|(Td) +
α

2
‖u− g‖2. (1.1)

Here Td denotes the image domain, ‖ · ‖ is the norm in L2(Td;C) with corresponding
inner product (·, ·), and α > 0 is a regularization parameter. The function g : Td → C
represents the given observed possibly noisy image. The first term in E is the total
variation |Du|(Td) which has a regularizing effect but at the same time allows for dis-
continuities which may represent edges in the image. The second term is the fidelity
term which measures the distance to the given image. Often, weaker norms such as the
H−1 norm are considered to define the latter term. While the existence and uniqueness
of a minimizer can be established via the direct method of calculus of variations, the
non-differentiability of the total variation is challenging from a computational point of
view. In fact, a non-exhaustive list of papers that have attempted to resolve this are
[5, 7, 15, 27, 19, 25, 30, 6]. Another question to ask is, whether natural images belong
to BV (Td) ∩ L2(Td). The paper [26] shows that natural images are incompletely repre-
sented by BV (Td) functions. We will handle both these shortcomings by replacing the
total variation term in (1.1) by a squared fractional Sobolev norm. In other words, we
propose to minimize

E(u) =
1

2
‖(−∆)s/2u‖2 +

α

2
‖(−∆)−β/2(u− g)‖2, (1.2)

with 0 < s < 1 and β ∈ [0, 1]. The first order necessary and sufficient optimality
condition determines the unique minimizer u via

(−∆)su+ α(−∆)−β(u− g) = 0 in Td, (1.3)

which is a linear elliptic partial differential equation (PDE) that can be efficiently solved
using, for instance, the Fourier spectral method (which is the focus of this paper) or
the so-called Caffarelli-Silvestre extension (in Rn) [11] and the Stinga-Torrea extension
(in bounded domains) [32, 37], see also [31]. Our experiments reveal that the fractional
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Spectral Approximation of Fractional PDEs

model (1.3) leads to results which are comparable to those provided by the ROF model
but at a significantly reduced computational effort (see Section 4). We remark that
fractional derivatives have been used in image processing before; see [13, 14], where the
authors use spectral methods, and [23], where the authors use the finite element method.
However, in both these cases the authors solve a fractional dynamical system with initial
condition given by g. For completeness, we also refer to [4] where the authors consider a
fractional norm equivalent regularization in the context of optimal control problems and
parameter identification problems – this equivalent norm was realized using a mutilevel
approach.

A mathematical justification of our choice of (1.2) as a substitute to (1.1) is given
next. We seek u solving (1.3) in a fractional Sobolev space Hs(Td). Moreover, we notice
that if g ∈ L∞(Td) then following Theorem 3.5 part (1)(b) of [38] it is possible to show
that u ∈ L∞(Td), see also [3]. We will next see that BV (Td) ∩ L∞(Td) is contained in
Hs(Td) for s < 1/2. Indeed by Lemma 38.1 of [39] we have the following continuous
embedding

BV (Td) ∩ L∞(Td) ⊂ B1/2
2,∞(Td)

where B
1/2
2,∞(Td) is a Besov space. In addition, using Proposition 1.2 of [20], see also [29,

pg. 1222] and [41, Section 3], we have the following continuous embedding

B
1/2
2,∞(Td) ⊂ Hs(Td)

provided that s < 1/2. Finally, combining the inclusions we arrive at

BV (Td) ∩ L∞(Td) ⊂ Hs(Td),

which justifies our energy functional (1.2). We remark that the regularizing quadratic
term in (1.2) does not have the gradient sparsity property of the total variation norm.
This effect however cannot be proven for the ROF model in general due the presence of
the quadratic fidelity term but is certainly visible in experiments.

As a second example we consider gradient flows of the energy functional

Eε(u) =
1

2
‖(−∆)s/2u‖2 + ε−2

ˆ
Td

F (u) dx (1.4)

with initial condition u(0) = u0. The L2-gradient flow of (1.4) leads to the fractional
Allen–Cahn equation

∂tu+ (−∆)su+ ε−2f(u) = 0 in (0, T )× Td,
u(0, ·) = u0 in Td,

(1.5)

where 0 < s < 1, T > 0, and f = F ′ is typically nonlinear in u. Moreover,

ε−2 :=


ε̃−2s if s ∈ (0, 1/2),
| log ε̃| if s = 1/2,
ε̃1−2s if s ∈ (1/2, 1)
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where 0 < ε̃ < 1. When s = 1, we set ε−2 := ε̃−2. The H−α gradient flow, with α ∈ (0, 1]
leads to the fractional Cahn–Hilliard equation

(−∆)−α∂tu+ (−∆)su+ ε−2f(u) = 0 in (0, T )× Td,
u(0, ·) = u0 in Td,

(1.6)

By testing (1.6) with a constant function it is easy to check that (1.6) is mass conserv-
ing. We note that throughout this article we consider ε̃ as a fixed small number. The
aforementioned scaling of ε̃ is the right scaling to obtain a sharp interface limit as ε̃→ 0
we refer the reader to [35]. We remark that even though the optimality system in case
of image denoising is linear (1.3), the system for the fractional phase field model is non-
linear (1.6) and controlling these nonlinearities in the presence of fractional derivatives
turned out to be a nonobvious task.

When s = 1, a standard numerical method requires a fine mesh resolution around
interfaces to capture sharp transitions [8]. The fully discrete scheme proposed in this
paper is unconditionally stable and supported by a rigorous error analysis. In our ex-
periments we observe that using the spectral method and choosing small values for s,
it is possible to obtain sharp interfaces on relatively coarse meshes and moderate values
for ε̃.

We remark that the use of spectral methods in the context of phase field models
(when s = 1, α = 0 or α = 1) has been considered before, see [9, 17]. We further
remark that the recent paper [36] also investigates a fractional Allen–Cahn equation and
uses the fractional Riemann-Liouville derivative which is different from our definition.
In addition, few analytical details are provided. We also refer to [1] which discusses
analytical properties of a fractional Cahn–Hilliard equation with fixed s = 1. The
authors report that the dynamics in case α > 0 and s = 1 are closer to the classical
Cahn-Hilliard equation than to the Allen-Cahn equation. The error analysis provided
there is restricted to spatial discretizations while the used fully discrete scheme treats
the nonlinearity explicitly and is hence only conditionally stable.

We remark that the goal of this article is to show possible applications of fractional
PDEs. The simple image denoising problem serves as a model problem in which the
effect of fractional derivatives of different order becomes directly apparent. The nonlinear
evolution model defined by the fractional phase field equation combines different effects
so that an interpretation of the effect of fractional derivatives of different order requires
a more careful interpretation. Our experiments are meant to illustrate these effects for
different parameters s.

This paper is organized as follows: In Section 2 we recall facts about spectral inter-
polation estimates in fractional Sobolev spaces. The fractional Laplace operator and
its discretization by the spectral method are addressed in Section 3. We present the
details on the fractional image denoising problem in Section 4. Section 5 is devoted to
a general error analysis for a numerical scheme covering both the fractional Allen–Cahn
and Cahn–Hilliard equations. We conclude with several illustrative numerical examples
in Section 6.

4



Spectral Approximation of Fractional PDEs

2 Spectral approximation

In this section we specify notation needed to define the discrete Fourier transformation
and recall elementary approximation results in fractional Sobolev spaces.

2.1 Discrete Fourier transformation

We consider the 2π-periodic torus Td and the set of grid points (xj : j ∈ Ndn) on Td
defined by xj = (j1, . . . , jd)

2π
n , where Ndn =

{
j = (j1, . . . , jd) ∈ Zd : 0 ≤ ji ≤ n − 1

}
. A

family of grid functions (Φk : k ∈ Zdn) is defined by

Φk =
(
eik·xj : j ∈ Ndn

)
,

where Zdn =
{
k = (k1, . . . , kd) ∈ Zd : −n/2 ≤ ki ≤ n/2 − 1

}
and i2 = −1. For grid

functions V = (vj : j ∈ Ndn) and W = (wj : j ∈ Ndn) we define the discrete scalar product

(V,W )n =
(2π)d

nd

∑
j∈Nd

n

vjwj .

The associated norm is denoted ‖ · ‖n. Notice that the family (Φk : k ∈ Zdn) defines
an orthogonal basis for the space of grid functions with ‖Φk‖n = (2π)d/2. The discrete
Fourier transform of a grid function V = (vj : j ∈ Ndn) is the coefficient vector Ṽ = (ṽk :

k ∈ Zdn) with
ṽk = (V,Φk)n.

With these coefficients we have V = (2π)−d
∑

k∈Zd
n
ṽkΦ

k.

2.2 Trigonometric interpolation

We consider the space of trigonometric polynomials defined via

Sn =
{
vn ∈ C(Td;C) : vn(x) =

∑
k∈Zd

n

ckϕ
k(x), ck ∈ C

}
,

with the functions ϕk(x) = eik·x which define an orthogonal basis for Sn with respect
to the inner product in L2(Td;C). With v ∈ C(Td;C) we associate a grid function
V = (vj : j ∈ Ndn) via vj = v(xj), j ∈ Ndn. Notice that for vn, wn ∈ Sn with associated
grid functions V,W we have

(vn, wn) = (V,W )n.

The discrete Fourier transformation gives rise to a nodal interpolation operator.

Definition 1. Given v ∈ C(Td;C) with nodal values V = (vj : j ∈ Ndn) and discrete

Fourier coefficients Ṽ = (ṽk : k ∈ Zdn), the trigonometric interpolant Inv ∈ Sn of v is
defined via

Inv =
1

(2π)d

∑
k∈Zd

n

ṽkϕ
k.

5
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Remark 2. (i) Note that Inv(xj) = v(xj) for all j ∈ Ndn.
(ii) We have ṽk = (v, ϕk)n for all k ∈ Zdn.
(iii) We have (Inv, wn)n = (v, wn)n for all wn ∈ Sn and v ∈ C(Td;C).

The (continuous) Fourier transform of a function v ∈ L2(Td;C) is the coefficient
vector V̂ = (v̂k : k ∈ Zd) defined by

v̂k = (v, ϕk).

Note that here the L2 inner product is used instead of its discrete approximation. With
respect to convergence in L2(Td;C) we have that v = (2π)−d

∑
k∈Zd v̂kϕ

k, and, in par-
ticular, Plancherel’s formula (v, w) = (2π)−d(v̂, ŵ)`2(Zd).

2.3 Approximation in Sobolev spaces

We analyze the approximation properties of the interpolation operator In in terms of
Sobolev norms and with the help of the L2 projection onto Sn which is obtained by
truncation of the Fourier series of a function.

Definition 3. The L2 projection Pn : L2(Td;C) → Sn is for v ∈ L2(Td;C) defined by
the condition that for all wn ∈ Sn we have

(Pnv, wn) = (v, wn).

Note that for every v ∈ L2(Td;C) we have Pnv =
∑

k∈Zd
n
v̂kϕ

k. The following definition

is motivated by the fact that (∂̂αv)k = i|α|kαv̂k for every α ∈ Nd0.

Definition 4. Given µ ≥ 0 the Sobolev space Hµ(Td;C) consists of all functions v ∈
L2(Td;C) with

|v|2µ =
∑
k∈Zd

|k|2µ|v̂k|2 <∞.

Its dual H−µ(Td;C) consists of all linear functionals ψ : Hµ(Td;C)→ C with

|ψ|2−µ =
∑

k∈Zd\{0}

|k|−2µ|ψ̂k|2 <∞,

where ψ̂k = ψ(φk).

The Sobolev spaces allow us to quantify approximation properties of the operators Pn
and In. We refer the reader to Chapter 8 in [34] for details.

Lemma 5 (Projection error). For λ, µ ∈ R with λ ≤ µ and v ∈ Hµ(Td;C) we have

|v − Pnv|λ ≤
(n

2

)−(µ−λ)
|v|µ.

By comparing Pn and In we obtain a trigonometric interpolation estimate. It is shown
in Remark 8.3.1 of [34] that the conditions of the following result cannot be improved
in general.
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Lemma 6 (Interpolation error). If µ > d/2, 0 ≤ λ ≤ µ, and v ∈ Hµ(Td;C) we have

|v − Inv|λ ≤ cd,λ,µ
(n

2

)−(µ−λ)
|v|µ

with a constant cd,λ,µ > 0 that is independent of v and n.

We conclude the section with an inverse estimate. Particularly, for every function
vn ∈ Sn and r ≥ s we have that

|vn|r ≤ max
k∈Zd

n

|k|r−s|vn|s ≤
(n

2

)r−s
|vn|s. (2.1)

3 Fractional Laplace operator

We define subspaces of Sobolev spaces via

◦
Hr(Td;C) =

{
v ∈ Hr(Td;C) : v̂0 = 0

}
.

For r ≥ 0 the subspaces consist of Sobolev functions with vanishing mean. On the

subspaces
◦
Hr(Td;C) the corresponding seminorms | · |r are norms.

Definition 7. For s, µ ≥ 0 and v ∈ Hµ(Td;C) the fractional Laplacian of v is the

(generalized) function (−∆)sv ∈
◦
Hµ−2s(Td;C) defined by

(−∆)sv =
1

(2π)d

∑
k∈Zd\{0}

|k|2sv̂kϕk.

Given f ∈ L2(Td;C) with vanishing mean the fractional Poisson problem seeks u ∈
◦
Hs(Td;C) with

(−∆)su = f. (3.1)

The unique solution to (3.1) is given by

u =
1

(2π)d

∑
k∈Zd\{0}

|k|−2sf̂kϕk, (3.2)

and in fact satisfies u ∈
◦
H2s(Td;C). More generally, for f ∈

◦
Hµ(Td;C) we have

|u|µ+2s = |f |µ,

i.e., the fractional Laplacian defines an isometric isomorphism

(−∆)s :
◦
Hr(Td;C)→

◦
Hr−2s(Td;C).

We define the fractional Laplace operator of negative order as the inverse of (−∆)s, i.e.,

(−∆)−s =
(
(−∆)s

)−1
:
◦
Hr(Td;C)→

◦
Hr+2s(Td;C).

7
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Note that for r, s ∈ R and v ∈
◦
Hr(Td;C) with (−∆)sv ∈ L2(Td;C) we have

|v|s = ‖(−∆)s/2v‖.

If s ≤ r we have the continuous embedding property

|v|s ≤ |v|r. (3.3)

The discretized fractional Poisson problem seeks for a given fn ∈ Sn with vanishing
mean a function un ∈ Sn with

(−∆)sun = fn. (3.4)

The uniquely defined solution is given by

un =
1

(2π)d

∑
k∈Zd

n\{0}

|k|−2sf̃kϕk. (3.5)

There are two noticeable differences between the continuous (3.2) and the discrete so-
lutions (3.5). Besides the finite and the infinite sums, un contains the discrete Fourier
coefficients f̃k and u contains the continuous Fourier coefficients f̂k. The following a
priori error estimates hold.

Theorem 8. Let u and un solve the continuous (3.1) and the discrete (3.4) problems,
respectively. We have

|u− un|s ≤ |f − fn|−s.

In particular, if f ∈
◦
Hµ(Td;C) and fn = Pnf we have

|u− un|s ≤
(n

2

)−(µ+s)
|f |µ,

while if f ∈
◦
Hν(Td;C) with ν > d/2 and fn = Inf we have

|u− un|s ≤ cd,0,ν
(n

2

)−ν
|f |ν .

Proof. In view of (3.1) and (3.4) we have

|u− un|2s =
(
(−∆)s(u− un), u− un

)
=
(
f − fn, u− un

)
≤ |f − fn|−s|u− un|s.

This implies the general estimate and in combination with Lemma 5 the estimate in case
fn = Pnf . With (3.3) and Lemma 6 we deduce that

|f − Inf |−s ≤ ‖f − Inf‖ ≤ cd,0,ν
(n

2

)−ν
|f |ν

which implies the estimate.
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4 Fractional image denoising

Our second problem is a replacement of the ROF image denoising model (1.1). Given
an image g ∈ L2(Td;C) we propose to minimize

E(u) =
1

2
‖(−∆)s/2u‖2 +

α

2
‖(−∆)−β/2(u− g)‖2, (4.1)

with 0 < s < 1 and β ∈ [0, 1]. The minimization is carried out over Hs(Td;C) when

β = 0 and over
◦
Hs(Td;C) when β is positive. In the latter case we assume that g has a

vanishing mean. The existence and uniqueness of a minimizer follows by using the direct
method in the calculus of variations. The first order necessary and sufficient optimality
condition determines the unique minimizer u via

(−∆)su+ α(−∆)−βu = α(−∆)−βg in Td. (4.2)

We note that since g ∈ L2(Td;C), we have u ∈ H2(s+β)(Td;C). In particular, the solution
to (4.2) is

u =
α

(2π)d

∑
k∈Zd

(
|k|2(s+β) + α

)−1
ĝkϕ

k.

The discretized problem seeks for a given gn ∈ Sn a function un ∈ Sn with

(−∆)sun + α(−∆)−βun = α(−∆)−βgn. (4.3)

The uniquely defined solution is given by

un =
α

(2π)d

∑
k∈Zd

n

(
|k|2(s+β) + α

)−1
g̃kϕ

k

Theorem 9. Let u and un solve the continuous and the discrete problems (4.3) and
(4.2), respectively. We have that

|u− un|2s +
α

2
|u− un|2−β ≤

α

2
|g − gn|2−β.

In particular, if g ∈ Hµ(Td;C) and gn = Png we have

|u− un|s + (α/2)1/2|u− un|−β ≤ α1/2
(n

2

)−(µ+β)
|g|µ,

while if g ∈ Hν(Td;C) with ν > d/2 and gn = Ing we have

|u− un|s + (α/2)1/2|u− un|−β ≤ α1/2cd,0,ν

(n
2

)−ν
|g|ν .

Proof. Testing the difference of (4.2) and (4.3) by u− un implies that

|u− un|2s + α|u− un|2−β = α
(
(−∆)−β(g − gn), u− un

)
≤ α

2
|g − gn|2−β +

α

2
|u− un|2−β.

The estimates follow from using (a + b)2 ≤ 2(a2 + b2) and arguing as in the proof of
Theorem 8.
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5 Fractional phase field equations

Given parameters α, s ≥ 0 we recall the fractional Cahn-Hilliard equation (1.6)

(−∆)−α∂tu+ (−∆)su = −ε−2f(u) (5.1)

on a d-dimensional torus Td and with initial condition u(0) = u0. We recall that α =
0 gives rise to the fractional Allen–Cahn equation (1.5). Below we will impose the
restrictions s > 0 and s ≥ α.

We assume a splitting of the nonnegative potential F into convex and concave parts
F cx and F cv which induces a decomposition of f = F ′ into a monotone and an anti-
monotone part

f = f cx + f cv.

We assume for simplicity that f cx and f cv are smooth and Lipschitz continuous. The
latter condition is justified by a maximum principle in the case for the Allen–Cahn
equation and L∞ bounds for solutions of the Cahn–Hilliard equation [12] corresponding
to (α, s) = (0, 1) and (α, s) = (1, 1), respectively.

5.1 Numerical scheme and error analysis

The numerical scheme computes iterates (ukn)k=0,...,K ⊂ Sn via

(−∆)−αdtu
k
n + (−∆)sukn + ε−2Inf

cx(ukn) = −ε−2Inf cv(uk−1n ). (5.2)

where dtw
k = (wk − wk−1)/τ with τ > 0 being the time step-size and u0n is a suitable

approximation of u0. By applying the operator (−∆)α and testing the resulting identity
with constant functions we observe the mass conservation property (dtu

k
n, 1) = 0 if α > 0.

Existence of the iterates is established via convex minimization problems; if the convex
part of F is quadratic then f cx is linear and the scheme (5.2) defines a linear system of
equations. The scheme is unconditionally energy stable in the sense that we have

|dtukn|2−α +
τ

2
|dtukn|2s + dtE

n
ε (ukn) ≤ 0,

with the discrete energy functional

Enε (vn) =
1

2
‖(−∆)s/2vn‖2 + ε−2

(
F (vn), 1

)
n
.

This follows from testing (5.2) with dtu
k
n, using(

(−∆)sukn, dtu
k
n

)
=

1

2
dt‖(−∆)s/2ukn‖2 +

τ

2
‖(−∆)s/2dtu

k
n‖2,

and noting that as a consequence of convexity and concavity we have(
f cx(ukn), dtu

k
n

)
n
≥
(
dtF

cx(ukn), 1
)
n
,(

f cv(uk−1n ), dtu
k
n

)
n
≥
(
dtF

cv(ukn), 1
)
n
.

10
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Assuming initial data with Enε (u0n) ≤ c as n→∞, the energy estimate provides a priori
bounds on interpolants of the approximations which allows us to select an accumulation
point

u ∈ H1([0, T ];H−α(Td)) ∩ L∞([0, T ];Hs(Td))

as τ → 0 and n → ∞. Its identification as a solution for the fractional Cahn–Hilliard
equation follows from the Aubin–Lions lemma provided that s > 0. Uniqueness of
solutions is a consequence of the assumed Lipschitz continuity of f . For an error analysis
we note that u ∈ C([0, T ];L2(Td)), let uk = u(tk) with tk = kτ , and define

ekn = ukn − Pnuk,

where Pn is the orthogonal projection given in Definition 3. Note that we have (Pnv, wn)n =
(Pnv, wn) but (v, wn)n 6= (v, wn) unless v belongs to Sn. We omit the subscript n when-
ever the scalar product is applied to two functions belonging to Sn. For ease of readability
we abbreviate

fε = ε−2f, f cxε = ε−2f cx, f cvε = ε−2f cv.

The sequences (ukn) and (uk) satisfy the discrete equations

(−∆)−αdtu
k
n + (−∆)sukn = −Infε(ukn)− In

(
f cvε (uk−1n )− f cvε (ukn)

)
,

(−∆)−αdtPnu
k + (−∆)sPnu

k = −Pnfε(uk) + (−∆)−αPn(dtu
k − ∂tuk),

where we used that Pn commutes with (−∆)r for every r ∈ R. Subtracting the identities
leads to the error equation

(−∆)−αdte
k
n + (−∆)sekn = Akn +Bk

n + Ckn,

with the discretization errors

Akn = −Infε(ukn) + Pnfε(u
k),

Bk
n = −In

(
f cvε (uk−1n )− f cvε (ukn)

)
,

Ckn = −(−∆)−αPn(dt − ∂t)uk.

Testing the error equation with ekn shows that we have

1

2
dt|ekn|2−α +

τ

2
|dtekn|2−α + |ekn|2s = (Akn, e

k
n) + (Bk

n, e
k
n) + (Ckn, e

k
n).

To bound the first term on the right-hand side we insert fε(u
k
n), use Lemma 6, the inverse

estimate (2.1), and insert Pnu
k to deduce with the Lipschitz continuity of fε that

(Akn, e
k
n) = −

(
Infε(u

k
n)− fε(ukn) + fε(u

k
n)− fε(uk), ekn

)
≤ cd,0,1n−1|fε(ukn)|1‖ekn‖+ |fε|Lip‖ukn − uk‖‖ekn‖
≤ cd,0,1n−1|fε|Lip|ukn|1‖ekn‖+ |fε|Lip

(
‖ukn − Pnuk‖+ ‖Pnuk − uk‖

)
‖ekn‖

≤ |fε|Lip
(
cd,0,1n

−s|ukn|s + ‖Pnuk − uk‖
)
‖ekn‖+ |fε|Lip‖ekn‖2.

11
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For the second term we have that

(Bk
n, e

k
n) ≤ τ |fε|Lip‖dtukn‖‖ekn‖ ≤ τnα|fε|Lip|dtukn|−α‖ekn‖,

where we used the inverse estimate ‖wn‖ ≤ nα|wn|−α if α > 0. For the third term we
assume that u ∈ C2([0, T ];H−α(Td)) and estimate

(Ckn, e
k
n) = ((−∆)−α[∂t − dt]uk, ekn) ≤ τ

2
sup
t∈[0,T ]

|∂2t u(t)|−α|ekn|α

A combination of the estimates, multiplication by τ , and summation over k = 1, 2, . . . ,K,
yield that

1

2
|eKn |2−α + τ

K∑
k=1

|ekn|2s ≤
1

2
|e0n|2−α +Kτ |fε|Lip max

k=1,...,K

(
cd,0,1n

−s|ukn|s + ‖uk − Pnuk‖
)2

+Kτ3n2α|fε|Lip max
k=1,...,K

|dtukn|2−α +Kτ3 sup
t∈[0,T ]

|∂2t u(t)|2−α

+ 3|fε|Lipτ
K∑
k=1

‖ekn‖2 +
τ

4

K∑
k=1

|ekn|2α.

If α = 0 we may directly apply the discrete Gronwall lemma to obtain an error estimate.
If α > 0 we assume α ≤ s, require that (u0n, 1) = (u0, 1) so that (ekn, 1) = 0, and use the
bound

‖ekn‖2 ≤ |ekn|−s|ekn|s ≤ |ekn|−α|ekn|s,

to deduce with Young’s inequality the estimate

EKn =
1

2
|eKn |2−α +

τ

2

K∑
k=1

|ekn|2s ≤ D0 +D1τ

K∑
k=1

Ekn.

Here, D0 is the sum of the first four terms on the right-hand side of the above estimate
and D1 = 2(3|fε|Lip)2. The discrete Gronwall lemma leads to the estimate

EKn ≤ 2D0 exp(D1T )

for all K with Kτ ≤ T provided that τD1 ≤ 1/2. With the triangle inequality and
approximation estimates for Pn we obtain the following error estimate.

Theorem 10. Let u ∈ C([0, T ];Hs(Td)) ∩ C2([0, T ];H−α(Td)) solve (1.6) and let the
sequence (ukn)k=0,...,K ⊂ Sn be defined via (5.2). There exists a constant cε > 0 such that
we have

max
k=1,...,K

|u(tk)− ukn|−α ≤ cε(τ + τnα + n−s)

for all τ > 0 and n ∈ N.
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The constant cε, in general, depends exponentially on ε−1. For the derivation of this
estimate we used the indicated regularity assumption. By standard arguments, see [40]
the regularity assumption on the exact solution can be weakened to the conditions

u ∈ L∞([0, T ];Hs(Td)), ∂2t u ∈ L2([0, T ];H−α(Td)).

The suboptimal term τnα corresponds to the semi-implicit treatment of the nonlinearity
which makes the scheme (5.2) fully practical.

5.2 Improved error estimate via spectral bounds

A significantly improved error estimate can be obtained if additional analytical knowl-
edge about the evolution is available, e.g., in the form of lower bounds for the principal
eigenvalue

λ(t) = min
v∈Hs(Td)

|v|2s + ε−2
(
f ′(u(t))v, v

)
|v|2−α

.

For ease of presentation we only consider the fractional Allen–Cahn equation with α = 0
and outline the main arguments following [22, 8]. We focus on the contribution to the
error equation resulting from the nonlinearity and write it with abstract consistency
functionals Ckn as

dte
k
n + (−∆)sekn = Ckn + ε−2Pn

(
f(uk)− f(ukn)

)
.

A precise formula for Ckn is obtained from subtracting the projected partial differential
equation evaluated at tk onto Sn from the numerical scheme as above, e.g., in case of a
fully implicit numerical scheme with a nodal interpolation of the nonlinear term we have

Ckn = −ε−2
(
Pnf(ukn)− Inf(ukn)

)
+ ε−2Pnf(uk) + dtPnu

k + (−∆)sPnu
k

= −ε−2
(
Pnf(ukn)− Inf(ukn)

)
+ Pn

(
dtu

k − ∂tu(tk)
)
.

To relate the error equation to the principal eigenvalue we require a controlled failure
of monotonicity for f in the sense that there exists a constant cf > 0 such that for all
a, b ∈ R we have (

f(a)− f(b)
)
(a− b) ≥ f ′(a)(a− b)2 − cf |a− b|3.

With this estimate we deduce with c′f = ‖f ′‖L∞(R) that

1

2
dt‖ekn‖2 +

τ

2
‖dtenk‖2 + |ekn|2s

= −ε−2
(
f(uk)− f(ukn), ekn

)
+ (Ckn, ekn)

≤ −ε−2
(
f ′(uk)ekn, e

k
n

)
+ cfε

−2‖ekn‖3L3(Td) +
ε−2

2
|Ckn|2−s +

ε2

2
|ekn|2s

≤ −(1− θ)ε−2
(
f ′(uk)ekn, e

k
n

)
+ θε−2c′f‖ekn‖2

+ cfε
−2‖ekn‖3L3(Td) +

ε−2

2
|Ckn|2−s +

ε2

2
|ekn|2s.
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We incorporate the eigenvalue λk = λ(tk) via

−ε−2
(
f ′(uk)ekn, e

k
n

)
≤ |ekn|2s − λk‖ekn‖2.

Choosing θ = ε2 and letting µk = max{−λk, 0} thus leads to the estimate

1

2
dt‖ekn‖2 + |ekn|2s ≤(1− ε2)|ekn|2s + µk‖ekn‖2

+ c′f‖ekn‖2 + cfε
−2‖ekn‖3L3(Td) +

ε−2

2
|Ckn|2−s +

ε2

2
|ekn|2s.

Rearranging terms gives

dt‖ekn‖2 + ε2|ekn|2s ≤ 2
(
µk + c′f )‖ekn‖2 + 2cfε

−2‖ekn‖3L3(Td) + ε−2|Ckn|2−s.

In an inductive argument we may assume that ε−2‖ekn‖3L3(Td)
≤ c‖ekn‖2 and use the

discrete Gronwall lemma to obtain an error estimate that depends exponentially on the
principal eigenvalue λk. Hence, if λk is uniformly bounded from below the resulting error
estimate depends only algebraically on ε−1. More generally, it suffices to assume that a
discrete time integral of λk is uniformly bounded from below. This allows us to cover
large classes of evolutions including topological changes.

6 Numerical Examples

In this Section, we present several numerical examples. In Section 6.1 we discuss the ap-
proximation of the fractional Poisson problem. Section 6.2 is devoted to image denoising
problem. In Section 6.3 we study features of the fractional Allen–Cahn equation. We
conclude with experiments for the fractional Cahn–Hilliard equation in Section 6.4.

6.1 Approximation of the Poisson problem

To construct a nonsmooth solution for the fractional Poisson problem we first let w ∈
C(T) be defined via

w(x) =

{
x, x ≤ π,
2π − x, x ≥ π.

Since w(0) = w(2π) we find for k 6= 0 with an integration-by-parts that

ŵk =

ˆ 2π

0
w(x)e−ik·x dx =

1

ik
(1− e−ikx)

ˆ π

0
e−ik·x dx =

1

(ik)2
(
1− (−1)k

)2
,

i.e., ŵk = −4/k2 if k is odd and ŵk = 0 if k is even. We have ŵ0 = π2. We then let
u ∈ C(Td) be for x ∈ Td defined via

u(x) =

d∏
i=1

w(xi)−
π2d

(2π)d
.
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We have ûk = ŵk1 · · · ŵkd if k 6= 0 and û0 = 0. We set f = (−∆)su, i.e., for k ∈ Zdn let

f̂k = |k|2sûk. Note that f ∈ L2(Td) if and only if s < 1/2. We choose the approximation
fn = Pnf which is explicitly available here. The output for s = 1/2 and n = 16
is displayed in Figure 1. In contrast to solutions of the classical Poisson problem we
observe here the occurrence of kinks in the solution.

8

4

0

−4

4

−2

0

2

Figure 1: Functions Pnf and un for the fractional Poisson problem with s = 1/2 and
n = 16.

6.2 Fractional image denoising

The fractional Laplacian with s < 1/2 is closely related to the total variation norm (see
Section 1) which motivates its application in image processing. Given a noisy image
g ∈ L2(Td) we define a regularized image u ∈ H2s(Td) via

(−∆)su+ α(u− g) = 0.

The fidelity parameter α penalizes the deviation of u from g in the L2 metric. Alterna-
tively, this distance can be taken in the weaker metric of H−1(Td) which leads to the
equation

(−∆)su+ α(−∆)−1(u− g) = 0,

where we assume that g has vanishing mean and look for u with vanishing mean. The
results of two experiments are displayed in the rows of Figure 2. In the first experiment
we set s = 0.42, α = 10, and n = 1566. In the second experiment we used s = 0.35, α =
5×103 and n = 256. The first and second columns display the original and noisy images,
respectively. The third and fourth columns show the results of L2 and H−1 fidelity. We
note that in the first example, where the additive noise is normally distributed with mean
zero and standard deviation 0.15, the L2-fidelity almost perfectly recovers the original
image reflecting the fact that for Gaussian noise this is statistically the optimal choice.
In the second example where the noise is given by the nodal interpolant of the sinusoidal
function

ξ(x1, x2) = 5 sin(20πx1) sin(20πx2)

we obtain better recovery using the H−1-fidelity. We remark that it took 0.2 sec and
0.006 sec to solve the first and the second problem in Matlab on a MacBook Pro with
an 2.8 GHz Intel Core i7 processor (16 GB 1600 MHz DDR3 RAM).
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Figure 2: Original and noisy image, regularized images for L2 and H−1 fidelity terms.
In the case of first example we have set s = 0.42, α = 10, and n = 1566. In the
second example we have s = 0.35, α = 5 × 103 and n = 256. The recovery is
satisfactory using the L2-fidelity in the first example. In the second example,
recovery is better in case of the H−1-fidelity term.

Comparison between fractional and total variation

We next compare the fractional and the total variation (TV) based models (1.1) with the
help of three examples. This comparison was carried out in Python which was specifically
chosen due to the availability of SciKit-Image toolbox [42]. In all the examples we assume
that original image denoted by o (without noise) is known. For the fractional case we
compute the optimal parameters (s, α) by solving a minimization problem: minu ‖u−o‖2,
subject to u solving (−∆)su+α(u−g) = 0. We further assume that (s, α) lies in a closed
convex set, i.e., 0.05 ≤ s ≤ 0.5 and 1 ≤ α ≤ 50. We solve this optimization problem
using an in-built optimization algorithm in Python. The corresponding optimization
problem for TV is solved for α using a genetic algorithm.

Our first example uses a picture of Gauss (cf. Figure 3, top row). The left image is
the original image with n = nx = ny = 1566. Our second example (cf. Figure 3, middle
row) uses a synthetic image with n = nx = ny = 1500. Our final example (cf. Figure 3,
bottom row) is based on an in-built image from SciKit with different number of points in
the x and y directions, i.e., nx = 400, ny = 600. We note that even though the approach
discussed in Section 4 assumes n = nx = ny it is directly extended to this case where
nx 6= ny. In the second column (from the left), in all the examples, we have added a
normally distributed noise with mean zero and standard deviation 0.15, we denote the
resulting noisy image by g.

For the fractional case the optimal parameters are (s, α) = (0.49, 50) for the first
example and (s, α) = (0.5, 50) for the second and third examples. On the other hand,
for TV case the optimal parameters are α = 3.58, α = 1.0, and α = 8.74, respectively.
Using these parameters we solve the corresponding image denoising problems using the
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fractional approach (third column from the left) and compare the results with the in-built
TV algorithm from [42]. We observe that the two approaches give comparable results in
all three examples. The fractional approach is significantly cheaper as only two discrete
Fourier transformations have to be computed. The CPU times for implementations of
the fractional and TV approach in Matlab and Python, respectively, are provided in the
caption of Figure 3. They show a reduction of the computing times by factors 10-100.
We remark that certain aspects in the Chambolle–Pock algorithm implemented in Scikit
such as the specification of a suitable stopping criterion and choice of step-sizes may lead
to different results.

Figure 3: Original and noisy image, regularized images for L2 fidelity with fractional
and total variation (TV) approaches. The optimized parameters s and α are
given as follows - Example 1: (s, α) = (0.49, 50) (fractional) and α = 3.58
(TV); Example 2: (s, α) = (0.5, 50) (fractional) and α = 1 (TV); Example 3:
(s, α) = (0.5, 50) (fractional) and α = 8.74 (TV). The last two columns are
corresponding reconstructions for the fractional and TV method. While the
results are comparable the computing times differ significantly: Example 1:
0.2 sec (fractional) and 2.1 sec (TV); Example 2: 0.1 sec (fractional), 6.1 sec
(TV); Example 3: 0.01 sec (fractional) and 0.2 (TV).

6.3 Fractional Allen–Cahn equation

We consider the fractional Allen-Cahn equation (1.5) with a given initial function u0 ∈
L2(Td). The function f is the derivative of a double well potential F with quadratic
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growth, i.e.,

F (u) =
1

2

(1− u2)2

1 + u2
, f(u) = u− 4u

(1 + u2)2
,

which leads to linear systems of equations in our semi-implicit time discretization. Snap-
shots of the evolutions with ε̃ = 1/8, n = 512, and ∆t = 1/100 at t = 1, t = 4, t = 12,
and t = 20 (rowwise) are shown in Figure 4. The first column corresponds to s = 1,
second to s = 0.45, third to s = 0.30, and finally fourth to s = 0.15. Clearly the interface
in case of a fractional model is sharper, however the dynamics are slower.

Figure 4: Snapshots of Allen–Cahn evolutions with n = 512 at times t = 1, t = 4,
t = 12, and t = 20 (rowwise), respectively. Columns represent s = 1, s = 0.45,
s = 0.30, and s = 0.15, respectively. In all cases we have set ε̃ = 1/8.
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6.4 Fractional Cahn-Hilliard equation

We next study the fractional Cahn–Hilliard equation specified in (1.6) defining F and f
as in Subsection 6.3. In a first experiment we define the initial condition u0 as

u0(x1, x2) =


1 if (x1 − 2π

3 )2 + (x2 − π)2 < (π3 )2

or (x1 − 4π
3 )2 + (x2 − π)2 < (π3 )2,

−1 otherwise.

Snapshots of the evolutions with ε̃ = 1/8, n = 512, and ∆t = 1/100 at t = 0.25, t = 0.50,
t = 2, and t = 3 (rowwise) are shown in Figure 5 for s = 1, s = 0.45, s = 0.30, and
s = 0.15 (columnwise) with α = 1 in all cases.

In a second experiment we focus on the coarsening dynamics of the fractional phase
field equation. As in [1] the initial condition is given by u0 = 2φ − 1 + δ where δ is
a random perturbation uniformly distributed in [-0.2,0.2]. Snapshots of the evolutions
with φ = 0.5, ε̃ = 1/8, n = 512, and ∆t = 1/100 at t = 0.25, t = 0.5, t = 1, and t = 1.5
(rowwise) are shown in Figure 6. The first two columns correspond to α = 1 with s = 1
and s = 0.20, respectively. The last two columns are obtained with α = 1/2 with s = 1
and s = 0.20, respectively.
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