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Abstract. We propose a nonlinear Discrete Duality Finite Volume scheme to approximate the

solutions of drift diffusion equations. The scheme is built to preserve at the discrete level even on
severely distorted meshes the energy / energy dissipation relation. This relation is of paramount

importance to capture the long-time behavior of the problem in an accurate way. To enforce it, the

linear convection diffusion equation is rewritten in a nonlinear form before being discretized. We
establish the existence of positive solutions to the scheme. Based on compactness arguments, the

convergence of the approximate solution towards a weak solution is established. Finally, we pro-

vide numerical evidences of the good behavior of the scheme when the discretization parameters
tend to 0 and when time goes to infinity.
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1. Introduction

1.1. Motivation. The modeling of systems of interacting particles, like electrons in electronic
devices, ions in plasmas, chemical species in biological membranes for instance, leads to systems of
evolutive partial differential equations. The knowledge of the large time behavior of such systems is
crucial for the understanding of the underlying physical phenomena. In many cases, the relaxation
to an equilibrium configuration is based on the second law of thermodynamics and on the dissipation
of some entropies.

Based on works in kinetic theory, mathematicians have intensively developed the entropy method
for the study of the large time behavior of different systems of PDEs. Let us mention works on
Boltzmann and Landau equations [43], on linear Fokker-Planck equations [15], on porous media
equations [16], on reaction-diffusion systems [23, 24, 34], on drift-diffusion systems for semiconductor
devices [31, 32, 30]. We also refer to the survey paper [5] and to the reference book [37]. Similar
results were obtained based on the interpretation of PDE models as Wasserstein gradient flows [1].
We refer for instance to [36, 10] for linear Fokker Planck equations, to [40] for the porous medium
equation, to [11] for granular media. This list is far from being exhaustive.

The knowledge of the large time behavior of such evolution equations, the existence of some
entropies which are dissipated along time are structural features, as positivity of densities or con-
servation of mass, that should be preserved at the discrete level by numerical schemes. The question
of the large time behavior of numerical schemes has been investigated for instance for coagulation-
fragmentation models [29], for nonlinear diffusion equations [17, 38], for reaction-diffusion systems

The authors are supported by the Inria teams RAPSODI and COFFEE, the LabEx CEMPI (ANR-11-LABX-
0007-01), the GEOPOR project (ANR-13-JS01-0007-01) and the MOONRISE project (ANR-14-CE23-0007).
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[34, 35], for drift-diffusion systems [19, 7]. These last works show that the Scharfetter-Gummel
numerical fluxes, first introduced in [42] for the approximation of convection-diffusion fluxes and
widely used later for the simulation of semiconductor devices, preserve the thermal equilibrium.
Their use in the numerical approximation of drift-diffusion systems ensure the exponential decay
towards equilibrium of the numerical scheme. Unfortunately, such numerical fluxes can only be
applied in two-points flux approximation finite volume schemes and therefore on restricted meshes.
Moreover, they do not extend to anisotropic convection-diffusion equations.

Therefore, it seems crucial to propose new finite volume schemes which preserve the large-time
behavior of anisotropic convection-diffusion equations and which apply on almost general meshes.
In [14], the authors proposed and analyzed a VAG scheme satisfying these prescribed properties.
In this work, we propose and study the convergence analysis of a nonlinear free-energy diminishing
discrete duality finite volume scheme [12].

1.2. Presentation of the continuous problem. We focus on a very basic drift-diffusion equation
with potential convection and anisotropy. Let Ω be a polygonal connected open bounded subset of
R2 and let T > 0 be a finite time horizon. The problem writes:

∂tu+ divJ = 0, in QT = Ω× (0, T ),(1a)

J = −Λ∇u− uΛ∇V, in QT ,(1b)

J · n = 0, on ∂Ω× (0, T ),(1c)

u(·, 0) = u0, in Ω,(1d)

with n the outward unit normal to ∂Ω and the following assumptions on the data:

(A1) The initial data u0 is measurable, nonnegative and satisfies

(2)

∫
Ω

u0dx > 0 and

∫
Ω

H(u0)dx <∞,

where H(s) = s log s− s+ 1 for all s ≥ 0.
(A2) The exterior potential V belongs to C1(Ω,R). Without loss of generality, we assume that

V ≥ 0 in Ω.
(A3) The anisotropy tensor Λ is supposed to be bounded (i.e., Λ ∈ L∞(Ω)2×2), symmetric (i.e.,

Λ = ΛT a.e. in Ω), and uniformly elliptic: there exist λm > 0 and λM > 0 such that

(3) λm|v|2 ≤ Λ(x)v · v ≤ λM |v|2, for all v ∈ R2 and almost all x ∈ Ω.

The flux J can be reformulated in the nonlinear form

J = −uΛ∇(log u+ V ).

Testing equation (1a) by log(u) + V leads to the so-called energy/energy dissipation relation (en-
ergy/dissipation for short)

(4)
dE
dt

+ I = 0,

where the free energy E and the dissipation I for (1) are respectively defined by

E(t) =

∫
Ω

(H(u) + V u)(x, t)dx,(5)

I(t) =

∫
Ω

uΛ∇(log u+ V ) · ∇(log u+ V )dx.(6)
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Since u is nonnegative, so does I and the free energy E is decaying with time. As highlighted for
instance in [6] and [10], the solution u to (1) converges towards the steady-state

u∞ =

(∫
Ω

u0dx/

∫
Ω

e−V dx

)
e−V

when time goes to infinity. In the case where Λ does not depend on x and where both Ω and V
are convex, this convergence is exponentially fast.

The energy/energy dissipation relation (4) provides a control on the Fisher information

(7)

∫∫
QT

u|∇ log(u)|2dxdt = 4

∫∫
QT

|∇
√
u|2dxdt ≤ C.

Thus it is natural to seek the solution in the space{
u : QT → R+

∣∣∣∣ ∫
Ω

H(u(x, ·))dx ∈ L∞(0, T ) and
√
u ∈ L2(0, T ;H1(Ω))

}
.

This motivates the following notion of weak solution.

Definition 1.1. A function u : QT → R+ is said to be a weak solution to the problem (1) if
H(u) ∈ L∞(0, T, L1(Ω)),

√
u ∈ L2(0, T,H1(Ω)), and (1) is satisfied in the distributional sense, i.e.,

for all ϕ ∈ C∞c (Ω× [0, T )), there holds

(8)

∫∫
QT

u∂tϕdxdt+

∫
Ω

u0ϕ(·, 0)dx−
∫∫

QT

(u∇V +∇u) ·Λ∇ϕdxdt = 0.

1.3. Outline of the paper. In Section 2, we introduce the numerical scheme and state the main
results of the paper: existence of a positive solution to the scheme and convergence of a sequence
of approximate solutions towards a weak solution. The existence of a solution to the scheme is
established in Section 3. It strongly relies on the conservation of mass at the discrete level and
on a discrete counterpart of an energy/dissipation estimate. Section 4 is devoted to the proof of
convergence of the scheme. The effective behavior of the numerical method is eventually discussed
in Section 5. It is shown that the method is second order accurate w.r.t. space in L2 norm, whereas
the approximate gradient super-converges with observed order 3/2. Moreover, the method exhibit
a very accurate long-time behavior.

2. Presentation of the scheme and main results

2.1. Meshes and notations. In order to define a DDFV scheme, as for instance in [25, 3], we
need to introduce three different meshes – the primal mesh, the dual mesh and the diamond mesh
– and some associated notations.

The primal mesh denoted M is composed of the interior primal mesh M (a partition of Ω with
polygonal control volumes) and the set ∂M of boundary edges seen as degenerate control volumes.
For all K ∈M, we define xK the center of K. The family of centers is denoted by X = {xK ,K ∈M}.

Let X∗ denote the set of the vertices of the primal control volumes in M. Distinguishing the
interior vertices from the vertices lying on the boundary, we split X∗ into X∗ = X∗int ∪X∗ext. To any
point xK∗ ∈ X∗int, we associate the polygon K∗, whose vertices are {xK ∈ X/xK∗ ∈ K,K ∈ M}.
The set of these polygons defines the interior dual mesh denoted by M∗. To any point xK∗ ∈ X∗ext,
we then associate the polygon K∗, whose vertices are {xK∗} ∪ {xK ∈ X/xK∗ ∈ K̄,K ∈ M}. The
set of these polygons is denoted by ∂M∗ called the boundary dual mesh and the dual mesh is
M∗ ∪ ∂M∗, denoted by M∗.
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For all neighboring primal cells K and L, we assume that ∂K ∩ ∂L is a segment, corresponding
to an edge of the mesh M, denoted by σ = K|L. Let E be the set of such edges. We similarly
define the set E∗ of the edges of the dual mesh. For each couple (σ, σ∗) ∈ E × E∗ such that
σ = K|L = (xK∗ , xL∗) and σ∗ = K∗|L∗ = (xK , xL), we define the quadrilateral diamond cell Dσ,σ∗
whose diagonals are σ and σ∗, as shown on Figure 1. If σ ∈ E ∩ ∂Ω, we note that the diamond
degenerates into a triangle. The set of the diamond cells defines the diamond mesh D. It is a
partition of Ω. We can rewrite D = Dext∪Dint where Dext is the set of all the boundary diamonds
and Dint the set of all the interior diamonds.

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L

nσ∗K∗

σ = K|L, edge of the primal mesh

σ∗ = K∗|L∗, edge of the dual mesh

Diamond Dσ,σ∗
Vertices of the primal mesh

Centers of the primal mesh

xD
•

xL∗

xK∗

xL
xK

Figure 1. Definition of the diamonds Dσ,σ∗ and related notations.

Finally, the DDFV mesh is made of T = (M,M∗) and D. For each primal or dual cell M
(M ∈M or M ∈M∗), we define mM the measure of M , EM the set of the edges of M (it coincides
with the edge σ = M if M ∈ ∂M), DM the set of diamonds Dσ,σ∗ ∈ D such that m(Dσ,σ∗ ∩M) > 0,
and dM the diameter of M .

For a diamond Dσ,σ∗ , whose vertices are (xK , xK∗ , xL, xL∗), we define: xD the center of the
diamond cell D: {xD} = σ ∩ σ∗, mσ the length of the primal edge σ, mσ∗ the length of the dual
edge σ∗, dD the diameter of D, αD the angle between (xK , xL) and (xK∗ , xL∗). We will also use two
direct basis (τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L), where nσK is the unit normal to σ, outward K, nσ∗K∗

is the unit normal to σ∗, outward K∗, τK∗,L∗ is the unit tangent vector to σ, oriented from K∗ to
L∗, τK,L is the unit tangent vector to σ∗, oriented from K to L. Denoting by mD the 2-dimensional
Lebesgue measure of D, one has

(9) mD =
1

2
mσmσ∗ sin(αD), ∀D = Dσ,σ∗ ∈ D.

We define two local regularity factors θD, θ̃D of the diamond cell D = Dσ,σ∗ ∈ D by

(10) θD =
1

2 sin(αD)

(
mσ

mσ∗
+

mσ∗

mσ

)
≥ 1, θ̃D = max

(
max
K∈MD

mD
mD∩K

; max
K∗∈M∗D

mD
mD∩K∗

)
.

In what follows, we assume that there exists θ? ≥ 1 such that

(11) 1 ≤ θD, θ̃D ≤ θ?, ∀D ∈ D.

In particular, this implies that

(12) sin(αD) ≥ 1

θ?
, ∀D ∈ D.
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Moreover, owing to the definition of θ̃D and to (11), one has

(13)
∑
D∈DK

mD ≤ θ?mK and
∑
D∈DK∗

mD ≤ θ?mK∗

Finally, we define the size of the mesh: size(T ) = maxD∈DdD.

2.2. Discrete unknowns and discrete operators. We first define the different sets of discrete
unknowns. As it is usual for DDFV methods, we need several types of degrees of freedom to
represent scalar and vector fields in the discrete setting. We introduce RT the linear space of scalar
fields constant on the cells of M and M∗:

uT ∈ RT ⇐⇒ uT =
(
(uK)K∈M , (uK∗)K∗∈M∗

)
and

(
R2
)D

the linear space of vector fields constant on the diamonds:

ξD ∈
(
R2
)D ⇐⇒ ξD = (ξD)D∈D .

Let us mention that we similarly denote by RD the set of scalar fields constant on the diamonds.
Then,we define the positive semi-definite bilinear form1 J·, ·KT on RT and the scalar product

(·, ·)Λ,D on
(
R2
)D

by

JvT , uT KT =
1

2

∑
K∈M

mKuKvK +
∑

K∗∈M∗
mK∗uK∗vK∗

 , ∀uT , vT ∈ RT ,

(ξD,ϕD)Λ,D =
∑
D∈D

mD ξD ·Λ
DϕD, ∀ξD,ϕD ∈

(
R2
)D

,

where

ΛD =
1

mD

∫
D

Λ(x)dx, ∀D ∈ D.

We denote by ‖ · ‖Λ,D the Euclidian norm associated to the scalar product (·, ·)Λ,D, i.e.,

‖ξD‖
2
Λ,D = (ξD, ξD)Λ,D , ∀ξD ∈

(
R2
)D

.

The DDFV method is based on the definitions of a discrete gradient and of a discrete divergence,
which are linked by duality formula as shown in [25]. The discrete gradient has been introduced in

[20] and developed in [25]. It is a mapping from RT to
(
R2
)D

defined by ∇DuT =
(
∇DuT

)
D∈D

for all uT ∈ RT , where

∇DuT =
1

sin(αD)

(
uL − uK

mσ∗
nσK +

uL∗ − uK∗
mσ

nσ∗K∗

)
, ∀D ∈ D.

Using (9), the discrete gradient can be equivalently written:

∇DuT =
1

2mD
(mσ(uL − uK)nσK + mσ∗(uL∗ − uK∗)nσ∗K∗) , ∀D ∈ D.

1Although it mimics the continuous L2(Ω) scalar product, the bilinear form J·, ·KT is not a scalar product since
it does not involve the primal boundary edges ∂M. It is therefore not definite.
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The discrete divergence has been introduced in [25]. It is a mapping divT from
(
R2
)D

to RT

defined for all ξD ∈
(
R2
)D

by

divT ξD =
(

divMξD,div∂MξD,divM∗ξD,div∂M
∗
ξD

)
,

with divMξD = (divKξD)K∈M, div∂MξD = 0, divM∗ξD = (divK∗ξD)K∗∈M∗ and div∂M
∗
ξD =

(divK∗ξD)K∗∈∂M∗ such that:

∀ K ∈M,divKξD =
1

mK

∑
D∈DK

D=Dσ,σ∗

mσ ξD · nσK ,

and analogous definitions for divK∗ξD for K∗ ∈M∗.
In [2], the authors study the convergence of DDFV schemes for degenerate hyperbolic-parabolic

problems. They show that a penalization operator is needed in order to establish the convergence
proof. Indeed, this penalization operator ensures that the two components of a discrete function
(reconstructions on the primal and dual meshes) converge to the same limit. For similar reasons
(see Section 4), we consider the same penalization operator PT : RT → RT as in [2] and [18]. It is
defined for all uT ∈ RT by

PT uT =
(
PMuT ,P∂MuT ,PM∗uT ,P∂M

∗
uT

)
,

with PMuT = (PKuT )K∈M, P∂MuT = 0, PM∗uT = (PK∗uT )K∗∈M∗ and P∂M∗uT = (PK∗uT )K∗∈∂M∗
such that, for a given parameter β ∈ (0, 2),

∀ K ∈M, PKuT =
1

mK

1

size(T )β

∑
K∗∈M∗

mK∩K∗(uK − uK∗),

∀ K∗ ∈M∗, PK∗uT =
1

mK∗

1

size(T )β

∑
K∈M

mK∩K∗(uK∗ − uK).

It clearly satisfies : for all uT , vT ∈ RT ,

(14) JPT uT , vT KT =
1

2

1

Size(T )β

∑
K∗∈M∗

∑
K∈M

mK∩K∗(uK − uK∗)(vK − vK∗) with β ∈ (0, 2).

Finally, we introduce a reconstruction operator on diamonds rD. It is a mapping from RT to
RD defined for all uT ∈ RT by rD[uT ] =

(
rD(uT )

)
D∈D, where for D ∈ D, whose vertices are xK ,

xL, xK∗ , xL∗ ,

(15) rD(uT ) =
1

4
(uK + uL + uK∗ + uL∗).

We conclude this section with a remark on the particular structure of the scalar product of two
discrete gradients (∇DuT ,∇DvT )Λ,D for uT , vT ∈ RT . Indeed, for uT ∈ RT and D ∈ D, we define
δDuT by

δDuT =

(
uK − uL
uK∗ − uL∗

)
.

Then, we can write

(∇DuT ,∇DvT )Λ,D =
∑
D∈D

δDuT · ADδDvT ,
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where the local matrices AD are defined by

(16) AD =
1

4mD

(
m2
σ(ΛDnK,σ · nK,σ) mσmσ∗(Λ

DnK,σ · nK∗,σ∗)
mσmσ∗(Λ

DnK,σ · nK∗,σ∗) m2
σ∗(Λ

DnK∗,σ∗ · nK∗,σ∗)

)
=

(
ADσ,σ ADσ,σ∗
ADσ,σ∗ ADσ∗,σ∗

)
.

It follows from elementary calculations left to the reader that the condition number of AD with
respect to the 2-norm can be bounded by

(17) Cond2(AD) ≤ Cond2(ΛD)

(
θD +

√
θ2
D −

1

Cond2(ΛD)

)2

< 4(θ?)2λ
M

λm
, ∀D ∈ D.

2.3. The nonlinear DDFV scheme. Let NT be a positive integer, we consider for simplicity the
constant time step is given by ∆t = T/NT . For n ∈ {0, . . . , NT }, we denote by tn = n∆t. We first
discretize the initial condition by taking the mean values of u0, i.e.,

(18) u0
K =

1

mK

∫
K

u0dx, u0
K∗ =

1

mK∗

∫
K

u0dx, ∀K ∈M, ∀K∗ ∈M∗, u0
∂M = 0,

and the exterior potential V by taking its nodal values on the primal and dual cells, i.e.,

(19) VK = V (xK), VK∗ = V (xK∗), ∀K ∈M, ∀K∗ ∈M∗.

It defines in particular u0
T and VT .

The scheme requires a stabilization parameter denoted by κ > 0. It is a fixed parameter. Then,
for all n ≥ 0, we look for un+1

T ∈ (R∗+)T solution to the following variational formulation:

run+1
T − unT

∆t
, ψT

z

T
+TD(un+1

T ; gn+1
T , ψT ) + κ

q
PT gn+1

T , ψT
y
T = 0, ∀ψT ∈ RT ,(20a)

TD(un+1
T ; gn+1

T , ψT ) =
∑
D∈D

rD(un+1
T ) δDgn+1

T · ADδDψT ,(20b)

gn+1
T = log(un+1

T ) + VT .(20c)

Let us mention that, in view of its implementation, the scheme can be rewritten on each mesh as
follows:

un+1
M − unM

∆t
+ divM(Jn+1

D ) + κPMgn+1
T = 0,(21a)

un+1
M∗ − unM∗

∆t
+ divM∗(Jn+1

D ) + κPM∗gn+1
T = 0,(21b)

un+1
∂M∗ − un∂M∗

∆t
+ div∂M

∗
(Jn+1

D ) + κP∂M
∗
gn+1
T = 0,(21c)

Jn+1
D = −rD[un+1

T ]ΛD∇Dgn+1
T ,(21d)

mσJ
n+1
D · n = 0, ∀ D = Dσ,σ∗ ∈ Dext.(21e)

2.4. Functional spaces. For a given vector uT defined on a DDFV mesh T of size h, one usually
reconstructs three different approximate solutions : uh,M is a piecewise constant reconstruction on
the primal mesh, uh,M∗ is a piecewise constant reconstruction on the dual mesh and uh is the mean
value of uh,M and uh,M∗ . They are defined by

uh,M =
∑
K∈M

uK1K , uh,M∗ =
∑

K∗∈M∗
uK∗1K∗ and uh =

1

2
(uh,M + uh,M∗).
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Then, the set of the approximate solutions is denoted by HT :

(22) HT =

{
uh ∈ L1(Ω) / ∃uT =

(
(uK)K∈M , (uK∗)K∗∈M∗

)
∈ RT

such that uh =
1

2

∑
K∈M

uK1K +
1

2

∑
K∗∈M∗

uK∗1K∗

}
.

In the sequel, we will also need some reconstruction of the approximate solutions on the diamond
cells. Thanks to the reconstruction operator on diamonds rD, we can define uD = rD(uT ) for all
D ∈ D for instance. Therefore, we can define a piecewise constant function on diamond cells uh,D
by uh,D =

∑
D∈D uD1D. The set of such functions is denoted HD.

For a function uh ∈ HT , we define its approximate gradient ∇huh ∈ (HD)2 by

∇huh =
∑
D∈D

∇DuT 1D.

As the problem (1) is an evolutive problem, the numerical scheme (20) defines unT ∈ RT for
all n ∈ {0, . . . , NT }. We consider approximate solutions which are piecewise constant in time.
Therefore, we define the space-time approximation spaces HT ,∆t and HD,∆t based respectively on
HT and HD:

HT ,∆t =
{
uh,∆t ∈ L1(QT ) / uh,∆t(x, t) = unh(x) ∀t ∈ [tn−1, tn), with unh ∈ HT , ∀1 ≤ n ≤ NT

}
,

HD,∆t =
{
uh,∆t,D ∈ L1(QT ) / uh,∆t,D(x, t) = unh,D(x) ∀t ∈ [tn−1, tn),

with unh,D ∈ HD, ∀1 ≤ n ≤ NT
}
.

We still keep the notation ∇h to define the approximate gradient of uh,∆t ∈ HT ,∆t:

∇huh,∆t(x, t) = ∇hunh(x) ∀t ∈ [tn−1, tn).

Therefore, for all uh,∆t ∈ HT ,∆t, we have ∇huh,∆t ∈ (HD,∆t)
2. Furthermore, we introduce the

following reconstructions

uh,∆t,M(x, t) = unh,M(x) =
∑
K∈M

unK1K(x), ∀t ∈ [tn−1, tn),(23a)

uh,∆t,M∗(x, t) = un
h,M∗

(x) =
∑

K∗∈M∗
unK∗1K∗(x), ∀t ∈ [tn−1, tn).(23b)

We may now introduce some norms on the functional spaces HT and HT ,∆t. For a discrete
solution uT ∈ RT , we define |uT |p,T for 1 ≤ p ≤ ∞ by

|uT |pp,T =

1

2

∑
K∈M

mK |uK |p +
1

2

∑
K∗∈M∗

mK∗ |uK∗ |p
1/p

|uT |∞,T = max

(
max
K∈M

|uK |, max
K∗∈M∗

|uK∗ |
)
.
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It permits to define discrete W 1,p-norms (1 ≤ p ≤ +∞) and a discrete W−1,1-norm on HT . For all
uh ∈ HT , we set

‖uh‖1,p,T =
(
|uT |pp,T +

∥∥∇huh∥∥pp)1/p

, ∀1 ≤ p < +∞,

‖uh‖1,∞,T = |uT |∞,T +
∥∥∇huh∥∥∞ ,

‖uh‖1,∞?,T = ‖uh‖1,∞,T +
q
PT uT , uT

y 1
2

T ,

‖uh‖−1,1,T = max

{
JvT , uT KT ,∀vh ∈ HT verifying ‖vh‖1,∞?,T ≤ 1

}
.

Let us just remark that, as ∇huh is a piecewise constant function on diamonds, we have:∥∥∇huh∥∥pp =
∑
D∈D

mD|∇DuT |p ∀1 ≤ p < +∞ and
∥∥∇huh∥∥∞ = max

D∈D
|∇DuT |.

Then, we define some discrete Lq(0, T ;W 1,p(Ω)) (1 ≤ p, q < +∞), L∞(0, T ;W 1,∞(Ω)) and
L∞(0, T ;Lp(Ω))-norms on HT ,∆t. For all uh,∆t ∈ HT ,∆t, we set:

‖uh,∆t‖q;1,p,T =

(
NT∑
n=1

∆t ‖unh‖
q
1,p,T

)1/q

, ∀1 ≤ p, q < +∞,

‖uh,∆t‖∞;1,∞,T = max
n∈{1,··· ,NT }

‖unh‖1,∞,T ,

‖uh,∆t‖∞;0,p,T = max
n∈{1,··· ,NT }

1

2

∑
K∈M

mK |unK |p +
1

2

∑
K∗∈M∗

mK∗ |unK∗ |p
1/p

, ∀1 ≤ p < +∞.

2.5. Main results. The numerical analysis of the scheme strongly relies on a discrete version of
the energy/energy dissipation relation (4). In order to make it explicit, let us introduce the discrete
counterpart (EnT )n≥0 of the free energy E defined by (5):

EnT = JH(unT ), 1T KT + JVT , unT KT , ∀n ≥ 0,

and the discrete counterpart (InT )n≥1 of the dissipation I defined by (6):

(24) InT = TD (unT ; gnT , g
n
T ) , ∀n ≥ 1.

The first main result of our paper is the existence of a positive solution to the nonlinear scheme
(20); it is stated in Theorem 2.1. The mesh is given and fulfills the very permissive requirements
of Section 2.1. Our nonlinear scheme (20) yields a nonlinear system of algebraic equations. The
fact that this system admits a solution is not obvious and is ensured by Theorem 2.1. The proof
strongly relies on the fact that the scheme fulfills a discrete entropy/dissipation relation.

Theorem 2.1 (Existence of a discrete solution). For all n ≥ 0, there exists a solution un+1
T ∈(

R∗+
)T

to the nonlinear system (20) that satisfies the discrete entropy/entropy dissipation estimate

(25)
En+1
T − EnT

∆t
+ In+1

T ≤ 0, ∀n ≥ 0.

Once the existence of un+1
T at hand for all n ≥ 0, we can reconstruct the approximate solutions

uh,∆t, uh,∆t,M, and uh,∆t,M∗ . The convergence of these approximate solutions towards a weak
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solution when the mesh size and the time step tend to 0 is then a very natural question. This
question is addressed in Theorem 2.2.

In what follows, (Tm)m≥1 =
(
Mm,M∗m

)
m≥1

denotes a sequence of admissible discretization of

Ω and (Dm)m≥1 denotes the corresponding diamond mesh. We assume that the

(26) size(Tm) −→
m→∞

0, whereas limsup
m→∞

max
D∈Dm

max
(
θD, θ̃D

)
≤ θ?,

the regularity factors θD and θ̃D being defined by (10).
Concerning the time discretization, we consider a sequence (NT,m)m≥1 of positive integers tend-

ing to +∞, and we denote by (∆tm)m≥1 =
(

T
NT,m

)
m≥1

the corresponding sequence of time steps.

For technical reasons that will appear later on, and even though this condition does not seem to be
mandatory from a practical point of view, we have to make the assumption that there exists some
constant C1 > 0 such that

(27) ∆tm ≥ C1size(Tm), ∀m ≥ 1.

The existence of a discrete solution un+1
Tm to the scheme (20) for all n ∈ {0, . . . , NT,m−1} and all

m ≥ 1 stated in Theorem 2.1 allows us to define the approximate solutions uhm,∆tm , uhm,∆tm,Mm
,

and uhm,∆tm,M∗m
for all m ≥ 1. The next theorem ensures that, up to a subsequence, the sequences

of approximate solution converge towards a weak solution of the problem (1).

Theorem 2.2 (Convergence towards a weak solution). Assume that (26) and (27) holds. Then
there exists a weak solution u in the sense of Definition 1.1 such that, up to a subsequence,

uhm,∆tm,Mm
−→
m→∞

u, uhm,∆tm,M∗m −→m→∞
u, and uhm,∆tm −→

m→∞
u in Lp(0, T ;L1(Ω))

for all p ∈ [1,∞).

Further convergence properties are established during the proof of Theorem 2.2. We don’t make
them explicit here in order to minimize the notations and to improve the readability of the paper.
We refer to Section 4.1 for refined statements.

Remark 2.3. The convergence of the scheme is only assessed up to a subsequence in Theorem 2.2.
This comes from the fact that the uniqueness of weak solutions in the sense of Definition 1.1 is
still an open problem even for initial data u0 belonging to L2(Ω). However, we conjecture that for
u0 being such that H(u0) belongs to L1(Ω), the weak solutions in the sense of Definition 1.1 are
renormalized solutions (see for instance [9]). Uniqueness should follow, implying the convergence
of the whole sequence.

The main goal of the paper is to prove Theorems 2.1 and 2.2. The proof is articulated as follows:
In Section 3, we derive some estimates on the discrete solution. These a priori estimates allow us to
show that the nonlinear system originating from the (20) admits (at least) one solution, as claimed
in Theorem 2.1. Most of the estimates derived in Section 3 are uniform w.r.t. m. This provides
enough compactness on the approximate solutions to pass to the limit m→∞ in Section 4.

3. Energy and dissipation estimates, existence of a solution to the scheme

3.1. a priori estimates. The first statement of this section is devoted to what we call the fun-
damental estimates, that are discrete counterparts of the conservation of mass and of the en-
ergy/dissipation relation (4). All the further a priori estimates on the discrete solution are based
on these two estimates.
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Proposition 3.1 (fundamental estimates). Let (unT )n≥1, with unT ∈
(
R∗+
)T

for all n ≥ 0, be a

solution to the scheme (20) corresponding to the initial data u0. Then,

(i) the mass is conserved along time, i.e.,

(28)

∫
Ω

unhdx = JunT , 1T KT =

∫
Ω

u0dx, ∀n ≥ 0,

(ii) the discrete free energy is dissipated along time, i.e.,

(29)
En+1
T − EnT

∆t
+ In+1

T + κ JPT gn+1
T , gn+1

T KT ≤ 0, ∀n ≥ 0.

Moreover, the discrete free energy is decaying along time and is bounded:

(30) 0 ≤ En+1
T ≤ EnT ≤ E0

T ≤
∫

Ω

H(u0)dx+ ‖V ‖∞‖u0‖L1(Ω)

and the “integrated over time” dissipation is also bounded:

(31) 0 ≤
NT∑
n=1

∆tInT ≤
NT∑
n=1

∆t(InT + κ JPT gnT , gnT KT ) ≤
∫

Ω

H(u0)dx+ ‖V ‖∞‖u0‖L1(Ω).

Proof. Equation (28) is obtained directly by choosing ψT = 1T in (20a). In order to get Esti-
mate (29), it suffices to take ψT = gn+1

T in (20a) and to remark that, because of the convexity of

u 7→ H(u) +uV , one has Jun+1
T −unT , g

n+1
T KT ≥ En+1

T −EnT . Inequality (30) is just a consequence of
(29), of the nonnegativity of the dissipation and of the penalization term and of Jensen’s inequality.
By summation of (29) over n, we deduce (31). �

The goal of the remaining part of this section is to take advantage of the fundamental estimates
of Proposition 3.1 to derive some further estimates to be used in the numerical analysis. As in the
continuous framework, the energy/dissipation estimate (29) is used in order to estimate the discrete
counterpart of the Fisher information. But in the discrete framework, the chain rule appearing in (7)
does not longer hold, and we have to manipulate several objects related to the Fisher information.
The last goal of this section is to prove that, for a fixed grid and a fixed time step, the discrete
solutions (unT )n≥1 is uniformly bounded away from 0, cf. Lemma 3.5.

Define the discrete fields ξnT =
√
unT which play a key role as in the continuous level. In order

to relate different discrete counterparts of the Fisher information, we first have to derive some
properties on the local diffusion matrices AD, D ∈ D.

Let D ∈ D, then we define the diagonal matrix BD by

(32) BD =

(
BDσ 0
0 BDσ∗

)
=

(∣∣ADσ,σ∣∣+
∣∣ADσ,σ∗ ∣∣ 0

0
∣∣ADσ∗,σ∗ ∣∣+

∣∣ADσ,σ∗ ∣∣
)
.

For all w = (wσ, wσ∗)
T ∈ R2 and all D ∈ D, there holds

ADw ·w ≤ BDw ·w ≤ ‖AD‖1|w|2,

where ‖ · ‖q is the usual matrix q-norm and | · | is the Euclidian norm on R2. It follows from the
equivalence of the matrix 1- and 2- norms on the finite dimensional space R2×2 that

‖AD‖1|w|2 ≤ γ‖AD‖2|w|2 ≤ γCond2(AD)ADw ·w, ∀w ∈ R2
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for some γ ≥ 1. Therefore, in view of (17), we get the existence of C2 depending only on θ?, λm
and λM such that

(33) ADw ·w ≤ BDw ·w ≤ C2 ADw ·w, ∀D ∈ D, ∀w ∈ R2.

We introduce now a discrete counterpart of
∫

Ω
uΛ∇ log u · ∇ log u, it is the quantity ÎnT defined

by

(34) În+1
T =

∑
D∈D

rD(un+1
T ) δD log(un+1

T ) · BDδD log(un+1
T ), n ≥ 0.

Let us first relate this quantity to a discrete Fisher information.

Lemma 3.2. For all n ≥ 0, there holds∥∥∇Dξn+1
T

∥∥2

Λ,D
≤ În+1
T .

Proof. Thanks to the first inequality of (33), one has

(35)
(
∇Dξn+1

T ,∇Dξn+1
T

)
Λ,D
≤
∑
D∈D

δDξn+1
T · BDδDξn+1

T .

It results from the elementary inequality∣∣∣√b−√a∣∣∣ ≤ max(
√
a,
√
b)

2
|log(b)− log(a)| , ∀(a, b) ∈

(
R∗+
)2
,

that for all D ∈ D, one has∣∣ξn+1
K − ξn+1

L

∣∣ ≤max(ξn+1
K , ξn+1

L , ξn+1
K∗ , ξ

n+1
L∗ )

2

∣∣log(un+1
K )− log(un+1

L )
∣∣ ,∣∣ξn+1

K∗ − ξ
n+1
L∗

∣∣ ≤max(ξn+1
K , ξn+1

L , ξn+1
K∗ , ξ

n+1
L∗ )

2

∣∣log(un+1
K∗ )− log(un+1

L∗ )
∣∣ .

This yields

δDξn+1
T · BDδDξn+1

T ≤
max(un+1

K , un+1
L , un+1

K∗ , u
n+1
L∗ )

4
δD log(un+1

T ) · BDδD log(un+1
T ),

and since max(un+1
K , un+1

L , un+1
K∗ , u

n+1
L∗ ) ≤ 4rD(un+1

T ), one gets

(36) δDξn+1
T · BDδDξn+1

T ≤ rD(un+1
T )δD log(un+1

T ) · BDδD log(un+1
T ), ∀D ∈ D.

In order to conclude the proof of Lemma 3.2, it only remains to combine (35) and (36). �

We now want to get a bound on În+1
T in order to deduce some bound on ‖∇Dξn+1

T ‖Λ,D. Therefore,

we first need to establish an estimate on the discrete reconstruction by diamond rD[un+1
T ].

Lemma 3.3. Let rD[un+1
T ] ∈ RD be defined by (15). There exists C > 0, depending only on Ω,

λm, λM and θ? such that

(37)
∑
D∈D

mD r
D(un+1

T ) ≤ C (1 + size(T ))

∫
Ω

u0dx+ C size(T ) În+1
T , ∀n ≥ 0.

Proof. The definition (15) implies that

(38)
∑
D∈D

mD r
D(un+1

T ) = (Tn+1 + Tn+1,∗)/4,
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where we have set

Tn+1 =
∑
D∈D

mD(un+1
K + un+1

L ) and Tn+1,∗ =
∑
D∈D

mD(un+1
K∗ + un+1

L∗ ), ∀n ≥ 0.

The terms Tn+1 and Tn+1,∗ can be rewritten

Tn+1 =
∑
K∈M

un+1
K

∑
D∈DK

mD +
∑
L∈∂M

un+1
L mDL = Tn+1

M + Tn+1
∂M ,

Tn+1,∗ =
∑

K∗∈M∗
un+1
K∗

∑
D∈DK∗

mD,

where DL denotes the unique diamond cell associated to the primal boundary cell L ∈ ∂M. The
terms Tn+1

M and Tn+1,∗ can be estimated thanks to the regularity of the mesh (13) by

Tn+1
M + Tn+1,∗ ≤ θ?

∑
K∈M

mKu
n+1
K +

∑
K∗∈M∗

un+1
K∗ mK∗

 .

We deduce from (28) that

Tn+1
M + Tn+1,∗ ≤ 2θ?

∫
Ω

u0dx.

Let us now focus on the term Tn+1
∂M . The area of the diamond cell D corresponding to a boundary

edge σ ⊂ ∂Ω (or equivalently to a primal boundary cell L ∈ ∂M) can be estimated by

mD ≤
1

2
mσsize(T ).

Therefore, we get that

Tn+1
∂M ≤ 1

2
size(T )‖γ∂Mun+1

T ‖L1(∂Ω) =
1

2
size(T )

∥∥γ∂Mξn+1
T

∥∥2

L2(∂Ω)
,

where γ∂MuT (x) =
∑
L∈∂M uL1L(x), ∀x ∈ ∂Ω. The trace inequality stated in Theorem A.1 gives

with vT = ξn+1
T

Tn+1
∂M ≤ C size(T )

(
|ξn+1
T |22,T +

∥∥∇hξn+1
h

∥∥2

2

)
.

Thanks to (3) and the regularity of the mesh (10) and (11), there exists C > 0 depending only on
λm, λM and θ? such that

(39)
∥∥∇hξn+1

h

∥∥
2
≤ C

∥∥∇Dξn+1
T

∥∥
Λ,D

Since |ξn+1
T |22,T = |un+1

T |1,T , Proposition 3.1 and Lemma 3.2 provide that

Tn+1
∂M ≤ C size(T )

(∫
Ω

u0dx+ În+1
T

)
.

�

Thanks to (37), it is now possible to relate În+1
T to In+1

T .

Lemma 3.4. There exist C > 0 and h? > 0 depending only on u0, V , λm, λM and θ? such that

(40) În+1
T ≤ C

(
1 + In+1

T
)
, ∀n ≥ 0, if size(T ) ≤ h?.



14 CLÉMENT CANCÈS, CLAIRE CHAINAIS-HILLAIRET, AND STELLA KRELL

Proof. Bearing in mind the definition (24) of the dissipation In+1
T , we deduce thanks to (33) that

In+1
T ≤

∑
D∈D

rD(un+1
T ) δDgn+1

T · BDδDgn+1
T ≤ C2 In+1

T , ∀n ≥ 0.

But, as gn+1
T = log un+1

T + VT , the elementary inequality (a+ b)2 ≤ 2(a2 + b2) implies that

(41) În+1
T ≤ 2C2 In+1

T + 2
∑
D∈D

rD(un+1
T )δDVT · BDδDVT .

It follows from the regularity of V and from the regularity of the mesh (11) that

0 ≤ δDVT · BDδDVT ≤ ‖∇V ‖2∞
(
BDσ m2

σ∗ +BDσ∗m
2
σ

)
≤ C‖∇V ‖2∞mD, ∀D ∈ D

for some C depending only on λM and θ?. Therefore, we deduce from Lemma 3.3 that

(42)
∑
D∈D

rD(un+1
T )δDVT · BDδDVT ≤ C

∑
D∈D

mDr
D(un+1

T ) ≤ C(1 + size(T )̂In+1
T ).

We infer from (41) and (42) that if size(T ) is small enough, (40) holds. �

We have at hand the necessary tool to address the uniform positivity of the solutions. The
next lemma states that the discrete solutions remain bounded away from 0 by a small quantity
ε > 0 depending on the data of the continuous problem and on the discretization parameters.
This information is of great importance since, because of the singularity of the log, the nonlinear

functional corresponding to the scheme is not continuous on the boundary of
(
R∗+
)T

. The proof
is inspired from the ones of [13, Lemma 3.10] and [14, Lemma 3.7]. We sketch it here to highlight
how we overpass the difficulties related to the fact that there is a limited communication between
the primal and dual meshes.

Lemma 3.5. There exists ε > 0 depending on the data u0 and V , on the mesh T , on the time step
∆t, and on the stabilization parameter κ, such that

(43) un+1
K ≥ ε and unK∗ ≥ ε, ∀K ∈M, ∀K∗ ∈M∗, ∀n ≥ 0.

Proof. In this proof as elsewhere in the paper, the generic constants C only depend on the data
of the continuous problem and on the regularity bound θ? for the mesh. In order to highlight the
dependency of a quantity with respect to the mesh or to the time step, we use subscripts. For
instance C∆t may depend on ∆t, whereas CT may depend on the mesh and CT ,∆t may depend on
the mesh and on the time step.

Owing to (28), there exists M0 ∈M ∩M∗ such that

un+1
M0
≥ 1

mΩ

∫
Ω

u0dx > 0,

implying in particular that

(44) log(un+1
M0

) ≥ −C and rD(un+1
T ) ≥ 1

4mΩ

∫
Ω

u0dx > 0 for all D ∈ DM0
.

On the other hand, it follows from (31) that In+1
T ≤ C∆t. Together with Estimate (40), this provides

that

(45) În+1
T ≤ C∆t.

Assume for instance that M0 = K0 ∈ M (the case M0 ∈ M∗ is similar). Since BDσ > 1
C for all

D ∈ D, we deduce from (44)–(45) that log(un+1
K1

) ≥ −C∆t for all neighboring cell K1 ∈M such that
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K0|K1 ∈ E and for all L ∈ ∂M∩∂K0. It follows from a simple induction based on the reproduction
of this argument (see [13, Lemma 3.10] or [14, Lemma 3.7] for details) that

(46) log
(
un+1
K

)
≥ −C∆t,T , ∀K ∈M.

Let K∗ ∈M∗, then there exists K ∈M such that m(K ∩K∗) > 0. Thanks to the penalization
term in Estimate (29), one has that (

gn+1
K∗ − g

n+1
K

)2 ≤ CT ,∆t.
The regularity of V implies that(

log
(
un+1
K∗

)
− log

(
un+1
K

))2 ≤ CT ,∆t,
hence, using (46), one gets that

(47) log
(
un+1
K∗

)
≥ −C∆t,T , ∀K∗ ∈M∗.

The relation (43) follows from (46) and (47). �

3.2. Existence of a solution to the scheme. The numerical scheme (20) amounts at each time
step n ≥ 0 to solve a nonlinear system Fn(un+1

T ) = 0. The existence of a solution un+1
T is therefore

non trivial. It is established in the following proposition.

Proposition 3.6. For all n ≥ 0, there exists (at least) one solution un+1
T ∈ (R∗+)T to the nonlinear

system (20).

The proof of Proposition 3.6 relies on a topological degree argument [39, 21, 27]. The key point
is that, owing to Lemma 3.5, one can restrain our search for the solution on a compact subset of(
R∗+
)T

on which the functional Fn is (uniformly) continuous, making Leray-Schauder’s theorem
applicable. We do not detail the proof here since it is very close to the one of [14, Proposition 3.8].

4. Convergence w.r.t. discretization parameters

4.1. Compactness of the approximate solutions. Thanks to Proposition 3.6, we have at hand
discrete solutions

(
un+1
T
)
n≥0

corresponding to all the time steps, and thus the corresponding recon-

structions uh,∆t ∈ HT ,∆t, uh,D,∆t as defined in Section 2.4. We also define ξh,∆t ∈ HT ,∆t based on
ξnT =

√
unT for all n ∈ {0, . . . , NT }.

Thanks to the estimates established in Section 3.1, we can obtain some further estimates satisfied
by the discrete reconstructions. These estimates, stated in Lemma 4.1, will then be used to deduce
some compactness properties of sequences of approximate solutions.

Lemma 4.1. (i) There exists C depending only on u0 and V such that

(48)

∫
Ω

H(uh,∆t(x, t))dx ≤
1

2

(∫
Ω

H(uh,∆t,M(x, t))dx+

∫
Ω

H(uh,∆t,M∗(x, t))dx

)
≤ C, ∀t ≥ 0.

(ii) There exists C depending only on u0, V , λm, λM and θ? such that, for size(T ) small enough,
one has

(49)

NT∑
n=1

∆t ÎnT ≤ C(1 + T ) and

∫∫
QT

|∇hξh,∆t|2dxdt ≤ C(1 + T ).
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(iii) There exists C depending only on θ?, u0, V , C1, λm and λM such that

(50)

∫
Ω

unh,Ddx ≤ C(1 + T ), ∀n ∈ {1, . . . , NT }.

Proof. The first inequality in (48) is just a consequence of Jensen’s inequality because H is a convex
function. Moreover, since we assumed that V ≥ 0 and proved the positivity of the discrete solution,
we have:∫

Ω

H(uh,∆t(x, t)) ≤
1

2

(∫
Ω

H(uh,∆t,M(x, t))dx+

∫
Ω

H(uh,∆t,M∗(x, t))dx

)
≤ En+1

T , ∀t ∈ (tn, tn+1],

The last inequality in (48) is then a straightforward consequence of (30). The estimates in (49) are
deduced from (31), (40) and Lemma 3.2.

It remains to prove (50). From Lemma 3.3, we have that∫
Ω

unh,Ddx ≤ C
(

1 + size(T ) ÎnT
)
, ∀n ≥ 1.

We infer from the first inequality of (49) that ÎnT ≤ C(1 + T )/∆t and the assumption (27) implies
that

size(T ) ÎnT ≤ C(1 + T ), ∀n ≥ 1.

This concludes the proof of Lemma 4.1.
�

In order to get the compactness of a sequence of approximate solutions, it is also crucial to
establish a discrete counterpart of a L1(0, T ;W−1,1(Ω)) estimate on the discrete time derivative.
In what follows, we denote by

∂t,T u
n
h,∆t =

((
un+1
K − unK

∆t

)
K∈M

,

(
un+1
K∗ − unK∗

∆t

)
K∗∈M∗

)
∈ RT , ∀n ≥ 0.

Lemma 4.2. There exists C depending only on V , u0, T , κ, θ?, C1, λm and λM such that

NT−1∑
n=0

∆t
∥∥∂t,T unh,∆t∥∥−1,1,T ≤ C.

Proof. We proceed as in [18, Lemma 3.4]. It follows from (20a) that for all ψT ∈ RT , one has

J∂t,T unh,∆t, ψT KT = −TD(un+1
T , gn+1

T , ψT )− κJP(gn+1
T ), ψT KT , ∀n ≥ 0.

The application (gn+1
T , ψT ) 7→ TD(un+1

T , gn+1
T , ψT ) + κJP(gn+1

T ), ψT KT is a scalar product on RT ,
then it follows from Cauchy-Schwarz inequality that

J∂t,T unh,∆t, ψT KT ≤
(
In+1
T + κJP(gn+1

T ), gn+1
T KT

)1/2 (
TD(un+1

T , ψT , ψT ) + κJP(ψT ), ψT KT
)1/2

.

We can estimate the term TD(un+1
T , ψT , ψT ) by

TD(un+1
T , ψT , ψT ) =

∫
Ω

un+1
h,D Λh,D∇hψh · ∇hψhdx ≤ λM

∥∥∥un+1
h,D

∥∥∥
L1(Ω)

‖∇hψh‖
2

∞.

Thanks to (50) and since un+1
h,D ≥ 0, one gets that

TD(un+1
T , ψT , ψT ) ≤ C ‖∇hψh‖

2

∞, ∀n ≥ 0,
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therefore (
TD(un+1

T , ψT , ψT ) + κJP(ψT ), ψT KT
)1/2 ≤ C‖ψh‖1,∞?,T , ∀ψT ∈ RT .

Since ψT can be chosen arbitrarily, this implies that∥∥∂t,T unh,∆t∥∥−1,1,T ≤ C
(
In+1
T + κJP(gn+1

T ), gn+1
T KT

)1/2
, ∀n ∈ {0, . . . , NT − 1}.

Thanks to Cauchy-Schwarz inequality once again, we obtain that

NT−1∑
n=0

∆t
∥∥∂t,T unh,∆t∥∥−1,1,T ≤

√
T

(
NT−1∑
n=0

∆t
∥∥∂t,T unh,∆t∥∥2

−1,1,T

)1/2

≤ C

(
NT∑
n=1

∆t (InT + κJP(gnT ), gnT KT )

)1/2

.

One concludes the proof by using (31). �

Let (Tm)m≥1 be a sequence of meshes as in Section 2.1 such that size(Tm) tends to 0 as m tends
to ∞, and such that the regularity of the discretization Tm is uniformly bounded w.r.t. m, i.e.,

1 ≤ θD, θ̃D ≤ θ?, ∀D ∈ Dm, ∀m ≥ 1.

Assume moreover that simultaneously the time step ∆tm tends to 0 as m tends to ∞ while satisfy-
ing (27). The estimates stated in this section are uniform w.r.t. m. We deduce from Lemma 4.1 that
the sequences (uhm,∆tm)m≥1, (uhm,∆tm,M)m≥1, and (uhm,∆tm,M∗)m≥1 are equi-integrable in L1(QT )

while uniformly bounded in L∞(0, T ;L1(Ω)), hence there exists u, u(1), u(2) ∈ L∞(0, T ;L1(Ω)) such
that, for all p ∈ [1,∞), the following convergence holds up to the extraction of an unlabeled subse-
quence:

uhm,∆tm −→
m→∞

u weakly in Lp(0, T ;L1(Ω)),(51a)

uhm,∆tm,M −→
m→∞

u(1) weakly in Lp(0, T ;L1(Ω)).(51b)

uhm,∆tm,M∗ −→
m→∞

u(2) weakly in Lp(0, T ;L1(Ω)).(51c)

Moreover, it follows from (28) and (49) that

(52) ‖ξh,∆t‖2;1,2,T ≤ C.

Thus, similarly to [2, Proposition 5.3] (which is strongly related to [3, Lemma 3.8]), we get the
existence of ξ ∈ L2(0, T ;H1(Ω)) such that

(53) ξhm,∆tm −→
m→∞

ξ weakly in L2(QT ), ∇hξhm,∆tm −→
m→∞

∇ξ weakly in L2(QT )2.

Up to now, we only have weak convergence results, which are not sufficient to pass to the limit
in the scheme because of the nonlinearities. The purpose of the following proposition is to recover
some strong convergence results. Our approach is based on the time-compactness toolbox presented
in [4] (see also [33] for a closely related approach).



18 CLÉMENT CANCÈS, CLAIRE CHAINAIS-HILLAIRET, AND STELLA KRELL

Proposition 4.3. Up to the extraction of an unlabeled subsequence,

uhm,∆tm −→
m→∞

u strongly in Lp(0, T ;L1(Ω)),(54a)

uhm,∆tm,Mm
−→
m→∞

u strongly in Lp(0, T ;L1(Ω)),(54b)

uhm,∆tm,M∗m −→m→∞
u strongly in Lp(0, T ;L1(Ω)),(54c)

uhm,∆tm,Dm
−→
m→∞

u strongly in L1(QT ),(54d)

for all p ∈ [1,∞). Moreover, let ξ ∈ L2(0, T,H1(Ω)) be as in (53), then ξ =
√
u.

Proof. The proof is divided into three steps. We remove the subscripts m for the ease of reading.

Step 1. The goal of this part is to make use on both (uh,∆t,M) and (uh,∆t,M∗) of the time-
compactness criterion of [4, Theorem 3.9].

It follows directly from their definitions that

uh,∆t,M = (ξh,∆t,M)
2
, uh,∆t,M∗ = (ξh,∆t,M∗)

2
.

Thanks to discrete Poincaré-Sobolev Inequality [8], it follows from (52) that

‖ξh,∆t,M‖L2(0,T ;Lp(Ω)) ≤ Cp, ‖ξh,∆t,M∗‖L2(0,T ;Lp(Ω)) ≤ Cp, ∀p ∈ [1,+∞),

for some Cp depending only on p, on Ω and on the regularity θ? of the mesh and therefore

(55) ‖uh,∆t,M‖L1(0,T ;Lp(Ω)) ≤ Cp, ‖uh,∆t,M∗‖L1(0,T ;Lp(Ω)) ≤ Cp, ∀p ∈ [1,∞).

On the other hand, the mass conservation (28) and the positivity of the solutions yield

(56) ‖uh,∆t,M‖L∞(0,T ;L1(Ω)) ≤ C, ‖uh,∆t,M∗‖L∞(0,T ;L1(Ω)) ≤ C.

It results from (55), (56) and from Riesz-Thorin interpolation theorem that

(57) ‖uh,∆t,M‖Lp(QT ) ≤ Cp, ‖uh,∆t,M∗‖Lp(QT ) ≤ Cp, ∀p ∈ [1, 2),

thus in particular for p = 3/2. The weak limits u(1), u(2) of uh,∆t,M and uh,∆t,M∗ thus belong

to L3/2(QT ), and the weak limits of ξh,∆t,M and ξh,∆t,M∗ (up to the extraction of an unlabeled

subsequence), denoted by ξ(1), ξ(2), belong to L3(QT ) of . The functions uh,∆t,M and ξh,∆t,M, as
well as uh,∆t,M∗ and ξh,∆t,M∗ , are thus in duality.

We now want to apply [4, Theorem 3.9] in order to show that ξ(1) =
√
u(1) and ξ(2) =

√
u(2).

Therefore, we have to verify that the three assumptions (Ax1), (Ax2) and (Ax3) of [4] are satisfied.

(i) As a direct consequence of the arguments developed in the proofs of [3, Lemma 3.8] or [18,
Proposition 4.3] and of Poincaré Sobolev embedding [8], any sequence (vTm)m such that
‖vh‖1,2,T ≤ C is such that vh,M and vh,M∗ converges strongly in L3(Ω) (up to the extraction

of an unlabeled subsequence). Therefore Assumption (Ax1) of [4] is fulfilled.
(ii) The reconstructions vh,M and vh,M∗ from vT are piecewise constant, the functions being

equal to nodal values of vT a.e. in Ω, then Assumption (Ax2) of [4] is fulfilled by these
reconstructions. Note here that this is not the case of the reconstruction vh.
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(iii) Let ϕ ∈ C∞(Ω) and let us define ϕT by

(58)


ϕK =

1

mK

∫
K

ϕdx for K ∈M,

ϕL =
1

mσ

∫
σ

ϕdx for L ≡ σ ∈ ∂M,

ϕK∗ =
1

mK∗

∫
K∗

ϕdx for K∗ ∈M∗.

Following the proof of [18, Proposition 4.2], there exists C depending only on the regularity
of the mesh θ? such that

(59) ‖ϕh‖1,∞,T ≤ C‖∇ϕ‖∞, ∀ϕ ∈ C∞(Ω).

On the other hand, one can show that

(60)
q
PT ϕT , ϕT

y
T ≤ C‖∇ϕ‖

2
∞

for some C depending only on the regularity θ? of the mesh. Therefore,

(61) ‖ϕh‖1,∞?,T ≤ C‖∇ϕ‖∞, ∀ϕ ∈ C∞(Ω).

Assumption (Ax3) of [4] is thus fulfilled.

We can then make use of Lemma 4.2 and apply [4, Theorem 3.9] to claim that ξ(i) =
√
u(i) and

that

(62)

uh,∆t,M −→
m→∞

u(1)

uh,∆t,M∗ −→
m→∞

u(2)
a.e. in QT .

Setting u =
(
u(1) + u(2)

)
/2, we get that

(63) uh,∆t −→
m→∞

u.

Moreover, as the sequences (uh,∆t)m, (uh,∆t,M)m, and (uh,∆t,M∗)m are uniformly equi-integrable

in Lp(0, T, L1(Ω)) and converge point-wise, thanks to (62)–(63), we can apply Vitali’s convergence
theorem to claim that the sequences converge strongly in Lp(0, T, L1(Ω)).

Step 2. Here, the goal is to show that the sequences (uh,∆t)m≥1, (uh,∆t,M)m≥1 and (uh,∆t,M∗)m≥1

share the same limit u, i.e., u(1) = u(2) = u. As a consequence of (31), one has

NT∑
n=1

∆tJP(gnT ), gnT KT ≤ C,

hence
‖log(uh,∆t,M) + Vh,M − log(uh,∆t,M∗)− Vh,M∗‖2L2(QT ) ≤ C size(T )

β
.

The regularity of the exterior potential V implies that

‖Vh,M − Vh,M∗‖2L2(QT ) ≤ C size(T )
2
,

so that one gets that

‖log(uh,∆t,M)− log(uh,∆t,M∗)‖2L2(QT ) ≤ C size(T )
β
.

Up to a subsequence, this ensures that log(uh,∆t,M)−log(uh,∆t,M∗) tends to 0 a.e. in QT . But owing

to (62), log(uh,∆t,M) tends to log(u(1)) while log(uh,∆t,M∗) tends to log(u(2)). Then log(u(1)) =

log(u(2)) a.e. in QT , thus u(1) = u(2) = u.
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Step 3. In order to conclude the proof of Proposition 4.3, it remains to check that (54d) holds. To
this end, we compute uh,∆t,D − uh,∆t on each quarter diamond to get

‖uh,∆t,D − uh,∆t‖L1(QT ) ≤
1

4

NT∑
n=1

∆t
∑
D∈D

mD (|unK − unL|+ |unK∗ − unL∗ |) .

Using the identity |a− b| =
(√

a+
√
b
) ∣∣∣√a−√b∣∣∣ for a, b ≥ 0 , one gets

‖uh,∆t,D − uh,∆t‖L1(QT ) ≤
1

4

NT∑
n=1

∆t
∑
D∈D

mD ((ξnK + ξnL) |ξnK − ξnL|+ (ξnK∗ + ξnL∗) |ξnK∗ − ξnL∗ |)

≤
NT∑
n=1

∆t
∑
D∈D

mDr
D(ξnT ) (|ξnK − ξnL|+ |ξnK∗ − ξnL∗ |) .

Owing to Cauchy-Schwarz inequality, there holds

‖uh,∆t,D − uh,∆t‖L1(QT ) ≤

(
NT∑
n=1

∆t
∑
D∈D

mDr
D(unT )

)1/2(NT∑
n=1

∆t
∑
D∈D

mD
∣∣δDξnT ∣∣2

)1/2

.

It is easy to verify that BDσ ≥ 1
θ? and BDσ∗ ≥ 1

θ? (see (32) for their definition). Hence, using (50), it
provides

‖uh,∆t,D − uh,∆t‖L1(QT ) ≤ C size(T )

(
NT∑
n=1

∆t
∑
D∈D

δDξnT · BDδDξnT

)1/2

.

Using (36) together with (49), we obtain that

‖uh,∆t,D − uh,∆t‖L1(QT ) ≤ C size(T ),

thus uh,∆t,D also converges towards u in L1(QT ). To get the convergence in Lp(0, T, L1(Ω)) for any
p ∈ [1,∞), it only remains to write

‖uh,∆t,D − uh,∆t‖Lp(0,T,L1(Ω)) ≤ ‖uh,∆t,D − uh,∆t‖
p−1
p

L∞(0,T,L1(Ω)) ‖uh,∆t,D − uh,∆t‖
1/p
L1(QT )

≤
(
‖uh,∆t,D‖L∞(0,T,L1(Ω)) + ‖uh,∆t‖L∞(0,T,L1(Ω))

) p−1
p ‖uh,∆t,D − uh,∆t‖1/pL1(QT )

and to use (28) and (50). �

The purpose of the following statement is the uniform in time weak-L1 in space convergence of
the approximate solution towards u.

Proposition 4.4. Up to the extraction of an additional subsequence,

(64) uhm,∆tm(·, t) −→
m→∞

u(·, t) in the L1(Ω)-weak sense for all t ∈ [0, T ].

Moreover, the limit function u satisfies

sup
t∈[0,T ]

∫
Ω

H(u)dx ≤ C

for some C depending only u0 and V .
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Proof. Let R > 0 be arbitrary. As a consequence of the de La Vallée Poussin theorem [22] the space

ER =

{
f : Ω→ R+

∣∣∣∣ ∫
Ω

fdx =

∫
Ω

u0dx and

∫
Ω

H(f)dx ≤ R
}

is equi-integrable in L1(Ω), thus it follows from Dunford-Pettis theorem that ER is relatively com-
pact for the weak-L1(Ω) topology. Since the function f 7→

∫
Ω
H(f)dx is lower semi-continuous, any

limit value for a sequence of ER also belongs to ER, hence ER is closed, thus compact.
Since Ω is bounded and because ER is equi-integrable, the L1(Ω)-weak topology coincides with

the topology corresponding to the narrow convergence of measures restricted to ER. It can thus be
endowed with the bounded-Lipschitz metric:

distBL(fn, f) −→
n→∞

0 iff fn −→
n→∞

f weakly in L1(Ω).

In the above formula, f and fn (n ≥ 1) belong to ER, and

distBL(f, g) = sup
‖∇ϕ‖∞≤1

∫
Ω

(f − g)ϕdx.

We refer for instance to [41, Theorem 5.9] for the equivalence of the topology induced by the
bounded-Lipschitz distance with the one of narrow convergence of positive measures. The fact that
this latter topology coincides with the weak-L1(Ω) topology on ER results from its equi-integrability.

As a consequence of Lemma 4.1, there exists R such that uhm,∆tm(·, t) belongs to ER for all

t ∈ [0, T ] and all m ≥ 1. Let τ ∈ (0, T ), and let t ∈ (0, T − τ) and let ϕ : Ω → R be Lipschitz
continuous with ‖∇ϕ‖∞ ≤ 1. Define ϕTm as in (58), then (we remove the subscript m for legibility)∫

Ω

(uh,∆t(x, t+ τ)− uh,∆t(x, t))ϕ(x)dx =
r
uN

(2)

T − uN
(1)

T , ϕT

z

T

where N (1) and N (2) are the positive integers such that(
N (1) − 1

)
∆t < t ≤ N (1)∆t,

(
N (2) − 1

)
∆t < t+ τ ≤ N (2)∆t.

Using the scheme (20a), we obtain that

r
uN

(2)

T − uN
(1)

T , ϕT

z

T
=

N(2)∑
n=N(1)+1

∆t
(
TD (unT ; gnT , ϕT ) + κ

q
PT gnT , ϕT

y
T

)
.

Cauchy-Schwarz inequality yields

r
uN

(2)

T − uN
(1)

T , ϕT

z

T
≤

 N(2)∑
n=N(1)+1

∆t
(
TD (unT ; gnT , g

n
T ) + κ

q
PT gnT , gnT

y
T

)1/2

×

 N(2)∑
n=N(1)+1

∆t
(
TD (unT ;ϕT , ϕT ) + κ

q
PT ϕT , ϕT

y
T

)1/2

.

The first term in the right-hand side is uniformly bounded by E(0) thanks to (31). On the other
hand, Estimate (59) together with ‖∇ϕ‖∞ ≤ 1 provide that

TD (unT ;ϕT , ϕT ) ≤ C
∫

Ω

unh,Ddx, ∀n ∈ {1, . . . , NT }.
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Owing to (50), we get that

TD (unT ;ϕT , ϕT ) ≤ C, ∀n ∈ {1, . . . , NT }.

Hereby, we deduce that
r
uN

(2)

T − uN
(1)

T , ϕT

z

T
≤ C

√
(N (2) −N (1))∆t ≤ C

√
τ + ∆t,

and since ϕ was chosen arbitrarily in {ϕ : Ω→ R | ‖∇ϕ‖∞ ≤ 1}, we obtain that

distBL(uh,∆t(·, t+ τ), uh,∆t(·, t)) ≤ C
√
τ + ∆t, ∀t ∈ [0, T − τ).

We can apply the refined version of Arzelà-Ascoli theorem [1, Proposition 3.3.1] (see also [26,
Theorem 4.26]) and claim that uh,∆t converges uniformly towards u ∈ C([0, T );ER), ER being
endowed with the L1(Ω)-weak topology. �

4.2. Identification of the limit. The goal of this section is to show that the limit function u
exhibited in Proposition 4.3 is a weak solution in the sense of Definition 1.1.

The second and last point to check to complete the proof of Theorem 2.2 is the fact that u is a
solution to (1) in the distributional sense, i.e., that the weak formulation (8) is fulfilled. This is the
purpose of the following statement.

Proposition 4.5. Let u be as in Proposition 4.3, then u satisfies the weak formulation (8).

Proof. Here again, we remove the subscript m when it appears us to be detrimental for the read-
ability. Let ϕ ∈ C∞c (Ω× [0, T )), then denote by

ϕnK = ϕ(xK , t
n), ϕnK∗ = ϕ(xK∗ , t

n), ∀K ∈M, ∀K∗ ∈M∗.

Choosing the corresponding ψT = ϕnT in (20a), multiplying by ∆t and summing over n ∈ {0, . . . , NT−1}
leads to

(65) Am +Bm + Cm = 0,

where

Am =

NT−1∑
n=0

Jun+1
T − unT , ϕnT KT ,

Bm =

NT−1∑
n=0

∆t TD(un+1
T ; gn+1

T , ϕnT ),

Cm =κ

NT−1∑
n=0

∆t JPT gn+1
T , ϕnT KT .

For the terms Am and Cm, we can proceed as is [18] to get

(66) Am −→
m→∞

−
∫∫

QT

u∂tϕdxdt−
∫

Ω

u0ϕ(·, 0)dx, and Cm −→
m→∞

0.

Let us now detail the treatment of the term Bm and start by splitting it into

(67) Bm = B1,m +B2,m,



A NONLINEAR DDFV SCHEME FOR CONVECTION DIFFUSION EQUATIONS 23

where

B1,m =

NT−1∑
n=0

∆t
∑
D∈D

rD(un+1
T )δDVT · ADδDϕnT

=

∫∫
QT

uh,∆t,D(x, t)Λh,D∇hVh(x) · ∇hϕh,∆t(x, t−∆t)dxdt,

and

B2,m =

NT−1∑
n=0

∆t
∑
D∈D

rD(un+1
T )δD log(un+1

T ) · ADδDϕnT .

Since V and ϕ are smooth functions, one has

∇hVh −→
m→∞

∇V uniformly on Ω, ∇hϕh,∆t(·, · −∆t) −→
m→∞

∇ϕ uniformly on QT ,

whereas Λh,D converges a.e. towards Λ. Then it follows from (54d) that

(68) B1,m −→
m→∞

∫∫
QT

uΛ∇V · ∇ϕdxdt.

The last term B2,m is treated following the method proposed in [14] that consists in writing

B2,m = B
(1)
2,m +B

(2)
2,m,

with

B
(1)
2,m = 2

∫∫
QT

√
uh,∆t,DΛh,D∇hξh,∆t · ∇hϕh,∆t(·, · −∆t)dxdt,

B
(2)
2,m =

NT∑
n=1

∆t
∑
D∈D

√
rD(unT )δD log(unT )·

(
ξnKL −

√
rD(unT ) 0

0 ξnK∗L∗ −
√
rD(unT )

)
ADδDϕn−1

T ,

where we have set

(69) ξnKL =

{
2

ξnK−ξ
n
L

log(unK)−log(unL) if unK 6= unL,

ξnK if unK = unL,
ξnK∗L∗ =

{
2

ξnK∗−ξ
n
L∗

log(un
K∗ )−log(un

L∗ ) if unK∗ 6= unL∗ ,

ξnK∗ if unK∗ = unL∗ .

We know that, up to a subsequence,
√
uh,∆t,D converges strongly in L2(QT ) towards

√
u, whereas

∇hξh,∆t converges weakly in L2(QT )2 towards ∇
√
u, and ∇hϕh,∆t(·, · − ∆t) converges uniformly

towards ∇ϕ. Thus we can pass to the limit in B
(1)
2,m and obtain that

(70) B
(1)
2,m −→

m→∞
2

∫∫
QT

√
uΛ∇

√
u · ∇ϕdxdt =

∫∫
QT

Λ∇u · ∇ϕdxdt.

In order to show that B
(2)
2,m tends to 0, we need a few preliminaries. Owing to the definition (69)

of ξnKL and ξnK∗L∗ , one always has

min (ξnK , ξ
n
L) ≤ ξnKL ≤ max (ξnK , ξ

n
L) , min (ξnK∗ , ξ

n
L∗) ≤ ξnK∗L∗ ≤ max (ξnK∗ , ξ

n
L∗) ,

so that, denoting by ξ̃h,∆t,D and ξ̃∗h,∆t,D the functions defined almost everywhere by

ξ̃h,∆t,D(x, t) = ξnKL and ξ̃∗h,∆t,D(x, t) = ξnK∗L∗ if (x, t) ∈ D × (tn−1, tn],
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one obtains that

‖ξh,∆t,M − ξ̃h,∆t,D‖2L2(QT ) ≤
NT∑
n=1

∆t
∑
D∈D

mD|ξnK − ξnL|2 ≤ Csize(T )2‖∇hξh,∆t‖2L2(QT )

for some C depending only on θ? and Λ. Similarly, one has

‖ξh,∆t,M∗ − ξ̃∗h,∆t,D‖L2(QT ) ≤ Csize(T )‖∇hξh,∆t‖L2(QT ).

Bearing in mind that ∇hξh,∆t is uniformly bounded in L2(QT )2 w.r.t. m, this ensures in particular
that

(71) ξ̃h,∆t,D −→
m→∞

ξ =
√
u and ξ̃∗h,∆t,D −→

m→∞
ξ =
√
u in L2(QT ).

As a consequence of (54d), the function
√
uh,∆t,D also converges towards ξ in L2(QT ).

We now have at hand all the necessary material to study B
(2)
2,m. It results from Cauchy-Schwarz

inequality that

B
(2)
2,m ≤

(
NT∑
n=1

∆t̂InT

)1/2

×

NT∑
n=1

∆t
∑
D∈D


∣∣∣ξnKL −√rD(unT )

∣∣∣2 0

0
∣∣∣ξnK∗L∗ −√rD(unT )

∣∣∣2
 δDϕn−1

T · BDδDϕn−1
T


1/2

.

Thanks to the regularity of the mesh and of ϕ, one has

δDϕn−1
T · BDδDϕn−1

T ≤ CmD

for some C > 0 depending only on θ? and on ‖∇ϕ‖∞, whereas Lemma 3.4 and (31) ensure that

NT∑
n=1

∆t̂InT ≤ C.

Hence, we get

B
(2)
2,m ≤ C

(
‖ξ̃h,∆t,D −

√
uh,∆t,D‖L2(QT ) + ‖ξ̃∗h,∆t,D −

√
uh,∆t,D‖L2(QT )

)
.

Using (71) together with the fact that
√
uh,∆t,D also converges towards ξ in L2(QT ), we get that

(72) B
(1)
2,m −→

m→∞
0.

We conclude the proof by putting together the statements (66), (67), (68), (70) and (72) in (65). �

5. Numerical experiments

5.1. About the practical implementation. The nonlinear system (20) is solved thanks to New-

ton’s method. In order to avoid the singularity of the log near 0, the sequence (un+1,i
T )i≥0 to

compute un+1
T from the previous state (unT )i≥0 is initialized by un+1,0

T = max(unT , 10−12). In prac-
tice, we observe that the threshold criterion is not used. As a stopping criterion, we require the
`1-norm of the residual to be smaller than 10−10.
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5.2. Convergence w.r.t. to the discretization parameters. We test our method on a test
case inspired from the one in [14]. We set Ω = (0, 1)2, and V (x1, x2) = −x2. The exact solution
uex is then defined by

uex((x1, x2), t) = e−αt+
x2
2

(
π cos(πx2) +

1

2
sin(πx2)

)
+ πe(x2− 1

2 )

with α = π2 + 1
4 . We choose u0 = uex(·, 0). Note that u0 vanishes on {x2 = 1}.

In order to illustrate the convergence and the robustness of our method, we study its conver-
gence on two sequences of meshes. The first sequence of primal meshes is made of successively
refined Kershaw meshes. The second sequence of primal meshes is the so-called quadrangle meshes
mesh quad i of the FVCA8 benchmark on incompressible flows. One mesh of each sequence is
depicted in Figure 2. In the refinement procedure, the time step is divided by 4 when the mesh size
is divided by 2.

Figure 2. Left: First Kershaw mesh. Right: Third quadrangle mesh.

We have introduced a penalization operator in order to prove that reconstruction on the primal
mesh uh,M,∆t and the reconstruction on the dual mesh uh,M∗,∆t converge to the same limit. In
Table 1, we compute normU the L2(Ω × (0, T ))2 norm of the difference between the two different
reconstructions and ordU the corresponding convergence order for different values of κ the penal-
ization parameter. We numerically observe the same result : the two reconstructions converge to
the same limit even if κ is zero.

M dt κ = 0 κ = 10−1

normU ordU normU ordU
1 4.032E-03 1.798E-01 — 1.796E-01 —
2 1.008E-03 9.316E-02 0.95 9.313E-02 0.94
3 2.520E-04 4.717E-02 1.03 4.716E-02 1.03
4 6.300E-05 2.361E-02 1.05 2.361E-02 1.05
5 1.575E-05 1.135E-02 0.87 1.135E-02 0.87

Table 1. Numerical results on the Quadrangle mesh family, final time T=0.25.

In the following of this section, the penalization parameter κ is set to zero. In Tables 2 and 3, the
quantities erru and errgu respectively denote the L∞((0, T );L2(Ω)) error on the solution and the
L2(Ω × (0, T ))2 error on the gradient, whereas ordu and ordgu are the corresponding convergence
orders. It appears that the method is slightly more than second order accurate w.r.t. space.
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The maximal (resp. mean) number of Newton iterations by time step is denoted by Nmax (resp.
Nmean). We observe that the needed number of Newton iterations starts from a reasonably small
value and falls down to 1 after a small number of time steps. Therefore, our method does not
imply an important extra computational cost when compared to linear methods. Eventually, we
can check that the minimal value min unT remains strictly greater than 0, as proved in Lemma 3.5.

M dt errgu ordgu erru ordu Nmax Nmean Min un

1 2.0E-03 6.693E-02 — 7.254E-03 — 9 2.15 1.010E-01
2 5.0E-04 2.353E-02 1.54 1.751E-03 2.09 8 2.02 2.582E-02
3 1.25E-04 1.235E-02 1.61 7.237E-04 2.20 7 1.49 6.488E-03
4 3.125E-05 7.819E-03 1.60 3.962E-04 2.11 7 1.07 1.628E-03
5 3.125E-05 5.507E-03 1.58 2.556E-04 1.98 7 1.04 1.628E-03

Table 2. Numerical results on the Kershaw mesh family, final time T=0.25.

M dt errgu ordgu erru ordu Nmax Nmean Min un

1 4.032E-03 1.754E-01 — 2.149E-02 — 9 2.26 1.803E-01
2 1.008E-03 5.933E-02 1.56 5.055E-03 2.08 9 2.04 5.079E-02
3 2.520E-04 2.294E-02 1.44 1.299E-03 2.06 8 1.96 1.352E-02
4 6.300E-05 8.631E-03 1.48 3.256E-04 2.09 8 1.22 3.349E-03
5 1.250E-05 2.715E-03 1.37 7.702E-05 1.70 7 1.01 8.695E-04

Table 3. Numerical results on the Quadrangle mesh family, final time T=0.25.

5.3. Long time behavior. In this section, the penalisation parameter κ is set to zero. The discrete
stationary solution u∞T is defined by u∞K = ρe−V (xK) and u∞K∗ = ρ∗e−V (xK∗ ) for K ∈M and K∗ ∈
M
∗
, the quantities ρ and ρ∗ being fixed so that

∑
K∈M u∞KmK =

∑
K∈M∗ u

∞
K∗mK∗ =

∫
Ω
u0(x)dx.

In order to give an evidence of the good large-time behavior of our scheme, we plot in Figure 3 the
evolution of the relative energy

EnT − E∞T =

s
unT log

(
unT
u∞T

)
− unT + u∞T , 1T

{

T
, n ≥ 0

computed on the Kershaw meshes and on the quadrangle meshes. We observe the exponential
decay of the relative energy, recovering on general grids the behavior of the Scharfetter-Gummel
scheme [19].

Appendix A. A trace inequality

First, to a given vector uT =
(
(uK)K∈M , (uK∗)K∗∈M∗

)
∈ RT defined on a DDFV mesh T , we

associate its primal trace γ∂MuT on ∂Ω defined by

γ∂MuT (x) =
∑
L∈∂M

uL1L(x), ∀x ∈ ∂Ω.
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Figure 3. Discrete relative energy EnT − E∞T as a function of n∆t computed on
the first four Kershaw meshes (on the left) and on the first four quadrangle meshes
(on the right).

Theorem A.1 (Trace inequality). Let Ω be a convex polygonal domain of R2 and T a DDFV mesh
of this domain. There exist C > 0, depending only on Ω and θ?, such that ∀ uT ∈ RT :

(73) ‖γ∂MuT ‖2,∂Ω ≤ C
(
|uT |2,T +

∥∥∇huh∥∥2

)
.

Proof. The calculations are similar to those followed in [28, Lemma 10.5] and in [18, Theorem 7.1]
for L1-norm. The difference comes from the fact that here we define u∂M using the boundary primal
mesh instead of the interior primal mesh. Adapting the proof of [18, Theorem 7.1] in the L2-norm,
we get for K ∈M such that K ∩ ∂Ω 6= 0 the inequality∑

D∈Dext

mσ|uK |2 ≤ C
(
|uT |22,T +

∥∥∇huh∥∥2

2

)
.

It implies

‖γ∂MuT ‖22,∂Ω =
∑
D∈Dext

mσ|uL − uK + uK |2

≤ 2
∑
D∈Dext

mσ|uL − uK |2 + 2
∑
D∈Dext

mσ|uK |2

≤ 2
∑
D∈Dext

mσ|uL − uK |2 + C
(
|uT |22,T +

∥∥∇huh∥∥2

2

)
.

Using the fact that uL − uK = mσ∗(∇DuT ) · τK,L, we conclude

‖γ∂MuT ‖22,∂Ω ≤ C
(
|uT |22,T + (1 + size(T ))

∥∥∇huh∥∥2

2

)
.

�
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