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ON p-ROBUST SATURATION ON QUADRANGULATIONS

JAN WESTERDIEP

Korteweg-de Vries Institute for Mathematics, University of Amsterdam,
P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

Abstract. For the Poisson problem in two dimensions, posed on a domain partitioned into
axis-aligned rectangles with up to one hanging node per edge, we envision an efficient error
reduction step in an instance-optimal hp-adaptive finite element method. Central to this is the
problem: Which increase in local polynomial degree ensures p-robust contraction of the error
in energy norm? We reduce this problem to a small number of saturation problems on the
reference square, and provide strong numerical evidence for their solution.
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1. Introduction

We consider the Poisson model problem of finding u : Ω → R that satisfies

(1.1) −△u = f in Ω, u = 0 on ∂Ω,

where Ω ⊂ R2 is a connected union of a finite number of essentially disjoint axis-aligned rect-
angles, and f ∈ L2(Ω). Given a 1-irregular quadrangulation T of the domain into essentially
disjoint axis-aligned rectangles, let UT be the space of continuous piecewise polynomials of
variable degree w.r.t. T that vanish on the domain boundary, and let uT ∈ UT be its best
approximation of u in energy norm. We are interested in the following contraction problem:

Which (hp-)refinement T of T ensures contraction of the energy error, in that

‖∇u−∇uT ‖L2(Ω) ≤ α‖∇u−∇uT ‖L2(Ω)

for some fixed α < 1 independent of T and its local polynomial degrees?

It is well known that this problem is equivalent to the saturation problem of finding T for which
‖∇uT − ∇uT ‖L2(Ω) ≤ ρ‖∇u − ∇uT ‖L2(Ω) for some ρ > 1; in this work, we will study the
saturation problem, posed locally on a patch of rectangles around a given vertex.

The idea of hp-adaptive finite element methods started gaining momentum in the eighties with
the seminal works of Babuška and colleagues [10, 11], where they showed that for certain elliptic
boundary value problems, careful a priori decisions between h-refinement and p-enrichment can
yield a sequence of finite element solutions that exhibit an exponential convergence rate with
respect to the number of degrees of freedom (DoFs).

Since then, a lot of research has been done on hp-adaptive refinement driven by a posteriori
error estimates, but despite the interest, it was not until 2015 that Canuto et al. [5] proved the
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instance optimality—and with it, exponential convergence—of one such method. The method
alternates between (i) a module that refines the triangulation to reduce the energy error with
a sufficiently large fixed factor, and (ii) an hp-coarsening strategy developed by Binev [1] that
essentially removes near-redundant degrees of freedom to yield an instance optimal triangulation.
The sequence of triangulations found after each hp-coarsening step then exhibits the desired
exponential decay.

In [5], the error reducer of step (i) was a typical h-adaptive loop driven by an element-based
Dörfler marking, using the a posteriori error estimator of Melenk and Wohlmuth [13]. The
efficiency of this error estimator is known to be sensitive to polynomial degrees, which can lead
to a runtime that grows exponentially in the number of DoFs.

In [6], Canuto et al. explore a different error reduction strategy. It is an adaptive p-enrichment
loop driven by a vertex-based Dörfler marking using the equilibrated flux estimator, which was
shown to be p-robust in [2]. They show that solving a number of local saturation problems,
posed on patches around a vertex in terms of dual norms of residuals, leads to an efficient
error reducer. They were able to reduce the problem, stated on triangulations without hanging
nodes, to three problems on a reference triangle, and provided numerical results indicating that
uniform saturation holds when increasing the local degree p to p+ ⌈λp⌉ for any constant λ > 0,
but that an additive quantity of the form p+ n is insufficient.

Finally, in [4], Canuto et al. present a theoretical result solving slightly ill-fitted variant
on one of the reference problems. Whereas the former two works discuss partitions of the
domain into triangles, the latter proves a result on the reference square instead. As a first step
towards repairing this inconsistency, the present work considers quadrangulations. Our goal of
adaptive approximation requires us to consider partitions with hanging nodes, which introduce
complications. A key contribution in this regard has been made by Doleǰśı et al. in [8].

Contributions of this work. This work has two related goals. In a larger context, we aim to
take a step in the direction of a polynomial-time hp-adaptive FEM with exponential convergence
rates. In particular, we are interested in finding an efficient error reducer. To this end, we reduce
the saturation problem to a small number of problems on the reference square, and provide
numerical results suggesting these problems may be solvable theoretically. We detail on the
computational aspect as well, so that the numerical results are easily reproducible.

On a lower level, this work aims to extend the reduction to reference problems of [6] from
regular triangulations equipped with polynomials of certain total degree to the situation of
1-irregular quadrangulations with polynomials of certain degree in each variable separately. Al-
lowing 1-irregularity makes for a rather involved adaptation of the original result, as the refined
regular patches are not necessarily composed of elements containing the original vertex.

Organisation of this work. In §2, we will establish our notation. In §3, we show a contrac-
tive property within (hp-)adaptive finite element context, under a local patch-based saturation
assumption. In §4, we reduce the local saturation assumption to boundedness of a small number
of reference saturation coefficients. In §5, we discuss the computation of these coefficients, and
in §6 we show numerical results suggesting that these quantities are in fact bounded.

2. Notation and setup

In this work, A . B will mean that A may be bounded by a multiple of B, independently of
the parameters of A and B, and A h B means that A . B and B . A.

2.1. Quadrangulations. We consider partitions T of the domain into closed axis-aligned rect-
angles. We impose that T ◦

1 ∩T ◦
2 = ∅ for T1, T2 ∈ T distinct, and allow irregularity along shared

edges, meaning that T1∩T2 may be empty, a shared vertex, or part of a shared edge. Irregularity
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(a) (b) (c) (d)

Figure 1. (a) Regular initial quadrangulation Ta ∈ T of a square domain Ω;
(b) 1-irregular quadrangulation found from Ta through red-refinement; (c) quad-
rangulation found from Ta that is not 1-irregular; (d) typical “pathological”
quadrangulation excluded from this paper.

allows for highly adaptive quadrangulations, but to ensure p-robustness of our main result, we
restrict ourselves to 1-irregularity : every element edge may contain up to one hanging node—a
vertex in the interior of a neighbours edge.

To avoid pathological situations, we lastly assume that every T is found from a regular initial
quadrangulation (i.e., without hanging nodes) by means of repeated red-refinement (subdivision
into four similar rectangles), thus automatically ensuring uniform shape regularity. We collect
the family of such quadrangulations in the set T. See Figure 1 for a few examples.

The set of nonhanging vertices of a quadrangulation T ∈ T form the set VT , and Vext
T

(resp. V int
T ) is its subset of boundary (resp. interior) vertices. The edges of T form the set ET .

2.2. Polynomials on quadrangulations. For T ∈ T ∈ T, write Qp,p′(T ) for the space of
polynomials on T of degree at most p and p′ in the two canonical coordinates. Define Qp(T ) :=
Qp,p(T ). Equip each T with a local polynomial degree pT = pT,T for which pT ≥ 1, and write
pT := (pT )T∈T for the collection of these local degrees. Then with Q−1

pT
(T ) :=

∏

T∈T QpT (T )
the space of broken piecewise polynomials over T of degree at most pT on every element, we
introduce the finite-dimensional subspace UT of H1

0 (Ω) as

UT := H1
0 (Ω) ∩Q−1

pT
(T ) (T ∈ T).

Denote with u ∈ H1
0 (Ω) the weak solution to (1.1), and its Galerkin approximation as uT ∈ UT .

2.3. Patches. Let ψa be the hat function characterized by ψa ∈ C(Ω)∩Q−1
1 (T ) and ψa(b) = δab

for all b ∈ VT . Let ωa = ωT ,a be its support, and denote with Ta ⊂ T the quadrangulation
restricted to ωa; we call this set a patch. For each nonhanging vertex a ∈ VT , write

pa := pTa = (pT )T∈Ta , pa := maxpa.

It will prove meaningful to decompose the patch edges ETa := {e ∈ ET : e ⊂ ωa} as

Eext
a := {e ∈ ETa : e ⊂ ∂ωa} , E int

a := ETa \ Eext
a .

We moreover decompose exterior edges into Dirichlet and Neumann edges, through

Eext,D
a :=

{

e ∈ Eext
a : a ∈ e

}

, Eext,N
a := Eext

a \ Eext,D
a ,

giving rise to the local spaces

H1
∗ (ωa) :=







{

v ∈ H1(ωa) : 〈v,1〉ωa = 0
}

a ∈ V int
T ,

{

v ∈ H1(ωa) : v|e = 0 on e ∈ Eext,D
a

}

a ∈ Vext
T .
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•a2
•a1

•a3

(a) Quadrangulation T

•a1

(b) Ta1 = Ťa1

•a2

(c) Ta2 and Ťa2

•a3

(d) Ta3 and Ťa3

Figure 2. Example refined patches. (a) Example quadrangulation with three
vertices. (b) Regular patch Ta1 of interior vertex a1 ∈ V int

T that equals its smallest

regular refinement Ťa1 . (c) 1-irregular patch Ta2 of a2 ∈ V int
T ; Ťa2 is a refinement

of Ta2 denoted by dashed lines. (d) Patch of boundary vertex a3 ∈ Vext
T . The

thick black line indicates edges in Ěext,D
a ; the double line edges in Ěext,N

a .

Remark. Our definition of H1
∗ (ωa) differs from its definition in, e.g., [6, 8] when a ∈ Vext

T . In
previous works, functions in H1

∗ (ωa) vanish on the entire part ∂ωa∩∂Ω; in our case, they vanish
only on those edges e ⊂ ∂ωa ∩ ∂Ω for which a ∈ e. This altered definition was convenient for
our proof, and relevant dual norm properties of the residual in §3 carry over to our case. ♦

2.4. Refined patches. Given Ta, define the refined patch Ťa as the smallest regular red-
refinement of Ta, and let each Ť ∈ Ťa inherit its local degree pŤ from its parent in Ta. The key

insight of considering the regular refinement Ťa instead of Ta was proposed in [8] and allows us
to write the discrete residual below as a sum of inner products with local polynomials.

For the edge sets E int
a , Eext

a , Eext,N
a , Eext,D

a , define their -̌variants as the set of children edges;
e.g., Ě int

a := {ě ∈ EŤa : ∃e ∈ E int
a s.t. ě ⊂ e}. See Figure 2 for a few examples.

3. Reducing the contraction problem to local saturation problems

This section will follow the same general structure of [6, §3–4]; proofs are omitted for brevity
but follow analogously to their counterpart in [6].

For ω a proper subset of Ω, let 〈·, ·〉ω denote the L2(ω)- or [L2(ω)]
2-inner product, and ‖·‖ω

its norm. Unless mentioned otherwise, closed subspaces of H1(ω) on which ‖∇·‖ω is equivalent
to ‖·‖H1(ω) are equipped with the H1(ω)-seminorm ~ · ~ω := ‖∇·‖ω.

3.1. Residual. For ě ∈ Ě int
a , we denote with J·K the jump operator and with ně a unit normal

vector of ě. We then define the global and localized residuals as

rT (v) := 〈f, v〉Ω − 〈∇uT ,∇v〉Ω, ra(v) := rT (ψav) (v ∈ H1(Ω)),

and observe that after integration by parts, the localized residual satisfies

ra(v) =
∑

Ť∈Ťa

〈ψa(f +△uT ), v〉Ť +
∑

ě∈Ě int
a

〈ψa J∇uT · něK , v〉ě.

The following shows that the norms ‖ra‖H1
∗ (ωa)′ may be used as a posteriori error indicators.

Proposition 3.1 (Reliability and efficiency [6, Prop. 3.1]). There is a constant Ceff > 0 with

~u− uT ~2
Ω ≤ 3

∑

a∈VT

‖ra‖2H1
∗(ωa)′

, ‖ra‖H1
∗ (ωa)′ ≤ Ceff~u− uT ~ωa (a ∈ VT ).
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3.2. Data oscillation and discrete residual. For a rectangle T , define ΠT
p as the L2(T )-

orthogonal projection onto Qp(T ). The approximation ΠŤa
f to f is then piecewise defined

through (ΠŤa
f)|Ť := ΠŤ

pŤ
f |Ť . The difference between f and its approximation is quantified by

the data oscillation, defined as

osc(f,T )2 :=
∑

Ť∈Ťa

h2
Ť
‖f −ΠŤ

pŤ
‖2
Ť
.

We will study the discrete residual, computed on discrete data ΠŤa
f instead of f :

(3.1) r̃a(v) :=
∑

Ť∈Ťa

〈φŤ , v〉Ť +
∑

ě∈Ě int
a

〈φě, v〉ě (v ∈ H1(ωa))

where

φŤ := ψa(Π
Ť
pŤ
f +△uT ) ∈ QpŤ+1(Ť ), and φě := ψa J∇uT · něK ∈ Ppa+1(ě).

Proposition 3.2 (Residual discrepancy [6, Cor. 3.4]). There is a constant Cosc > 0 with
∣

∣

∣

∣

∣

∣

∣

√

∑

a∈VT

‖r̃a‖2H1
∗(ωa)′

−
√

∑

a∈VT

‖ra‖2H1
∗(ωa)′

∣

∣

∣

∣

∣

∣

∣

≤ Cosc osc(f,T ).

3.3. A theoretical AFEM. We envision an abstract adaptive FEM that loops

SOLVE – ESTIMATE – MARK – REFINE,

driven by the vertex-based a posteriori error indicators ‖r̃a‖H1
∗(ωa)′ . The following result provides

sufficient conditions for p-robust contraction of the error in energy norm. This AFEM can serve
as an efficient error reducer in an instance-optimal hp-AFEM through a coarsening step; cf [1].

Proposition 3.3 (Contraction of AFEM [6, Prop. 4.1]). Let θ ∈ (0, 1] and ρ ∈ [1,∞) be
constants. Suppose that for some λ ∈ (0, θ

Coscρ
), we have

(a) small data oscillation:

osc(f,T ) ≤ λ

√

∑

a∈VT

‖r̃a‖2H1
∗(ωa)′

,

(b) Dörfler marking: a set M ⊂ VT of marked vertices satisfying
√

∑

a∈M

‖r̃a‖2H1
∗(ωa)′

≥ θ

√

∑

a∈VT

‖r̃a‖2H1
∗(ωa)′

,

(c) local saturation: a closed subspace U ⊃ UT of H1
0 (Ω) that saturates each residual dual norm:

‖r̃a‖H1
∗(ωa)′ ≤ ρ‖r̃a‖[H1

∗(ωa)∩U |ωa ]
′ (a ∈ M).

Then, with u ∈ U the Galerkin approximation of the solution u of (1.1), we have contraction,

~u− u~Ω ≤ α~u− uT ~Ω, where α = α(θ, ρ, λ) :=

√

1−
(

θ − Coscλρ

3Ceff(1 + Coscλ)ρ

)2

,

meaning that the error is reduced by a factor α, uniformly bounded away from 1.

Remark. Assumption (a) is usually satisfied [6, Rem. 4.2], and the Dörfler marking for (b) can
be constructed by ordering vertices by ‖r̃a‖H1

∗(ωa)′ , so we will focus on (c).
Given a function q : N → N such that

‖r̃a‖H1
∗(ωa)′ ≤ ρ‖r̃a‖[H1

∗(ωa)∩Q
−1
q(pa+1)+1

(Ťa)]′
(a ∈ M),
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then, (c) is satisfied for any UT ⊂ U ⊂ H1
0 (Ω) with

H1
∗ (ωa) ∩Q−1

q(pa+1)+1(Ťa) ⊂ H1
∗ (ωa) ∩ U |ωa (a ∈ M).

In Theorem 4.2 below, we reduce existence of q to a small number of saturation problems
on the reference square. Under this assumption, U can then be constructed as UŤ , where Ť is
found through the following REFINE step:

(i) for each a ∈ M, replace Ta by its smallest regular red-refinement Ťa;
(ii) for each a ∈ M, for each Ť ∈ Ťa, increase pŤ to q(pa + 1) + 1;

(iii) Take Ť as the smallest 1-irregular red-refinement of the resulting quadrangulation.

The numerical results of §6 suggest that the aforementioned reference problems are solved for
q(p) := p + ⌈λp⌉ for any λ > 0. Each REFINE step multiplies the number of elements by not
more than a factor 4, and the local degrees by (up to) a constant factor 1+ ⌈λ⌉. Therefore, the
dimension of the local finite element space is multiplied by not more than a factor 4(1 + ⌈λ⌉)2;
since the number of REFINE steps necessary for a fixed error reduction factor δ ∈ (0, 1) is

bounded by M ≤ ⌈ log δ
log α⌉, this leads to an efficient error reducer. ♦

3.4. Equivalent computable error quantities. The localized discrete residuals r̃a provide,
through their dual norms ‖r̃a‖H1

∗(ωa)′ , reliable and efficient error indicators which can drive an
AFEM. These dual norms are, however, not computable.

For p ≥ 0 and a rectangle T , the Raviart-Thomas space of degree p is defined as

RTp(T ) := Qp+1,p(T )×Qp,p+1(T ) ⊂ H(div;T ).

The following two results underline the importance of this space for p-robust analysis.

Lemma 3.4 (p-robust inverse of divergence [2, Thm. 5]). Let T be a rectangle. For ϕ ∈ Qp(T ),
there is a σ ∈ RTp(T ) with

divσ = ϕ, ‖σ‖T . ‖〈ϕ, ·〉T ‖H1
0 (T )′ .

Lemma 3.5 (p-robust Raviart-Thomas extension [7, Cor. 3.4]). Let T be a rectangle with edges
{e1, e2, e3, e4}. Given ϕ ∈ L2(∂T ) such that

〈ϕ,1〉∂T = 0, and ϕ|ei ∈ Pp(ei) (i ∈ {1, . . . , 4})
then there is a σ ∈ RTp(T ) with

divσ = 0, σ · nT = ϕ on ∂T , ‖σ‖T . inf
{τ∈H(div;T ):div τ=0,τ ·nT=ϕ}

‖τ‖T .

In [8], Doleǰśı et al. use these two lemmas to find a Raviart-Thomas flux σa ∈
∏

Ť∈Ťa
RTpa(Ť )

with p-robust norm equivalence ‖σa‖ωa h ‖r̃a‖H1
∗ (ωa)′ , and present an efficient algorithm for its

construction. The error indicators ‖σa‖ωa can be computed, and can therefore drive an AFEM.

4. Reducing local saturation problem to reference saturation problems

In this section, we prove the main theorem of the present work, reducing the local p-robust
saturation problem to a small number of saturation problems on the reference square.

4.1. Saturation coefficients. Let T̂ := [−1, 1]2 be the reference square. Given a closed linear

subspace Ĥ ⊂ H1(T̂ ) on which the H1(T̂ )-seminorm is a norm, a finite-dimensional linear

subspace V̂ ⊂ Ĥ , and a set of functionals F̂ ⊂ Ĥ ′, define the saturation coefficient

S(Ĥ , V̂ , F̂ ) := sup
F̂∈F̂

‖F̂‖
Ĥ ′

‖F̂‖
V̂ ′

which, if bounded, shows that V̂ is a large enough subspace to saturate Ĥ over the set F̂ .



ON p-ROBUST SATURATION ON QUADRANGULATIONS 7

1

2

3

456

7

8

9

101112

13

14

1516

17

18

1920

21

22

23
24

â
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Figure 3. Left: a 4 × 4 grid with vertex â, and an enumeration of its interior
edges. Right: the 13 fundamentally different refined patch types, with the double

line indicating Neumann edges Ěext,N
a of the patch boundary, and the thick black

line Dirichlet edges Ěext,D
a . We enumerate interior edges of a patch by overlaying

its vertex a with â in the left grid, and numbering them in increasing order.

Lemma 4.1 (Saturation extends to rectangles). When T ∈ T, then for any T ∈ T ,

sup
F∈F

‖F‖H ′

‖F‖V ′

. κ2(B)S(Ĥ , V̂ , F̂ )

where FT (x) := Bx+ b is an affine mapping from T to T̂ , and H ,V ,F are determined by the
pull-back, pull-back, and push-forward, respectively (cf. [3, p.82]).

In words, saturation on the reference square extends to uniformly shape regular rectangles.

4.2. Enumerating the interior edges of a refined patch. Refined patches will play an
integral role in the proof of the forthcoming Theorem. Take a ∈ VT , and let Ťa be its refined
patch. We will construct an enumeration of the interior edges Ě int

a of Ťa as (ěi)
na

i=1, where

na := #Ě int
a , and for each interior edge, choose a specific square Ťi ∈ Ťa adjacent to ěi.

Because every patch Ta is a 1-irregular collection of axis-aligned rectangles, there is only a fi-
nite number of different refined patch types. In fact, it can be shown that up to rotation/flipping
of Ťa, all patches fall in one of the 13 types on the right of Figure 3.

Overlay the vertex a with the â in the 4× 4 grid to the left of Figure 3. Then every ě ∈ Ě int
a

inherits a number 1 ≤ k(i) ≤ 24 from the grid. We then enumerate (ěi)
na

i=1 in increasing order of

the values k(i), and we choose Ťi as the square above or to the left of ěi (whichever is applicable).

4.3. Main theorem. Let T be a rectangle. When γ ⊂ ∂T with meas(γ) > 0, the space
H1

0,γ(T ) denotes the closure in H1(T ) of the smooth functions on T that vanish on γ. By abuse

of notation, when E = {γ} is a collection of such parts of the boundary, H1
0,E(T ) will denote the

closure of smooth functions that vanish on every γ separately.
For brevity purposes, write the restriction of H1

∗ (ωa) to piecewise polynomials as

H1
∗,p(Ťa) := H1

∗ (ωa) ∩Q−1
p (Ťa) (p ∈ N, a ∈ VT ).

We enumerate the edges of the reference square T̂ as E
T̂
= (ê1, ê2, ê3, ê4), in counterclockwise

fashion, starting from the rightmost edge.

Theorem 4.2 (Reduction of p-robust saturation). Given the following sets of subsets of E
T̂
,

(4.1) E(A) :=
{

E ⊂ E
T̂
: E 6= ∅

}

, E(B) :=
{

{ê2} , {ê3} , {ê2, ê3} , {ê2, ê3, ê4}
}

,
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define the following reference saturation coefficients

S
(A)
E,p,q := S

(

H1
0,E(T̂ ), H

1
0,E(T̂ ) ∩Qq(T̂ ), {h 7→ 〈φ, h〉

T̂
: φ ∈ Qp(T̂ )}

) (

E ∈ E(A)
)

,

S
(B)
E,p,q := S

(

H1
0,E(T̂ ), H

1
0,E(T̂ ) ∩Qq(T̂ ), {h 7→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)}

) (

E ∈ E(B)
)

,

S(C)
p,q := S

(

H1(T̂ )/R, Qq(T̂ )/R, {h 7→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)/R}
)

.

If for some function q : N → N, it holds that

Ŝ := sup
p

max
{

S
(A)
E,p,q(p)

: E ∈ E(A)
}

∪
{

S
(B)
E,p,q(p)

: E ∈ E(B)
}

∪
{

S
(C)
p,q(p)

}

<∞,

then we have p-robust saturation, in that

(4.2) ‖r̃a‖H1
∗(ωa)′ . ‖r̃a‖H1

∗,q(pa+1)+1
(Ťa)′

dependent on Ŝ, but independent of the quadrangulation T and its local degrees.

Outline of proof. Our proof is similar in taste to [6, Thm. 7.1], with some details requiring a
different approach. We will perform three steps. Write, as in (3.1),

r̃a(v) =
∑

Ť∈Ťa

〈φŤ , v〉Ť +
∑

ě∈Ě int
a

〈φě, v〉ě (v ∈ H1(ωa))

for some φŤ ∈ QpŤ+1(Ť ) and φě ∈ Ppa+1(ě). In Step (A) below, we bound the dual norm
of the set of element terms; in Steps (B) and (C), we do the same for the set of edge terms.
Throughout the proof, we will use assumption pŤ ≥ 1 to find that, for interior vertices a ∈ V int

T ,
the residual vanishes on constants (ψa ∈ UT so r̃a(1) = r̃(ψa1) = r̃(ψa) = 0).

In Step (A), we employ suppmaxE∈E(A) S
(A)
E,p,q(p) < ∞ to find, on every rectangle Ť ∈ Ťa, a

functional r̃Ť ∈ H1
∗ (ωa)

′ with

(4.3) ‖r̃Ť ‖H1
∗(ωa)′ . ‖r̃a‖H1

∗,q(pa+1)
(Ťa)′

and r̃Ť (1) = 0,

that removes the Ť -contribution from r̃a, in the sense that the residual

r̃(0)a :=
∑

Ť∈Ťa

r̃Ť

satisfies, for v ∈ H1
∗ (ωa),

(4.4) r̃a(v)− r̃(0)a (v) =
∑

ě∈Ě int
a

〈φ(0)ě , v〉ě for some φ
(0)
ě ∈ Ppa+1(ě).

Next, in Step (B), we use the enumeration (ěj)
na

j=1 of the interior edges Ě int
a where na := #Ě int

a .

At step i ∈ {1, . . . , na − 1}, we use suppmaxE∈E(B) S
(B)
E,p,q(p) < ∞ and Lemma 4.3 below to find

a functional r̃ěi = r̃Ťi,ěi
∈ H1

∗ (ωa)
′ with

(4.5) ‖r̃ěi‖H1
∗(ωa)′ . ‖r̃a‖H1

∗,q(pa+1)+1
(Ťa)′

and r̃ěi(1) = 0,

that removes the ěi-contribution from r̃
(i−1)
a while not re-introducing contributions on edges ěj

for j < i, in the sense that the residual

r̃(i)a := r̃(i−1)
a + r̃ěi
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satisfies, for v ∈ H1
∗ (ωa),

(4.6) r̃a(v)− r̃(i)a (v) =
∑

j≥i+1

〈φ(i)ěj
, v〉ěj for some φ

(i)
ěj

∈ Ppa+1(ěj).

Lastly, in Step (C), the final iteration i = na, we make a distinction. When a ∈ Vext
T is a

boundary vertex, we construct a r̃ěna
∈ H1

∗ (ωa)
′ for which (4.5) and (4.6) hold once more. Then

through the triangle inequality, #Ťa ≤ 16, and #Ě int
a ≤ 24 we find

‖r̃a‖H1
∗(ωa)′ ≤

∑

Ť∈Ťa

‖r̃Ť ‖H1
∗ (ωa)′ +

na
∑

j=1

‖r̃ěj‖H1
∗(ωa)′ . ‖r̃a‖H1

∗,q(pa+1)+1
(Ťa)′

.

When a ∈ V int
T is an interior vertex, we use supp S

(C)
p,q(p) <∞ to bound

(4.7) ‖r̃a − r̃(na−1)
a ‖H1

∗(ωa)′ . ‖r̃a‖H1
∗,q(pa+1)

(Ťa)′

which implies that

‖r̃a‖H1
∗(ωa)′ ≤ ‖r̃a − r̃(na−1)

a ‖H1
∗(ωa)′ +

∑

Ť∈Ťa

‖r̃Ť ‖H1
∗(ωa)′ +

na−1
∑

j=1

‖r̃ěj‖H1
∗(ωa)′ . ‖r̃a‖H1

∗,q(pa+1)+1
(Ťa)′

.

In either case, we conclude that (4.2) must hold.

Extension lemma. Proving, in particular, inequality (4.5) requires some creativity. Assume
for now that a is a boundary vertex (the other case is handled in the main proof). We will
require the intermediate result that for some specific finite-dimensional subspace of polynomials
Vi ⊂ H1(Ťi), there is, for each v ∈ Vi, a piecewise polynomial Ev ∈ H1

∗ (ωa) with

~Ev~ωa . ~v~Ťi
, and 〈φ(i−1)

ěi
, v〉ěi = r̃a(Ev) − r̃(i−1)

a (Ev).

Our approach is the following. Note that 〈φ(i−1)
ěi

, v〉ěi is an inner product over a single edge,

whereas r̃a(Ev) − r̃
(i−1)
a (Ev) is a sum of inner products 〈φ(i−1)

ěj
, Ev〉ěj on all interior edges ěj

with j ≥ i (see (4.6)). The desired equality holds for all v ∈ Vi surely when Ev extends v (in
that Ev|Ťi

= v), and Ev|ěj = 0 for every j ≥ i+ 1. Moreover, a ∈ Vext
T , so Ev ∈ H1

∗ (ωa) should

vanish on all edges in Ěext,D
a as well. This gives rise to the set of patch (resp. local) Dirichlet

edges,

(4.8) ĚD
a,i := Ěext,D

a ∪
{

ěj ∈ Ě int
a : j ≥ i+ 1

}

, Ě loc,D
a,i

:= ĚD
a,i ∩ ĚŤi

(i = 1, . . . , na),

and for v that vanishes on all local Dirichlet edges, Ev then vanishes on all patch Dirichlet
edges ě ∈ ĚD

a,i. Existence of this Ev depends on the enumeration (ěi)
na

i=1 of interior edges. The
following lemma shows that with our particular construction, we can build a suitable E.

Lemma 4.3 (Bounded polynomial extension). Let Ťa be one of the 13 refined patch types of
Figure 3. Let na, (ěi)

na

i=1, and (Ťi)
na

i=1 be as defined in §4.2. For each square Ťi, we enumerate
its edges as (e1, e2, e3, e4), in counterclockwise fashion, starting from the rightmost edge.

For 1 ≤ i ≤ na − 1, and i = na when a is an external vertex, the following holds.

(1) The set Ě loc,D
a,i is nonempty. In fact, one of five situations occurs:

(a) Ě loc,D
a,i = {e1, e2, e3} , (b) Ě loc,D

a,i = {e2, e3, e4} , (c) Ě loc,D
a,i = {e2, e3} ,

(d) Ě loc,D
a,i = {e2} and e3 ∈ Ěext,N

a , (e) Ě loc,D
a,i = {e3} and e2 ∈ Ěext,N

a .
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(2) There is a bounded linear map E : H1
0,Ě loc,D

a,i

(Ťi)∩Qq(pa+1)(Ťi) → H1(ωa)∩Q−1
q(pa+1)+1(Ťa)

so that for all v, its extension Ev vanishes on patch Dirichlet edges; specifically,

Ev|Ťi
= v, ~Ev~ωa . ~v~Ťi

, Ev|ě = 0 (ě ∈ ĚD
a,i).

Proof. A careful visual inspection of the enumeration for each of the 13 patch types of Figure 3
shows that condition (1) holds: by enumerating the edges right-to-left, bottom-to-top, we ensure

e2 and e3 are (situations (a–c)) both in Ěext,D
a or equal to some ěj for j > i, or (situations (d–e))

when Ťi is in the topmost row or leftmost column, either e2 or e3 is in Ěext,N
a , but never both.

Ťie1
e2

e3

e4

T

(a) Ě loc,D
a,i =

{e1, e2, e3}

Ťie1
e2

e3

e4
T

(b) Ě loc,D
a,i =

{e2, e3, e4}

Ťie1
e2

e3

e4 e4

(c) Ě loc,D
a,i =

{e2, e3}

Ťie1
e2

e3

e4
T
e2

e3
e4

(d) Ě loc,D
a,i = {e2},

e3 ∈ Ěext,N
a

Ťie1
e2

e3

e4

(e) Ě loc,D
a,i = {e3},

e2 ∈ Ěext,N
a

Figure 4. The five different extension cases of Lemma 4.3. The full thick line on
∂Ťi denotes its local Dirichlet boundary Ě loc,D

a,i , and the dashed thick line shows

the Dirichlet boundary of the extension; double lines indicate edges in Ěext,N
a .

By the first result of this Lemma, there are essentially five cases to look at. See Figure 4.
Denote with T the union of squares in the appropriate case. Let v ∈ H1

0,Ě loc,D
a,i

(Ťi)∩Qq(pa+1)(Ťi).

We will use multiple reflections of v to find a piecewise polynomial v ∈ H1(T ) (of degree
q(pa+1)+1) that vanishes on the part of ∂T denoted by the thick line. Restricting v to T ∩ωa

(because T may contain squares outside Ťa) yields a function that vanishes on the edges ě ∈ Ě int
a

with ě ⊂ ∂T , so that we can easily zero-extend v|T ∩ωa
to Ev ∈ H1(ωa) ∩Q−1

q(pa+1)+1(Ťa).
The choice of Ťi ensures that ěi is its right or bottom edge. Moreover, the enumeration is

bottom-right to top-left, so that every patch Dirichlet edge is positioned either above or to the
left of Ťi. On the other hand, the support of our extension Ev is—as we will shortly see—to
the right or bottom of Ťi. Therefore, Ev necessarily vanishes on all of ĚD

a,i.
It remains to construct v with the desired properties above, for each situation.

(a) Denote with v, T the reflections of v and Ťi across e4. Then v|e4 = v|e4 and ~v~T = ~v~Ť ,

so the extension v defined by v|Ť := v and v|T := v vanishes on all of ∂(Ťi∪T ), is continuous
globally, and polynomial on both squares separately.

(b) The proof of this case is analogous to that of (a).
(c) Denote with e4 the reflection of e4 across e1. Denote with v the extension of v on Ťi ∪ T .

The extension v of v across e4 ∪ e4 is the desired function.
(d) Denote with v, T , e2, e3, e4 the reflections of v, T, e2, e3, e4 across e1, respectively. Let φ ∈

Q1(T ) be a decay function defined by φ|e1 = 1 and φ|e3 = 0. Then

(vφ)|e1 = v|e1 , vφ ∈ H1
0,e2∪e3(T ) ∩Qq(pa+1)+1(T ),

and we thus see that the function v defined by v|Ťi
:= v, v|T := vφ is a continuous polynomial

extension of v that moreover vanishes on e3. Its norm satisfies ~v~Ťi∪T
. ~v~Ťi

(proof is

analogous to [9, (3.29)]). The desired function v is found as the extension of v across e4∪e4.
(e) The proof of this case is analogous to that of (d). �
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Proof of Theorem 4.2. We proceed in several steps.

Step (A0). For every Ť ∈ Ťa, we will find our functional r̃Ť ∈ H1
∗ (ωa)

′ by constructing a

Raviart-Thomas flux σŤ ∈ RTpa+1(Ť ), and write r̃Ť (v) = 〈σŤ ,∇v〉Ť . Let Ť ∈ Ťa.

Step (A1). Let us construct r̃Ť . Lemma 3.4 guarantees that there is a σ
(1)

Ť
∈ RTpa+1(Ť ) with

(4.9) divσ
(1)

Ť
= φŤ and ‖σ(1)

Ť
‖Ť . ‖〈φŤ , ·〉Ť ‖H1

0 (Ť )′ .

By definition, r̃a has no contributions on the exterior edges of Ťa. However, this σ
(1)

Ť
can

have a nonzero normal component on edges in Ěext
Ť

. Let us resolve this inconsistency.

Without loss of generality, we may assume that Ě int
Ť

6= ∅,1 so the Galerkin problem

〈∇wŤ ,∇v〉Ť = FŤ (v) :=
∑

ě∈Ěext
Ť

〈σ(1)

Ť
· nŤ , v〉ě (v ∈ HŤ ) where HŤ := H1

0,Ě int
Ť

(Ť ) ,

has a unique solution wŤ ∈ HŤ for which it follows directly that

div∇wŤ = 0, ~wŤ~Ť ≤ ‖FŤ ‖H ′

Ť
, ∇wŤ · nŤ = −σ

(1)

Ť
· nŤ for ě ∈ Ěext

Ť
.

Now, integration by parts tells us that

FŤ (v) = 〈divσ(1)

Ť
, v〉Ť + 〈σ(1)

Ť
,∇v〉Ť

(

v ∈ HŤ

)

.

Then, through (4.9) and (for the final inequality) H1
0 (Ť ) ⊂ HŤ , we have

‖FŤ ‖H ′

Ť
≤ ‖〈divσ(1)

Ť
, ·〉Ť ‖H ′

Ť
+ ‖σ(1)

Ť
‖Ť . ‖〈φŤ , ·〉Ť ‖H ′

Ť
+ ‖〈φŤ , ·〉Ť ‖H1

0 (Ť )′ ≤ 2‖〈φŤ , ·〉Ť ‖H ′

Ť
,

so that ~wŤ~Ť . ‖〈φŤ , ·〉Ť ‖H ′

Ť
. We then invoke Lemma 3.5 with τ := ∇wŤ , and ϕ ∈ L2(∂T )

piecewise defined on ě ∈ Ěext
Ť

as ϕ|ě := −σ
(1)

Ť
· nŤ and on the rest of ∂Ť such that ϕ has mean

zero, to find a σ
(2)

Ť
∈ RTpa+1(Ť ) for which

(4.10) divσ
(2)

Ť
= 0, σ

(2)

Ť
· nŤ = −σ

(1)

Ť
· nŤ for ě ∈ Ěext

Ť
, ‖σ(2)

Ť
‖Ť . ‖〈φŤ , ·〉Ť ‖H ′

Ť
,

so that σŤ
:= σ

(1)

Ť
+ σ

(2)

Ť
has bounded norm, with normal components vanishing on Ěext

Ť
.

We then define r̃Ť ∈ H1
∗ (ωa)

′ and r̃
(0)
a ∈ H1

∗ (ωa)
′ as

r̃Ť (v) := 〈σŤ ,∇v〉Ť and r̃(0)a :=
∑

Ť∈Ťa

r̃Ť .

Step (A2). We will verify (4.4). Integration by parts yields that for v ∈ H1
∗ (ωa),

r̃Ť (v) = −〈φŤ , v〉Ť +
∑

ě∈Ě int
Ť

〈φ(0)
Ť ,ě
, v〉ě, where φ

(0)

Ť ,ě
:= σŤ · nŤ ∈ Ppa+1(ě).

Therefore, r̃
(0)
a removes all element contributions from r̃a; it follows that indeed, r̃a − r̃

(0)
a is a

sum of contributions over (interior) edges:

r̃a(v) − r̃(0)a (v) =
∑

ě∈Ě int
a

〈φě, v〉ě −
∑

Ť∈Ťa

∑

ě∈Ě int
Ť

〈φ(0)
Ť ,ě
, v〉ě =:

∑

ě∈Ě int
a

〈φ(0)ě , v〉ě (v ∈ H1
∗ (ωa)).

Now, every φ
(0)
ě is a sum of polynomials φ

(0)

Ť ,ě
, so indeed φ

(0)
ě ∈ Ppa+1(ě).

1When Ě int
Ť

= ∅, then Ťa consists of a single element Ť , in which case H1
∗(ωa) = H1

0,Ěext
a

(Ť ) so that we may

invoke the assumption supp S
(A)

Ěext
a

,p,q(p)
< ∞ directly to find the saturation result (4.2).
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Step (A3). We verify (4.3). By definition, r̃Ť (1) = 0. Cauchy-Schwarz, (4.9), and (4.10) imply

‖r̃Ť ‖H1
∗(ωa)′ ≤ ‖σŤ ‖Ť = ‖σ(1)

Ť
+ σ

(2)

Ť
‖Ť . ‖〈φŤ , ·〉Ť ‖H ′

Ť
.

Moreover, Ě int
Ť

6= ∅, hence it can be identified with a set E ∈ E(A) from (4.1). By assumption,

supp S
(A)
E,p+1,q(p+1) ≤ Ŝ, so that through Lemma 4.1, we find

‖〈φŤ , ·〉Ť ‖H ′

Ť
. ‖〈φŤ , ·〉Ť ‖V ′

Ť
, where VŤ

:= HŤ ∩Qq(pa+1)(Ť ) .

Every v ∈ VŤ vanishes on interior edges; write its zero-extension to ωa as v ∈ H1(ωa). Then

H1
∗,q(pa+1)(Ťa) ∋ v :=

{

v − 〈v,1〉ωa a ∈ V int
T ,

v a ∈ Vext
T .

By r̃a(1) = 0 for a ∈ V int
T , we have 〈φŤ , v〉Ť = r̃a(v) = r̃a(v); moreover, ~v~Ť = ~v~ωa, so

‖〈φŤ , ·〉Ť ‖V ′

Ť
:= sup
06=v∈VŤ

∣

∣〈φŤ , v〉Ť
∣

∣

~v~Ť

= sup
06=v∈VŤ

∣

∣r̃a(v)
∣

∣

~v~ωa

≤ sup
06=w∈H1

∗,q(pa+1)
(Ťa)

∣

∣r̃a(w)
∣

∣

~w~ωa

=: ‖r̃a‖H1
∗,q(pa+1)

(Ťa)′
.

Chaining the dual norm inequalities in this step yields (4.3).

Step (B0). In this step, we traverse the interior edges Ě int
a in the order (ěj)

na

j=1 constructed in

§4.2. Let (Ťj)na

j=1 be the sequence of squares for each ěj .

At each iteration of the traversal, we use result (1) of Lemma 4.3 to remove the ěi-contribution
from the previous residual by—in a fashion similar to Step (A1)—solving a local Galerkin
problem and constructing a Raviart-Thomas flux σi with specific properties. The resulting
functional r̃ěi ∈ H1

∗ (ωa)
′ will be found as 〈σi,∇v〉Ťi

. We then use result (2) of the Lemma to

establish the dual norm bound of (4.5), similar to Step (A3).
We will continue by induction. Let i = 1.

Step (B1). We construct r̃ěi . By result (1) of Lemma 4.3, we have Ě loc,D
a,i 6= ∅, so the problem

(4.11) 〈∇w(i),∇v〉Ťi
= 〈φ(i−1)

ěi
, v〉ěi (v ∈ Hi) where Hi := H1

0,E loc,D
a,i

(Ťi)

has a unique solution w(i) ∈ Hi for which it holds that

div∇w(i) = 0, ~w(i)~Ťi
≤ ‖〈φ(i−1)

ěi
, ·〉ěi‖H ′

i
,



















∇w(i) · nŤi
= −φ(i−1)

ěi
on ěi,

∇w(i) · nŤi
= 0 on

{

ěj ∈ Ě int
Ťi

: j < i
}

,

∇w(i) · nŤi
= 0 on Ěext,N

Ťi
.

By Lemma 3.5, there is a σi ∈ RTpa+1(Ťi) with the same normal components as ∇w(i), with

(4.12) divσi = 0, ‖σi‖Ťi
. ‖〈φ(i−1)

ěi
, ·〉ěi‖H ′

i
.

We then define r̃ěi ∈ H1
∗ (ωa)

′ and r̃
(i)
a ∈ H1

∗ (ωa)
′ as

r̃ěi(v) := 〈σi,∇v〉Ťi
and r̃(i)a (v) := r̃(i−1)

a (v) + r̃ěi(v) (v ∈ H1
∗ (ωa)).
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Step (B2). Let’s look at (4.6). In light of (4.4) when i = 1, or (4.6) for i ≥ 2, suppose we have

(4.13) r̃a(v)− r̃(i−1)
a (v) =

∑

j≥i

〈φ(i−1)
ěj

, v〉ěj for some φ
(i−1)
ěj

∈ Ppa+1(ěj) (v ∈ H1
∗ (ωa)).

Using that v ∈ H1
∗ (ωa) vanishes along edges in Ěext,D

Ťi
, and considering the normal components

of σi, integration by parts yields (4.6):

r̃a(v)− r̃(i)a (v) =
[

r̃a(v)− r̃(i−1)
a (v)

]

− r̃ěi(v) =
∑

j≥i

〈φ(i−1)
ěj

, v〉ěj − 〈σi · nŤi
, v〉∂Ťi

=
∑

j≥i

〈φ(i−1)
ěj

, v〉ěj − 〈σi · nŤi
, v〉ěi −

∑

ěj∈Ě int
Ťi

:j>i

〈σi · nŤi
, v〉ěj

=
∑

j≥i+1

〈φ(i)ěj
, v〉ěj −

∑

ěj∈Ě int
Ťi

:j>i

〈σi · nŤi
, v〉ěj =:

∑

j≥i+1

〈φ(i)ěj
, v〉ěj for some φ

(i)
ěj

∈ Ppa+1(ěj).

Step (B3). We verify (4.5). By definition, r̃ěi(1) = 0. Moreover, by result (1) of Lemma 4.3,

Ě loc,D
a,i corresponds with an E ∈ E(B) from (4.1).2 By assumption, S

(B)
E,pa+1,q(pa+1) ≤ Ŝ, so (4.12)

and Lemma 4.1 yield

‖r̃ěi‖H1
∗(ωa)′ ≤ ‖σi‖Ťi

. ‖〈φ(i−1)
ěi

, ·〉ěi‖H ′
i
. ‖〈φ(i−1)

ěi
, ·〉ěi‖V ′

i
, where Vi := Hi ∩Qq(pa+1)(Ťi) .

To establish (4.5), it suffices to show

(4.14) ‖〈φ(i−1)
ěi

, ·〉ěi‖V ′
i
. ‖r̃a − r̃(i−1)

a ‖H1
∗,q(pa+1)+1

(Ťa)′
,

because (by r̃a − r̃
(i−1)
a = r̃a − r̃

(0)
a +

∑i−1
j=1 r̃ěj , the triangle inequality, (4.5), and #Ťa ≤ 16),

‖r̃a − r̃(i−1)
a ‖H1

∗,q(pa+1)+1
(Ťa)′

. ‖r̃a − r̃(0)a ‖H1
∗,q(pa+1)+1

(Ťa)′
. ‖r̃a‖H1

∗,q(pa+1)+1
(Ťa)′

.

We proceed as in Step (A3). Take v ∈ Vi. Result (2) of Lemma 4.3 guarantees a bounded
extension from v to a Ev ∈ H1(ωa) ∩ Q−1

q(pa+1)+1(Ťa) that vanishes on interior edges ěj with

j > i. Moreover, Ev is zero on edges ě ∈ Ěext,D
a whenever a ∈ Vext

T , so that in fact

H1
∗,q(pa+1)+1(Ťa) ∋ v :=

{

Ev − 〈Ev,1〉ωa a ∈ V int
T ,

Ev a ∈ Vext
T ,

with ~v~ωa = ~Ev~ωa . ~v~Ť .

Now, r̃a(1)−r̃(i−1)
a (1) = 0 when a ∈ V int

T , so r̃a(v)−r̃(i−1)
a (v) = r̃a(Ev)−r̃(i−1)

a (Ev). Moreover,
Ev|ěi = v|ěi and Ev|ěj = 0 for j > i, so almost all terms of (4.13) vanish when we plug in Ev,

which yields r̃a(Ev)− r̃
(i−1)
a (Ev) = 〈φ(i−1)

ěi
, Ev〉ěi = 〈φ(i−1)

ěi
, v〉ěi . Then, (4.14) follows by

‖〈φ(i−1)
ěi

, ·〉ěi‖V ′
i
= sup
06=v∈Vi

∣

∣

∣
〈φ(i−1)

ěi
, v〉ěi

∣

∣

∣

~v~Ťi

. sup
06=v∈Vi

∣

∣

∣
r̃a(v)− r̃

(i−1)
a (v)

∣

∣

∣

~v~ωa

≤ ‖r̃a − r̃(i−1)
a ‖H1

∗,q(pa+1)+1
(Ťa)′

.

Step (B4). We repeat Steps (B1)–(B3) for i ∈ {2, . . . , na − 1}, at each step finding functionals

r̃ěi and r̃
(i)
a for which (4.5) and (4.6) hold.

2The set Ě loc,D
a,i is in one of five states, whereas E(B) has four; situation (a) and (b) of Lemma 4.3 correspond

with the same E ∈ E(B).
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Step (C). When a ∈ Vext
T , the results of Lemma 4.3 are satisfied once more for i = na. This

allows us to repeat Steps (B1)–(B3) for a r̃ěna
∈ H1

∗ (ωa)
′ satisfying (4.5) and (4.6).

When a ∈ V int
T , it is not possible to continue the iteration; the set E loc,D

na is empty so we
cannot solve (4.11). However, we do know from (4.6) that for v ∈ H1

∗ (ωa),

r̃a(v) − r̃(na−1)
a (v) = 〈φ(na−1)

ěna
, v〉ěna

for some φ
(na−1)
ěna

∈ Ppa+1(ěj).

Noting ~v−〈v,1〉Ťna
~Ťna

≤ ~v~ωa and 〈φ(na−1)
ěna

,1〉ěna
= 0 (by r̃a(1) = 0 = r̃

(na−1)
a (1)), we find

‖〈φ(na−1)
ěna

, ·〉ěna
‖H1

∗(ωa)′ ≤ ‖〈φ(na−1)
ěna

, ·〉ěna
‖H ′

na
where Hna

:= H1(Ťna)/R .

The fact 〈φ(na−1)
ěna

,1〉ěna
= 0 also allows us to use S

(C)
pa,q(pa+1) ≤ Ŝ and invoke Lemma 4.1 yielding

‖〈φ(na−1)
ěna

, ·〉ěna
‖H ′

na
. ‖〈φ(na−1)

ěna
, ·〉ěna

‖V ′
na

where Vna
:= Hna ∩Qq(pa+1)(Ťna) .

Any v ∈ Vna has zero mean, so reflecting across every row and column of Ťa yields a mean-zero

extension v ∈ H1
∗,q(pa+1)(Ťa) with, by #Ťa ≤ 16, norm ~v~ωa =

√

#Ťa~v~Ťna
. ~v~Ťna

.

Finally, by 〈φ(na−1)
ěna

, v〉ěna
= 〈φ(na−1)

ěna
, v〉ěna

, we have the dual norm bound

‖〈φ(na−1)
ěna

, ·〉ěna
‖V ′

na
= sup
06=v∈Vna

∣

∣

∣
〈φ(na−1)

ěna
, v〉ěna

∣

∣

∣

~v~Ťna

. sup
06=v∈Vna

∣

∣

∣
〈φ(na−1)

ěna
, v〉ěna

∣

∣

∣

~v~ωa

≤ ‖〈φ(na−1)
ěna

, ·〉ěna
‖H1

∗,q(pa+1)
(Ťa)′

;

then, through the triangle inequality, we find

‖〈φ(na−1)
ěna

, ·〉ěna
‖H1

∗,q(pa+1)
(Ťa)′

≤ ‖r̃a‖H1
∗,q(pa+1)

(Ťa)′
+ ‖r̃(na−1)

a ‖H1
∗,q(pa+1)

(Ťa)′
. ‖r̃a‖H1

∗,q(pa+1)
(Ťa)′

.

Chaining the dual norm inequalities in Step (C) then yields the desired bound (4.7). �

5. Computation of reference saturation coefficients

In this section, we detail on the numerical computation of the saturation coefficient S(Ĥ , V̂ , F̂ ).
To allow computation of this coefficient, we first write it as the solution to a generalized Eigen-

value problem. We then discuss the construction of bases for the spaces Ĥ , V̂ , and F̂ involved
in the specific saturation coefficients of Theorem 4.2.

5.1. An equivalent problem. In our applications, F̂ is a finite-dimensional subspace of Ĥ ′

rather than just a subset, allowing us to write S(Ĥ , V̂ , F̂ ) as sup{
F̂∈F̂ :‖F̂‖

V̂ ′=1
}‖F̂‖

Ĥ ′ . Since

F̂ is finite-dimensional, this supremum is attained, so we may equivalently solve

(5.1) Find the largest 0 < µ = S(Ĥ , V̂ , F̂ ) s.t., for some 0 6= F̂ ∈ F̂ , ‖F̂‖2
Ĥ ′

= µ2‖F̂‖2
V̂ ′
.

Proposition 5.1 (Equivalent generalized Eigenvalue problem). Let Ξ
Ĥ
, Ξ

V̂
, and Σ

F̂
be bases

for the three spaces. For Û ∈ {Ĥ , V̂ }, denote the stiffness matrices as A
Û
:= 〈∇Ξ

Û
,∇Ξ

Û
〉
T̂
=

[

〈∇ξ
i,Û
,∇ξ

j,Û
〉
T̂

]#Ξ
Û

i,j=1
, and load matrices as L

Û
:= Σ

F̂
(Ξ

Û
) :=

[

σi(ξj,Û)
]

i,j
. Then the above

problem is equivalent to finding the largest generalized Eigenvalue µ2 of the system

(5.2) R
Ĥ
F = µ2R

V̂
F , where R

Û
:= L

Û
A−⊤

Û
L⊤

Û
.

Proof. Let, for Û ∈ {Ĥ , V̂ } and F̂ ∈ F̂ , the function u
Û
= u

Û
(F̂ ) be the unique solution to

(5.3) 〈∇u
Û
,∇v

Û
〉
T̂
= F̂ (v

Û
) (v

Û
∈ Û).
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Recalling that we equip Û with ~ · ~
T̂

:= ‖∇·‖
T̂
, and thus Û ′ with the corresponding dual

norm, we have ‖F̂‖
Û ′ = ~u

Û
~
T̂
. Write F̂ as F⊤Σ

F̂
and u

Û
as u

Û
= u⊤

Û
Ξ
Û
; then u⊤

Û
A

Û
=

〈∇u
Û
,∇Ξ

Û
〉
T̂
= F̂ (Ξ

Û
) = F⊤L

Û
, orA⊤

Û
u
Û
= L⊤

Û
F . Now, A

Û
is invertible, so u

Û
= A−⊤

Û
L⊤

Û
F .

We see ‖F̂‖2
Û ′

= ~u
Û

~2
T̂
= u⊤

Û
A

Û
u
Û
= F⊤L

Û
A−⊤

Û
L⊤

Û
F = F⊤R

Û
F , reducing problem (5.1) to

Find largest µ > 0 s.t. for some F 6= 0, F⊤R
Ĥ
F = µ2F⊤R

V̂
F ⇐⇒ µ2 =

F⊤R
Ĥ
F

F⊤R
V̂
F
,

which, by virtue of both R
Ĥ

and R
V̂

being symmetric positive-definite, is a Rayleigh quotient
for the generalized Eigenvalue problem of (5.2) (cf. [12]). �

5.2. Discrete saturation coefficients. In all of the cases of Theorem 4.2, the space Ĥ is

an infinite-dimensional closed subspace of H1(T̂ ), so computing S(Ĥ , V̂ , F̂ ) by means of (5.2)
will likely not be possible. However, the following result shows that we may restrict ourselves
to a finite-dimensional subspace that is large enough.

Lemma 5.2. Since F̂ is a finite-dimensional subspace of Ĥ ′, a compactness argument shows

that the discrete saturation coefficient S(Ĥ ∩Qr(T̂ ), V̂ , F̂ ) tends to S(Ĥ , V̂ , F̂ ) for r → ∞.

5.3. Bases for the subspaces. Solving (5.2) hinges on computing the stiffness matrix A
Ĥ

and load matrix L
Ĥ
, which depend on the choice of basis. In practice, we are able to choose

these bases with tensor-product structure. For instance, when Ξ
Ĥ

=: Ξ1 ⊗ Ξ2, we see

A
Ĥ

= 〈 d
dxΞ

1, d
dxΞ

1〉
Î
⊗ 〈Ξ2,Ξ2〉

Î
+ 〈Ξ1,Ξ1〉

Î
⊗ 〈 d

dxΞ
2, d

dxΞ
2〉

Î
,

where Î := [−1, 1], so that T̂ = Î × Î, and with ⊗ denoting the Kronecker product. Essentially,
computation of the saturation coefficient boils down to computing a number of inner products.

Define Lk as the kth Legendre polynomial, with degLk = k and Lk(1) = 1. The functions

ϕk(x) :=
√

k + 1
2Lk(x), (k ≥ 0)

then constitute an L2(Î)-orthonormal basis called the Legendre basis. Moreover, the functions

ξk(x) :=
√

k − 1
2

ˆ 1

x

Lk−1(s) ds =
1√

4k − 2
(Lk−2(x)− Lk(x)), (k ≥ 2)

constitute an orthonormal basis with respect to the H1(Î)-seminorm which we call the Babuška-

Shen basis. With respect to the L2(Î)-inner product, this basis is quasi-orthogonal in that

〈ξk, ξm〉
Î
= 0 ⇐⇒ k −m 6∈ {−2, 0, 2} , and 〈ϕk, ξm〉

Î
= 0 ⇐⇒ k −m 6∈ {0, 2} .

We can supplement the Babuška-Shen basis with ξ1(x) =
1
2

√
2(1 − x) to find an orthonormal

basis for H1
0,{1}(Î), and with ξ̃1(x) := ξ1(−x) for a basis for H1

0,{−1}(Î). These supplemented

functions are L2(Î)-orthogonal to ξm for m ≥ 4.

Recall the saturation coefficients from Theorem 4.2. The space V̂ is in every case just Ĥ

restricted to polynomials of lower degree, so we will focus on building bases for Ĥ and F̂ .

5.3.1. First discrete coefficient S
(A)
E,p,q,r. Denote

Ĥ := H1
0,E(T̂ ) ∩Qr(T̂ ), F̂ := {h 7→ 〈φ, h〉

T̂
: φ ∈ Qp(T̂ )} ⊂ Ĥ

′.

A tensorized basis Ξ
Ĥ

= Ξ1⊗Ξ2 for Ĥ is readily constructed through the Babuška-Shen basis,
supplemented to account for boundary conditions, up to degree r in each coordinate.

Choosing Φ := Φ1⊗Φ2 with Φ1 := Φ2 the Legendre basis up to degree p, we set Σ
F̂

:= 〈Φ, ·〉
T̂
.

Then, the load matrix can be computed from L
Ĥ

= 〈Φ,Ξ
Ĥ
〉
T̂
= 〈Φ1,Ξ1〉

Î
⊗ 〈Φ2,Ξ2〉

Î
.
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5.3.2. Second discrete coefficient S
(B)
E,p,q,r. The space Ĥ is the same as in S

(A)
E,p,q,r so its basis

Ξ
Ĥ

= Ξ1 ⊗ Ξ2 is readily constructed. For F̂ :=
{

h 7→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)
}

, we choose the
basis Σ

F̂
:= 〈Φ, ·〉ê1 with Φ the Legendre basis for Pp(ê1). Then

(5.4) L
Ĥ

= 〈Φ,Ξ
Ĥ
〉ê1 = Ξ1(1)⊗ 〈Φ,Ξ2〉

Î
where Ξ1(x) :=

(

ξ(x)
)

ξ∈Ξ1 .

The polynomials ξ ∈ Ξ1 with deg ξ ≥ 2 have ξ(1) = 0, so LH is sparse with entire zero rows.

5.3.3. Third discrete coefficient S
(C)
p,q,r. To create a basis for Ĥ := Qr(T̂ )/R, we first construct

X :=
{

χ0, ξ1 − 〈ξ1,1〉Î , ξ2 − 〈ξ2,1〉Î , . . . , ξr − 〈ξr,1〉Î
}

, where χ0 := 1/
√
2

which is a basis for Qr(Î), (almost) orthogonal w.r.t. the H1(Î)-seminorm, with every element
except χ0 having zero mean. The set Ξ

Ĥ
:= X × X \ {χ0 ⊗ χ0} then consists of linearly

independent polynomials with zero mean, and is of correct cardinality, hence a basis for Ĥ .
Legendre polynomials φk of degree k ≥ 1 have mean zero, so Φ∗ := {φk : 1 ≤ k ≤ p} is a basis

for Pp(ê1)/R, and Σ
F̂

:= 〈Φ∗, ·〉ê1 a basis for F̂ :=
{

h 7→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)/R
}

. Its load
matrix is formed analogously to (5.4).

6. Numerical results

In Theorem 4.2, we showed that patch-based p-robust saturation holds, under the assumption
that a number of quantities on the reference square are finite. More specifically, we are interested
in finding a function q : N → N such that the saturation coefficients

S
(A)
E,p,q(p), S

(B)
F ,p,q(p), S

(C)
p,q(p) (E ∈ E(A), F ∈ E(B))

(cf. Thm. 4.2) are uniformly bounded in p. Unable to compute the limit p → ∞, we resort to
computing them for a number of large but finite values of p, and extrapolate from this progres-
sion. Moreover, with our current approach, we are unable to compute the above quantities, so
we instead compute the discrete saturation coefficients

S
(A)
E,p,q,r, S

(B)
F ,p,q,r, S(C)

p,q,r (E ∈ E(A), F ∈ E(B))

(cf. Lemma 5.2) for some values of r that are large relative to p and q, and expect to see
r-stabilization of the discrete coefficient to its “continuous” counterpart.

In [6], it was shown that (for a slightly different setting), a strategy of the form q(p) = p+ n
with n ∈ N is insufficient, whereas for any λ > 0, the choice q(p) = p+ ⌈λp⌉ exhibits saturation.
This motivates our choice to run numerical computations for

q(p) = p+ 4, q(p) = p+ ⌈p/7⌉, q(p) = 2p.

By symmetry, there are five fundamentally different configurations of sets of edges in E(A):

E1 := {ê1} , E2 := {ê1, ê2} , E3 := {ê1, ê3} , E4 := {ê1, ê2, ê3} , E5 := {ê1, ê2, ê3, ê4} .
Moreover, enumerating the elements of E(B) as

F1 := {ê2} , F2 := {ê3} , F3 := {ê2, ê3} , F4 := {ê2, ê3, ê4} ,
we conclude that there are 5 + 4 + 1 = 10 reference problems to investigate.

Results were gathered using the sparse matrix library scipy.sparse with float64 matrices,
using scipy.sparse.linalg.spsolve and scipy.sparse.linalg.eigsh, with default settings.
Sparsity of the matrices ensures highly accurate results.

See Table 1 for the computed results. First we study the r-stabilization by means of the three
‘hardest’ problems (ordered by saturation coefficient for p = 4, q = 8, r = 16). There is little
difference between r = 2q, r = 4q, and r = 8q, indicating that r = 2q is sufficient.
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q(p) = p+ 4 q(p) = p+ ⌈p/7⌉ q(p) = 2p
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

p = 4 12 28 60 p = 14 28 56 p = 4 8 16 32
r q = 8 16 32 64 q = 16 32 64 q = 8 16 32 64

S
(A)
E1,p,q,r

2q 1.0017 1.0344 1.1562 1.4015 1.1905 1.1562 1.1431 1.0017 1.0005 1.0003 1.0002

S
(A)
E2,p,q,r

2q 1.0120 1.1076 1.3505 1.7715 1.3970 1.3505 1.3334 1.0120 1.0060 1.0042 1.0035

S
(A)
E3,p,q,r

2q 1.0017 1.0350 1.1580 1.4039 1.1945 1.1580 1.1440 1.0017 1.0006 1.0003 1.0002

S
(A)
E4,p,q,r

2q 1.0138 1.1112 1.3541 1.7744 1.4038 1.3541 1.3352 1.0138 1.0065 1.0044 1.0036

S
(A)
E5,p,q,r

2q 1.0150 1.1143 1.3575 1.7772 1.4101 1.3575 1.3370 1.0150 1.0070 1.0046 1.0037

S
(B)
F1,p,q,r

2q 1.0295 1.1012 1.2092 1.3429 1.2380 1.2092 1.1952 1.0295 1.0204 1.0165 1.0147
4q 1.0317 1.1075 1.2196 1.3570 1.2502 1.2196 1.2048 1.0317 1.0218 1.0176 1.0156
8q 1.0318 1.1079 1.2203 — 1.2511 1.2203 — 1.0318 1.0219 1.0176 —

S
(B)
F2,p,q,r

2q 1.0013 1.0106 1.0314 1.0634 1.0385 1.0314 1.0277 1.0013 1.0006 1.0004 1.0003

S
(B)
F3,p,q,r

2q 1.0295 1.1012 1.2092 1.3429 1.2380 1.2092 1.1952 1.0295 1.0204 1.0165 1.0147
4q 1.0317 1.1075 1.2196 1.3570 1.2502 1.2196 1.2048 1.0317 1.0218 1.0176 1.0156
8q 1.0318 1.1079 1.2203 — 1.2511 1.2203 — 1.0318 1.0219 1.0176 —

S
(B)
F4,p,q,r

2q 1.0346 1.1055 1.2118 1.3443 1.2430 1.2118 1.1965 1.0346 1.0226 1.0175 1.0152
4q 1.0374 1.1123 1.2227 1.3587 1.2563 1.2227 1.2064 1.0374 1.0242 1.0186 1.0161
8q 1.0376 1.1128 1.2234 — 1.2572 1.2234 — 1.0376 1.0243 1.0187 —

S
(C)
p,q,r 2q 1.0013 1.0106 1.0313 1.0634 1.0384 1.0313 1.0277 1.0013 1.0006 1.0004 1.0003

Table 1. Discrete saturation coefficients for different p, q, and r. We discern
three ‘bands’ of columns, one for each function q, and within each band, different
values of p, one per column. We moreover see a number of different ‘bands’ of
rows, one for each reference problem; within each band, a number of different
discrete saturation coefficients are shown, one for each (p, q, r)-tuple.

Choosing q = p + 4 is insufficient for p-robust saturation: for every problem, the discrete
saturation coefficients increase as a function of p. For the two strategies q = p + ⌈p/7⌉ and
q = 2p, we see that these coefficients decrease as a function of p, stringly suggesting p-robust
saturation for p→ ∞. For q = 2p, these values even tend to 1, indicating full saturation.
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