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Abstract:We consider DPG methods with optimal test functions and broken test spaces based on ultra-weak
formulations of general second-order elliptic problems. Under some assumptions on the regularity of solu-
tions of themodel problem and its adjoint, superconvergence for the scalar field variable is achieved by either
increasing the polynomial degree in the corresponding approximation space by one or by a local postprocess-
ing.Weprovide auniformanalysis that allows the treatment of different test norms. Particularly,we show that
in the presence of convection only the quasi-optimal test norm leads to higher convergence rates, whereas
other norms considered do not. Moreover, we also prove that our DPG method delivers the best L2 approxi-
mation of the scalar field variable up to higher-order terms, which is the first theoretical explanation of an
observation made previously by different authors. Numerical studies that support our theoretical findings
are presented.

Keywords: DPG Method, Ultra-Weak Formulation, Best Approximation, Duality Arguments, Postprocessing,
Superconvergence
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1 Introduction

In this work we investigate convergence rates of DPGmethods based on an ultra-weak formulation of second-
order elliptic problems stated in the form of the general first-order system

∇u − βu + Cσ = Cf in Ω, (1.1a)
div σ + γu = f in Ω, (1.1b)

u = 0 on Γ := ∂Ω, (1.1c)

where Ω ⊆ ℝd, d ≥ 2, is a polyhedral domain and C ∈ L∞(Ω)d×d denotes a symmetric, uniformly positive
definite matrix valued function, β ∈ L∞(Ω)d, γ ∈ L∞(Ω). Throughout we suppose that the coefficients addi-
tionally satisfy

L∞(Ω) ∋ 1
2 div(C

−1β) + γ ≥ 0, (1.2)

which implies that for f ∈ L2(Ω), f ∈ L2(Ω) := L2(Ω)d ourmodel problem (1.1) admits aunique solution (u, σ)
with u ∈ H1

0(Ω), σ ∈ H(div;Ω) := {τ ∈ L
2(Ω) : div τ ∈ L2(Ω)}. To see this, use (1.1a) in (1.1b) which results in

a second-order elliptic problem. Testingwith v ∈ H1
0(Ω) gives a bilinear form that is, using (1.2), coercive and,

thus, solvability can be obtained by classical arguments.
In this work we consider DPG methods with optimal test functions and broken test spaces, which have

been introducedbyDemkowicz andGopalakrishnan, see [5, 6] and also [8, 22]. For a unified stability analysis
which also covers our model problem we refer to [3]. We analyze ultra-weak formulations of (1.1), which are
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obtained bymultiplying with locally supported functions and integration by parts, see, e.g., [7] for a Poisson
model problem. On the one hand, this has the advantage that the field variables can be sought in L2(Ω),
since no derivative operator is applied to these unknowns after integration by parts. On the other hand, this
requires the introduction of trace variables û and σ̂ that live on the skeleton (these unknowns impose weak
continuity conditions). However, as analyzed in the recent work [21] the use of ultra-weak formulations also
allows to define conforming finite element spaces on polygonal meshes.

The motivation of this work is to analyze superconvergence properties for approximations of the scalar
field variable u that have been observed in our recent work [10] for a simple reaction-diffusion problem,
where C is the identity matrix, β = 0, γ = 1, and f = 0. Here we generalize and extend [10] to the model
problem (1.1) and introduce new ideas that allow the treatment of different test norms. As in [10], the proofs
rely on duality arguments and regularity theory for elliptic PDEs. Such arguments are commonwhen proving
higher convergence rates, e.g., the classical Aubin-Nitsche trick, or more recently in variants of DG methods,
e.g., [4]. Some early works on convergence in mixed finite element methods include [9, 11, 20].

Let us alsomention the recent works [14, 15] that deal with dual problems in the context of DPGmethods
(theDPG∗method and goal-oriented problems). Particularly, we point out the reference [1]. There the authors
consider a primal DPG method (without the first-order reformulation) for the Poisson problem and analyze
convergence rates (with reduced degrees in test spaces). Moreover, they develop duality arguments and prove
that the error in the primal variable u converges at a higher rate when measured in a weaker norm.

1.1 Summary of Results

We seek approximations uh ∈ Pp(T), σh ∈ Pp(T)d of the field variables u, σ, where T is a mesh of simplices
and Pp(T) denotes the space of T-piecewise polynomials of degree less than or equal to p ∈ ℕ0, and approx-
imations ûh, σ̂h of the traces û, σ̂ in spaces that will be defined later on. For sufficient regular solutions basic
a priori analysis arguments give the estimate

‖u − uh‖U ≃ ‖u − uh‖ + ‖σ − σh‖ + ‖(û − ûh , σ̂ − σ̂h)‖S = O(hp+1),
where ‖ ⋅ ‖ denotes the L2(Ω)normand ‖ ⋅ ‖S is some appropriate norm for the traces. This estimate is optimal,
sincewe seek approximations of u and σ in polynomial spaces of the sameorder and their errors aremeasured
in L2(Ω)norms. Nevertheless, it is unsatisfactory to some extent. Consider C the identity, β = 0, f = 0 in (1.1).
Then σ = ∇u and we seek approximations of u and its gradient σ in polynomial spaces of the same order,
which seems to be suboptimal. Fortunately, there exist at least twopossibilities to achieve higher convergence
rates under some assumptions on the regularity of solutions of (1.1) and its adjoint problem:
∙ Augmenting the trial space: Instead of seeking approximations uh ∈ Pp(T) we seek approximations

u+h ∈ Pp+1(T) and show that
‖u − u+h‖ = O(hp+2).

∙ Postprocessing:We use a common local postprocessing technique (see, e.g., the early works [11, 20]) to
obtain an approximation ũh ∈ Pp+1(T) and prove that

‖u − ũh‖ = O(hp+2).
Based on similar techniques we also provide a proof of the following:
∙ DPG for ultra-weak formulations delivers the L2(Ω) best approximation up to a higher-order term, i.e., for

the approximation uh ∈ Pp(T) it holds that

‖u − uh‖ ≤ ‖u − Πpu‖ + O(hp+2),
where Πp denotes the L2(Ω) projection to Pp(T).

The latter observation is quite interesting, because it shows that even though we do not aim for higher con-
vergence rates (by increasing the polynomial degree in the trial space or by postprocessing) we get highly
accurate approximations. We stress that this result has been observed in various numerical experiments,
particularly also for more complex model problems like Stokes [17], but up to now a rigorous proof has not
been given.
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If β = 0, we show that these results hold true when using different test norms (one of them is the
so-called quasi-optimal test norm or graph norm). Surprisingly (at this point), for β ̸= 0 the results are
only valid if the quasi-optimal test norm is used, although all test norms under consideration are equivalent.
This is also observed in our numerical studies.

1.2 Basic Ideas

For the proofs of the main results, we develop duality arguments and show approximation results (Lemma 8
and Lemma 10). To get the essential idea, consider the abstract formulation: Find u ∈ U such that

b(u, v) = F(v) for all v ∈ V,

where U denotes the trial space and V the test space. With the trial-to-test operator Θ : U → V,

(Θw, v)V = b(w, v) for all v ∈ V,

the ideal DPG method reads: Find uh ∈ Uh ⊂ U such that

b(uh , Θwh) = F(Θwh) for all wh ∈ Uh .

Thenwe solve adual problem:For somegiven g ∈ L2(Ω),wedetermine v ∈ V andw = Θ−1v ∈ U, bothunique,
and employ Galerkin orthogonality to obtain

(u − uh , g) = b(u − uh , v) = b(u − uh , Θw) = b(u − uh , Θ(w − wh)) ≲ ‖u − uh‖U‖w − wh‖U

for arbitrary wh ∈ Uh.
For the case where we want to show that the approximation uh ∈ Pp(T) is nearly the L2(Ω) best approxi-

mation, we have g = Πp(u − uh)= Πpu − uh. Therefore,

‖g‖2 = (u − uh , g) ≲ ‖u − uh‖U‖w − wh‖U ≲ ‖u − uh‖Uh‖g‖.

The latter estimate iswhatwehave to show. Suppose that it holds.With the estimate for ‖u − uh‖U fromabove,
it is straightforward to see that

‖u − uh‖ ≤ ‖u − Πpu‖ + ‖Πpu − uh‖ = ‖u − Πpu‖ + ‖g‖ = ‖u − Πpu‖ + O(hp+2).
Let us come back to the essential estimate

‖w − wh‖U ≲ h‖g‖.

It holds if we would know that the higher derivatives of w exist (in some sense) and can be bounded by the
norm of g, so that, formally,

‖w − wh‖U ≲ h‖Dhigherw‖ ≲ h‖g‖

by some standard arguments. In our casewehave that v ∈ H1
0(Ω) × H(div;Ω) ⊂ V is the solution to the adjoint

problem of (1.1) and under some assumptions has the higher regularity v ∈ H2(Ω) × H1(T) ∩ H(div;Ω),
where H1(T) denotes T-piecewise Sobolev functions. Recall that w = Θ−1v. One difficulty is that the inverse
of the trial-to-test operator does not map regular functions back to regular functions. However, it turns out
(Lemma 8) that w can be written as

w = (g, 0, 0, 0) + w̃ + w⋆,
where components of w̃ ∈ U are related to the dual solution v, which is sufficiently regular and w⋆ is the
solution of the (primal) problem (1.1) with data f and f depending on the dual solution v so that w⋆ has
sufficient regularity aswell. Let uspoint out that this ideaused in theproofs is newandallows to treat different
test norms. In [10], which deals with a simple reaction-diffusion problem and one specific test norm only,
the representation of w is obtained by integration by parts using the dual solution v and it is not clear if
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that approach can be generalized to the present setting. Here, in the general case we have to consider the
regularity of the dual solution v and the regularity of the solution w⋆ of the primal problem. For the proofs it
is also necessary that g is a function in the finite element space, so that we can choosewh = (g, 0, 0, 0) + wh,
where wh is the best approximation of w̃ + w⋆. Then we show that the above estimates hold true.

Let us note that Θ is defined through the inner product in the test space. Thus, the representation of
w = Θ−1v from above strongly depends on the choice of the test norm and has to be analyzed for each norm
individually (this is done in Lemma 8). Earlier Keith, Vaziri Astaneh and Demkowicz [15] considered the
optimal test norm. In our notation this would yield w = (g, 0, 0, 0), i.e., w̃ = 0 = w⋆.

Moreover, the ideas so far dealt with the ideal DPG method. In this paper we work out all results for the
practical DPG method under standard assumptions, i.e., the existence of Fortin operators. This implies that
we have to deal with additional discretization errors.

Finally, we note that higher convergence rates for the dual variable σ can not be obtained with the same
arguments since the components of v = (v, τ) with

(σ − σh , g) = b(u − uh , v)

are less regular than in the case described above.

1.3 Outline

The remainder of the paper is organized as follows: Section 2 introduces basic notations, states the assump-
tions, and presents the main results (Theorem 3–5). The proofs of these theorems are postponed to Sec-
tion 3, which also includes an a priori convergence estimate (Theorem 6) and the important auxiliary results
Lemma 8, 10. In Section 4 we present two numerical experiments. The final Section 5 concludes this work
with some remarks.

2 Main Results

2.1 Notation

Wemake use of the notation ≲, i.e., A ≲ B means that there exists a constant C > 0, which is independent of
relevant quantities, such thatA ≤ CB. Moreover,A ≃ Bmeans that both directions hold, i.e.,A ≲ B and B ≲ A.

2.2 Mesh

Let T denote a regular mesh of Ω consisting of simplices T and let S := {∂T : T ∈ T} denote the skeleton. We
suppose that T is shape-regular, i.e., there exists a constant κT > 0 such that

max
T∈T diam(T)d

|T|
≤ κT ,

where |T| denotes the volumemeasure of T ∈ T. As usual, h := hT := maxT∈T diam(T) denotes themesh-size.

2.3 Ultra-Weak Formulation

Beforewederive theultra-weak formulationof (1.1) in this subsection,we introduce somenotation. Let T ∈ T.
We denote by ( ⋅ , ⋅ )T the L2(T) scalar product andwith ‖ ⋅ ‖T the induced norm. On boundaries ∂T, the L2(∂T)
scalar product is denoted by ⟨ ⋅ , ⋅ ⟩∂T and extended to the duality between the spacesH1/2(∂T) andH−1/2(∂T).



T. Führer, Superconvergent DPG Methods for Second-Order Elliptic Problems | 487

Furthermore, we define the piecewise trace operators

γ0,S : H1(Ω)→ ∏
T∈T H1/2(∂T), (γ0,Sv)|∂T = v|∂T ,

γn,S : H(div;Ω)→ ∏
T∈T H−1/2(∂T), (γn,Sτ)|∂T = τ ⋅ nT |∂T ,

where nT denotes the normal on ∂T pointing from T to its complement. With these operators we define the
trace spaces

H1/2
0 (S) := γ0,S(H

1
0(Ω)),

H−1/2(S) := γn,S(H(div;Ω)).
These Hilbert spaces are equipped with minimum energy extension norms

‖û‖1/2,S := inf {‖u‖H1(Ω) : γ0,Su = û},
‖σ̂‖−1/2,S := inf {‖σ‖H(div;Ω) : γn,Sσ = σ̂}.

We use the broken test spaces

H1(T) := {v ∈ L2(Ω) : v|T ∈ H1(T) for all T ∈ T},
H(div;T) := {τ ∈ L2(Ω) : τ|T ∈ H(div; T) for all T ∈ T}

and define the piecewise differential operators ∇T : H1(T)→ L2(Ω), divT : H(div;T)→ L2(Ω) on each T ∈ T
by

∇Tv|T := ∇(v|T),
divT τ|T := div(τ|T).

Moreover, we define the following dualities for all û ∈ H1/2
0 (S), τ ∈ H(div;T), σ̂ ∈ H−1/2(S), v ∈ H1(T):

⟨û, τ ⋅ n⟩S := ∑
T∈T⟨û|∂T , τ ⋅ nT |∂T⟩∂T ,

⟨σ̂, v⟩S := ∑
T∈T⟨σ̂|∂T , v|∂T⟩∂T .

These dualities measure the jumps of v = (v, τ) ∈ H1(T) × H(div;T), i.e.,

v ∈ H1
0(Ω)⇐⇒ ⟨σ̂, v⟩S = 0 for all σ̂ ∈ H−1/2(S), (2.1a)

τ ∈ H(div;Ω)⇐⇒ ⟨û, τ ⋅ n⟩S = 0 for all û ∈ H1/2
0 (S), (2.1b)

see, e.g., [3, Theorem 2.3].
The ultra-weak formulation is then derived from (1.1) by testing (1.1a) with τ ∈ H(div;T), (1.1b) with

v ∈ H1(T), and piecewise integration by parts, i.e.,

−(u, divT τ) + ⟨γ0,Su, τ ⋅ n⟩S − (βu, τ) + (Cσ, τ) = (Cf , τ),
−(σ, ∇Tv) + ⟨γn,Sσ, v⟩S + (γu, v) = (f, v).

Here, ( ⋅ , ⋅ ) := ( ⋅ , ⋅ )Ω is the L2(Ω) scalar product with norm ‖ ⋅ ‖. Set

U := L2(Ω) × L2(Ω) × H1/2
0 (S) × H

−1/2(S),
V := H1(T) × H(div;T)

and define F : V → ℝ and b : U × V → ℝ by

F(v) := (f, v) + (f , Cτ),
b(u, v) := (u, −divT τ − β ⋅ τ + γv) + (σ, Cτ − ∇Tv) + ⟨û, τ ⋅ n⟩S + ⟨σ̂, v⟩S

for all u = (u, σ, û, σ̂) ∈ U, v = (v, τ) ∈ V. The ultra-weak formulation then reads: Find u ∈ U such that

b(u, v) = F(v) for all v ∈ V. (2.2)
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2.4 DPG Method and Approximation

In U we use the canonical norm,

‖u‖2U := ‖u‖2 + ‖σ‖2 + ‖û‖21/2,S + ‖σ̂‖2−1/2,S for u = (u, σ, û, σ̂) ∈ U.

For the test space V we define the three different norms

‖v‖2V,qopt := ‖−divT τ − β ⋅ τ + γv‖2 + ‖C1/2τ − C−1/2∇Tv‖2 + ‖C1/2τ‖2 + ‖v‖2, (2.3a)

‖v‖2V,1 := ‖C
−1/2∇Tv‖2 + ‖v‖2 + ‖divT τ‖2 + ‖C1/2τ‖2, (2.3b)

‖v‖2V,2 := ‖∇Tv‖
2 + ‖v‖2 + ‖divT τ‖2 + ‖τ‖2 (2.3c)

for v = (v, τ) ∈ V and denote by ( ⋅ , ⋅ )V,⋆ the corresponding scalar products. Note that all norms in (2.3) are
equivalent with equivalence constants depending on the coefficients C, β, γ. However, our main results hold
for the quasi-optimal test norm ‖ ⋅ ‖V,qopt under mild assumptions on the coefficient β, whereas they hold for
‖ ⋅ ‖V,1, ‖ ⋅ ‖V,2 only if β = 0, i.e., for symmetric problems.

We stress that b : U × V → ℝ is a bounded bilinear form and satisfies the inf–sup conditions with mesh
independent constant. This can be provedwith the theory developed in [3]. For ourmodel problemwe explic-
itly refer to [3, Example 3.7] for the details. There it is assumed that div(C−1β) = 0 and γ ≥ 0. We note that
their analysis can also be done with our more general assumption (1.2).

The DPG method seeks an approximation uh ∈ Uh ⊂ U of the solution u ∈ U using the optimal test
space Θ(Uh), where Θ : U → V is defined by

(Θw, v)V = b(w, v) for all w ∈ U, v ∈ V. (2.4)

Then uh ∈ Uh is the solution of

b(uh , vh) = F(vh) for all vh ∈ Θ(Uh).

An essential feature of DPG is that inf–sup stability directly transfers to the discrete problem. However, in
practice we replace Θ by a discrete version Θh : Uh → Vh ⊂ V defined by

(Θhwh , vh)V = b(wh , vh) for all wh ∈ Uh , vh ∈ Vh .

Then the practical DPG method reads: Find uh ∈ Uh such that

b(uh , Θhwh) = F(Θhwh) for all wh ∈ Uh . (2.5)

In this work we deal with the piecewise polynomial trial spaces

Uhp := Pp(T) × Pp(T)d × Pp+1
c,0 (S) × P

p(S),

U+hp := Pp+1(T) × Pp(T)d × Pp+1
c,0 (S) × P

p(S)

and the piecewise polynomial test spaces

Vhk := Pk1 (T) × Pk2 (T)d .

Here, we set

Pp(T) := {v ∈ L2(T) : v is polynomial of degree ≤ p},

Pp(T) := {v ∈ L2(Ω) : v|T ∈ Pp(T), T ∈ T}, P
p+1
c,0 (T) := P

p+1(T) ∩ H1
0(Ω),

P
p+1
c,0 (S) := γ0,S(P

p+1
c,0 (T)), Pp(S) := γn,S(RTp(T)),

where
RTp(T) = {τ ∈ H(div;Ω) : τ|T(x) = a + xb, a ∈ Pp(T)d , b ∈ P̃p(T), T ∈ T}

is the space of Raviart–Thomas functions (here P̃p(T) denotes the space of homogeneous polynomials of
degree p).

We also use the space C1(T) := {v ∈ L∞(Ω) : v|T ∈ C1(T), T ∈ T}.
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2.5 Fortin Operators

It iswell known, see, e.g., [12], that (2.5) satisfies inf–sup conditions (and therefore admits a unique solution)
if there exists a Fortin operator ΠF : V → Vh such that

‖ΠFv‖V ≤ CF‖v‖V and b(uh , v) = b(uh , ΠFv) for all v ∈ V, uh ∈ Uh . (2.6)

Throughout, we suppose that a Fortin operator exists for the discrete polynomial trial and test spaces under
consideration and that CF depends only on C, β, γ, p ∈ ℕ0, and the shape-regularity of T. Let us note that for
general coefficients C, β, γ the existence of such operators is not known, except for some special cases, i.e.,
the Poisson model problem where C is the identity and β = 0 = γ. Fortin operators for the latter problem on
simplicial meshes have been constructed and analyzed in [3, 12]. We refer also to [16] for the construction
and analysis of Fortin operators for second-order problems.

Supposing the existence of an Fortin operator, i.e., (2.6), we have:

Proposition 1. Problems (2.2), (2.5) admit unique solutions u = (u, σ, û, σ̂) ∈ U, uh ∈ Uh and

‖u − uh‖U ≤ Copt min
wh∈Uh
‖u − wh‖U .

The constant Copt > 0 depends only on Ω, C, β, γ, p ∈ ℕ0, and the shape-regularity of T.

2.6 Adjoint Problem and Regularity Assumptions

We define the adjoint problem (in the sense of L2(Ω)-adjoints) of (1.1) as

−div τ − β ⋅ τ + γv = g in Ω, (2.7a)
Cτ − ∇v = Cg in Ω, (2.7b)

u = 0 on Γ. (2.7c)

Supposing (1.2) this problem admits a unique solution (v, τ) ∈ H1
0(Ω) × H(div;Ω) for g ∈ L2(Ω), g ∈ L

2(Ω).
For our results we make use of the following assumptions:

Assumption. We suppose that the coefficients C, β, γ and the domain Ω are such that for f, g ∈ L2(Ω),
f , g ∈ H1(T) ∩ H(div;Ω) the unique solutions (u, σ) ∈ H1

0(Ω) × H(div;Ω) resp. (v, τ) ∈ H
1
0(Ω) × H(div;Ω)

of (1.1) resp. (2.7) satisfy

‖u‖H2(Ω) + ‖σ‖H1(T) ≤ C(‖f‖ + ‖f ‖H1(T)), (2.8a)
‖v‖H2(Ω) + ‖τ‖H1(T) ≤ C(‖g‖ + ‖g‖H1(T)). (2.8b)

Here, ‖ ⋅ ‖Hs(Ω) is the usual notation for norms in the Sobolev space Hs(Ω) (s > 0), and ‖ ⋅ ‖ is the L2(Ω) norm
and ‖ ⋅ ‖Hs(T) the broken Sobolev norm for vector valued functions. We note that the constant C > 0 strongly
depends on the material data, i.e., the coefficients C, β, γ. For example, a small constant diffusion implies
a blow-up of C.

Remark 2. The regularity estimates (2.8) are satisfied if d = 2, C is the identitymatrix, β ∈ C1(T)d ∩ H(div;Ω)
and Ω is convex. This can be seen as follows: The first component u ∈ H1

0(Ω) of the solution of (1.1) satisfies

−∆u = f − div f − (div β)u + β ⋅ ∇u − γu ∈ L2(Ω).

Then u ∈ H2(Ω) and ‖u‖H2(Ω) is bounded by the L2(Ω) norm of the right-hand side, since Ω is a convex
polyhedral domain, see [13]. Finally, the second equation of the model problem (1.1) shows

‖σ‖H1(T) = ‖f − ∇u + βu‖H1(T) ≲ ‖f ‖H1(T) + ‖u‖H2(Ω) ≲ ‖f‖ + ‖f ‖H1(T).
Similarly, one shows (2.8b) (even a less regular coefficient β suffices for the adjoint problem).
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2.7 Assumptions on Coefficients and Test Norms

Besides the assumptions on the coefficients and the domain to ensure unique solvability of problems (1.1)
and (2.7) and estimates (2.8), we also need some additional assumptions on the coefficients that are listed in
Table 1.We emphasize that β = 0 in Cases (b) and (c) is also necessary in general. In particular, in Section4we
provide a simple example where β ̸= 0 and the choice ‖v‖V = ‖v‖V,1 or ‖v‖V = ‖v‖V,2 does not lead to higher
convergence rates, whereas ‖v‖V = ‖v‖V,qopt does.

Case Test norm ‖ ⋅ ‖V C β γ

(a) ‖ ⋅ ‖V,qopt C1(T)d×d C1(T)d C1(T)
(b) ‖ ⋅ ‖V,1 C1(T)d×d 0 C1(T)
(c) ‖ ⋅ ‖V,2 C0,1(Ω)d×d ∩ C1(T)d×d 0 C1(T)
Table 1: Additional assumptions (besides (1.2) and (2.8)) on the coefficients for the three test norms under consideration.

2.8 L2(Ω) Projection

Our first main result shows that the DPG method with ultra-weak formulation delivers up to a higher-order
term the L2(Ω) best approximation for the scalar field variable. To that end let Πp : L2(Ω)→ Pp(T) denote
the L2(Ω) projector.

Theorem 3. Consider one of Cases (a), (b), or (c). Let u = (u, σ, û, σ̂) ∈ U be the solution of (2.2) for some
given f ∈ L2(Ω), f ∈ L2(Ω) and suppose u ∈ Hp+2(Ω), σ ∈ Hp+1(T). Let uh = (uh , σh , ûh , σ̂h) ∈ Uh := Uhp be
the solution of the practical DPG method (2.5). Suppose P1

c,0(T) × RT
p(T) ⊆ Vhk. It holds that

‖u − Πpu‖ ≤ ‖u − uh‖ ≤ ‖u − Πpu‖ + Chp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)).
The constant C > 0 depends only on Ω, C, β, γ, p ∈ ℕ0, and shape-regularity of T.

2.9 Higher Convergence Rate by Increasing Polynomial Degree

Our second main result shows that higher convergence rates for the scalar field variable are obtained by
increasing the polynomial degree in the approximation space.

Theorem 4. Consider one of Cases (a), (b), or (c). Let u = (u, σ, û, σ̂) ∈ U be the solution of (2.2) for some
given f ∈ L2(Ω), f ∈ L2(Ω) and suppose u ∈ Hp+2(Ω), σ ∈ Hp+1(T). Let u+h = (u+h , σh , ûh , σ̂h) ∈ Uh := U+hp be
the solution of the practical DPG method (2.5). Suppose P1

c,0(T) × RT
p+1(T) ⊆ Vhk. It holds that

‖u − u+h‖ ≤ Chp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)).
The constant C > 0 depends only on Ω, C, β, γ, p ∈ ℕ0, and shape-regularity of T.

2.10 Higher Convergence Rate by Postprocessing

Our third and final main result shows that higher convergence rates for the scalar field variable are obtained
by postprocessing the solution: Let uh = (uh , σh , ûh , σ̂h) ∈ Uh := Uhp be the solution of (2.5). We define
ũh ∈ Pp+1(T) on each element T ∈ T as the solution of the local Neumann problem

(∇ũh , ∇vh)T = (Cf − Cσh + βuh , ∇vh)T for all vh ∈ Pp+1(T), (2.9a)
(ũh , 1)T = (uh , 1)T . (2.9b)

Let us note that this type of postprocessing is common in literature and can already be found in the early
works [11, 20].
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Theorem 5. Consider one of Cases (a), (b), or (c). Let u = (u, σ, û, σ̂) ∈ U be the solution of (2.2) for some given
f ∈ L2(Ω), f ∈ L2(Ω)and suppose u ∈ Hp+2(Ω), σ ∈ Hp+1(T). Let uh = (uh , σh , ûh , σ̂h) ∈ Uh := Uhp be the solu-
tion of the practical DPG method (2.5) and define ũh ∈ Pp+1(T) by (2.9). Suppose P1

c,0(T) × RT
p(T) ⊆ Vhk.

It holds that
‖u − ũh‖ ≤ Chp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)).

The constant C > 0 depends only on Ω, C, β, γ, p ∈ ℕ0, and shape-regularity of T.

3 Proofs

In this section we prove the results stated in Theorems 3, 4, and 5. First, in Section 3.1 we collect some
standard results on projection operators and consider approximation results with respect to ‖ ⋅ ‖U . Second,
Section 3.2 recalls the equivalent mixed formulation of the practical DPGmethod. Then Section 3.3 provides
auxiliary results that allow to prove the main results in a uniform fashion. Finally, in Sections 3.4, 3.5, 3.6
we give the proofs of our main results.

3.1 Projection Operators and Approximation Results

Throughout let p ∈ ℕ0. Let Πp : L2(Ω)→ Pp(T) denote the L2(Ω) projector. For τ ∈ L2(Ω) the term Πpτ is
understood as the application of Πp to each component. We have the (local) approximation properties

‖u − Πpu‖ ≤ Cphp+1|u|Hp+1(T) and ‖σ − Πpσ‖ ≤ Cphp+1|σ|Hp+1(T), (3.1a)

where | ⋅ |Hn(T) := ‖Dn
T ⋅ ‖ with Dn

T denoting the T-elementwise n-th derivative operator. Let

Πp+1∇ : H1
0(Ω)→ P

p+1
c,0 (T)

denote the Scott–Zhang projection operator [19] or any other operator with the property

‖u − Πp+1∇ u‖H1(Ω) ≤ Cphp+1‖u‖Hp+2(Ω). (3.1b)

Moreover, let Πp
div : H(div;Ω) ∩ H

1(T)→ RTp(T) denote the Raviart–Thomas operator, which satisfies

‖σ − Πp
divσ‖ ≤ Cph

k+1|σ|Hk+1(T) for k ∈ [0, p], (3.1c)

and the commutativity property
divΠp

divσ = Π
p div σ.

Note that Πp
div is well defined for functions σ ∈ H(div;Ω) ∩ H

1(T): First, normal traces of σ ∈ H1(T) are well
defined on each facet of ∂T, T ∈ T, in the sense of L2(∂T), i.e., σ ⋅ nT ∈ L2(∂T) and, second, σ ∈ H(div;Ω)
implies unisolvency of normal traces. The constant Cp > 0 in (3.1) depends only on p ∈ ℕ0 and shape-
regularity of T.

The following result is an adaptation of [10, Theorem 5 and Corollary 6].

Theorem 6. Let p ∈ ℕ0 and let w ∈ Hp+2(Ω), χ ∈ Hp+1(T) ∩ H(div;Ω). Define w := (w, χ, γ0,Sw, γn,Sχ) ∈ U.
If Uh ∈ {Uhp , U+hp}, then

min
wh∈Uh
‖w − wh‖U ≤ Chp+1(‖w‖Hp+2(Ω) + ‖χ‖Hp+1(T)).

The constant C > 0 depends only on p and shape-regularity of T.

Proof. Define
wh := (Πpw, Πpχ, γ0,SΠp+1∇ w, γn,SΠp

divχ) ∈ Uh .

We estimate the terms in

‖w − wh‖2U = ‖w − Π
pw‖2 + ‖χ − Πpχ‖2 + ‖γ0,S(w − Πp+1∇ w)‖21/2,S + ‖γn,S(χ − Πp

divχ)‖
2−1/2,S.
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First, we follow [10, Proof of Theorem 5] to estimate ‖γn,S(χ − Πp
divχ)‖−1/2,S: To this end, we start with the

identity from [3, Theorem 2.3], i.e.,

‖γn,S(χ − Πp
divχ)‖−1/2,S = sup

0 ̸=v∈H1(T) ⟨γn,S(χ − Πp
divχ), v⟩S

‖v‖H1(T) .

Then elementwise integration by parts and the commutativity property yield

⟨γn,S(χ − Πp
divχ), v⟩S = (χ − Π

p
divχ, ∇Tv) + (div(χ − Π

p
divχ), v)

= (χ − Πp
divχ, ∇Tv) + ((1 − Π

p)div χ, v).

Using the L2 projection property and the approximation properties (3.1a) and (3.1c), we estimate the last two
terms by

|(χ − Πp
divχ, ∇Tv)| + |((1 − Π

p)div χ, v)| = |(χ − Πp
divχ, ∇Tv)| + |((1 − Π

p)div χ, (1 − Πp)v)|
≲ hp+1|χ|Hp+1(T)‖∇Tv‖ + hp|div χ|Hp(T)h‖∇Tv‖
≲ hp+1|χ|Hp+1(T)‖∇Tv‖.

Putting the last estimates together this shows that

‖γn,S(χ − Πp
divχ)‖−1/2,S ≲ hp+1‖χ‖Hp+1(T).

Next, observe that ‖γ0,S( ⋅ )‖1/2,S ≤ ‖ ⋅ ‖H1(Ω) by definition of the norms. Finally, applying the approximation
properties (3.1a)–(3.1b) and putting altogether finishes the proof.

Remark 7. As pointed out in [10] the estimate ‖γn,S(χ − Πp
divχ)‖−1/2,S ≲ hp+1‖χ‖Hp+1(T) in the proof of Theo-

rem 6 is non-trivial. A direct application of the trace theorem gives

‖γn,S(χ − Πp
divχ)‖−1/2,S ≤ ‖χ − Πp

divχ‖ + ‖div(χ − Π
p
divχ)‖.

Using the commutativity property and the approximation properties (3.1a), (3.1c) we get

‖χ − Πp
divχ‖ + ‖div(χ − Π

p
divχ)‖ ≲ h

p+1|χ|Hp+1(T) + hp+1|div χ|Hp+1(T).
Thus, in order to get the same convergence rate as in Theorem 6 we have to assume the higher regularity
div χ ∈ Hp+1(T).
3.2 Mixed Formulation of the Practical DPG Method

The practical DPG method (2.5) can be reformulated as a mixed problem, see, e.g., [1]. Recall that we made
the assumption of the existence of a Fortin operator (2.6). The mixed DPG formulation then reads: Find
(uh , εhk) ∈ Uh × Vhk such that

(εhk , vhk)V + b(uh , vhk) = F(vhk) for all vhk ∈ Vhk , (3.2a)
b(wh , εhk) = 0 for all wh ∈ Uh . (3.2b)

The Riesz representation εhk ∈ Vhk of the residual (sometimes also called the error representation function)
satisfies

‖εhk‖V ≲ ‖u − uh‖U ,

under assumption (2.6), see [2, Theorem 2.1]. Note that the solution uh in (3.2) is identical to the solu-
tion of (2.5). Recall that the residual on the continuous level vanishes and, therefore, the Riesz represen-
tation is zero. Setting ε := 0, we have that (u, ε) ∈ U × V satisfies the mixed formulation for all test functions
(w, v) ∈ U × V. In particular, we have Galerkin orthogonality

a((u − uh), (ε − εhk), (wh , vhk)) = 0 for all (wh , vhk) ∈ Uh × Vhk ,

where a((w, v), (δw, δv)) := b(w, δv) + (v, δv)V − b(δw, v) for all w, δw ∈ U, v, δv ∈ V.
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3.3 Auxiliary Results

Recall the adjoint problem (2.7) with g ∈ L2(Ω), g = 0,

−div τ − β ⋅ τ + γv = g,
∇v − Cτ = 0,

v|Γ = 0.
(3.3)

Note that v = (v, τ) ∈ H1
0(Ω) × H(div;Ω) ⊂ V. In particular, there exists a unique w ∈ U with Θw = v, since

Θ : U → V is an isomorphism. Note that by the definition of the trial-to-test operator (2.4), the element w
depends on the choice of scalar products in V. This is investigated in the following result.

Lemma 8. Let g ∈ L2(Ω) and let v := (v, τ) ∈ H1
0(Ω) × H(div;Ω) denote the solution of (3.3). The unique ele-

ment w ∈ U with Θw = v has the following representation depending on the cases from Section 2.7:
∙ Case (a) (‖ ⋅ ‖V = ‖ ⋅ ‖V,qopt):

w = (g, 0, 0, 0) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗),
where (u∗, σ∗) ∈ H1

0(Ω) × H(div;Ω) solves (1.1) with f = v and f = τ.
∙ Case (b) (‖ ⋅ ‖V = ‖ ⋅ ‖V,1):

w = (g − γv, 0, 0, γn,Sτ) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗),
where (u∗, σ∗) ∈ H1

0(Ω) × H(div;Ω) solves (1.1) with f = γ(γv − g) − div τ + v and f = τ.
∙ Case (c) (‖ ⋅ ‖V = ‖ ⋅ ‖V,2):

w = (g − γv, 0, 0, γn,S(Cτ)) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗),
where (u∗, σ∗) ∈ H1

0(Ω) × H(div;Ω) solves (1.1) with f = γ(γv − g) − div(Cτ) + v and f = C
−1τ.

Moreover,
‖v‖H2(Ω) + ‖τ‖H1(T) + ‖u∗‖H2(Ω) + ‖σ∗‖H1(T) ≤ C‖g‖. (3.4)

For Case (c) it also holds that τ, σ∗ ∈ H1(Ω).

Proof. We consider the three cases.

Case (a). Recall that
(Θw, (μ, λ))V = b(w, (μ, λ)) for all (μ, λ) ∈ V.

With the inner product in V and divT τ = div τ, ∇Tv = ∇v we have for (μ, λ) ∈ V that

(v, (μ, λ))V = (−div τ − β ⋅ τ + γv, −divT λ − β ⋅ λ + γμ)
+ (C1/2τ − C−1/2∇v, C1/2λ − C−1/2∇Tμ) + (Cτ, λ) + (v, μ)

= (g, −divT λ − β ⋅ λ + γμ) + (Cτ, λ) + (v, μ)
= b((g, 0, 0, 0), (μ, λ)) + (Cτ, λ) + (v, μ).

Let (u∗, σ∗) ∈ H1
0(Ω) × H(div;Ω) solve the (primal) problem (1.1) with f = v ∈ L2(Ω) and f = τ ∈ H(div;Ω).

In particular, (u∗, σ∗) solves the ultra-weak formulation (2.2), i.e.,

b((u∗, σ∗, γ0,Su∗, γn,Sσ∗), (μ, λ)) = (Cτ, λ) + (v, μ) for all (μ, λ) ∈ V.

Defining w := (g, 0, 0, 0) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗) and putting altogether shows
(v, (μ, λ))V = b((g, 0, 0, 0), (μ, λ)) + b((u∗, σ∗, γ0,Su∗, γn,Sσ∗), (μ, λ))

= b(w, (μ, λ)).

Thus, Θw = v.
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Case (b). The scalar product in this case is given by

((v, τ), (μ, λ))V = (div τ, divT λ) + (Cτ, λ) + (C−1∇v, ∇Tμ) + (v, μ).
Recall that β = 0 and note that div τ = −g + γv by (3.3). Therefore,

(div τ, divT λ) = (g − γv, −divT λ) = (g − γv, −divT λ + γμ) + (γ(γv − g), μ)
= b((g − γv, 0, 0, 0), (μ, λ)) + (γ(γv − g), μ).

With Cτ = ∇v and piecewise integration by parts we obtain

(C−1∇v, ∇Tμ) = (τ, ∇Tμ) = ⟨γn,Sτ, μ⟩S + (−div τ, μ)
= b((0, 0, 0, γn,Sτ), (μ, λ)) + (−div τ, μ).

Thus,

((v, τ), (μ, λ))V = (div τ, divT λ) + (Cτ, λ) + (C−1∇v, ∇Tμ) + (v, μ)
= b((g − γv, 0, 0, γn,Sτ), (μ, λ)) + (γ(γv − g) − div τ + v, μ) + (Cτ, λ).

Defining
w := (g − γv, 0, 0, γn,Sτ) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗),

where (u∗, σ∗) solves (1.1) with data f = γ(γv − g) − div τ + v, f = τ, shows
((v, τ), (μ, λ))V = b(w, (μ, λ)) for all (μ, λ) ∈ V.

Case (c). The proof is similar as for Case (b). Thus, we only give details on the important differences. We have
to take care of the terms involving the matrix C. Note that by the assumptions on C it holds C−1τ ∈ H(div;Ω)
and Cτ ∈ H(div;Ω) as well. We have

(τ, λ) = (CC−1τ, λ),
and using Cτ = ∇v and integration by parts,

(∇v, ∇Tμ) = (Cτ, ∇Tμ) = ⟨γn,S(Cτ), μ⟩S − (div(Cτ), μ).

Defining
w := (g − γv, 0, 0, γn,S(Cτ)) + (u∗, σ∗, γ0,Su∗, γn,Sσ∗),

where (u∗, σ∗) solves (1.1) with data f = γ(γv − g) − div(Cτ) + v, f = C−1τ, shows
((v, τ), (μ, λ))V = (div τ, divT λ) + (τ, λ) + (∇v, ∇Tμ) + (v, μ)

= b(w, (μ, λ)) for all (μ, λ) ∈ V.

Finally, note that for all three cases it is straightforward to prove

‖f‖ + ‖f ‖H1(T) ≲ ‖g‖.
Then (2.8) shows estimate (3.4). Moreover, in Case (c) we have τ = C−1∇v ∈ H1(Ω) and f = C−1τ ∈ H1(Ω),
thus, σ∗ = C−1τ − C−1∇u∗ ∈ H1(Ω). This finishes the proof.

Remark 9. As already mentioned in the introduction, in the recent work [15] the optimal test norm

‖v‖V,opt := sup
0 ̸=u∈U b(u, v)
‖u‖U

is considered and the problem of finding w ∈ U such that G(u) = b(u, Θw), where G ∈ U, is analyzed. In
view of our previous results we have G(u) = (g, u) and following [15] one would find w = (g, 0, 0, 0). Since
the optimal test norm is not feasible in computations, we only consider the test norms from Lemma 8 in the
remainder of the work.
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Lemma 10. Consider one of Cases (a)–(c). Let u = (u, σ, û, σ̂) ∈ U denote the solution of problem (2.2) and let
uh = (uh , σh , ûh , σ̂h) ∈ Uh ∈ {Uhp , U+hp} denote the solution of (2.5). Suppose (g, 0, 0, 0) ∈ Uh, i.e., g ∈ Pp(T)
if Uh = Uhp resp. g ∈ Pp+1(T) if Uh = U+hp. Moreover, suppose that
∙ P1

c,0(T) × RT
p(T) ⊂ Vhk if Uh = Uhp,

∙ P1
c,0(T) × RT

p+1(T) ⊂ Vhk if Uh = U+hp.
It holds that

|(u − uh , g)| ≤ Ch‖u − uh‖U‖g‖.

The constant C > 0 only depends on Ω, C, β, γ, p ∈ ℕ0, and shape-regularity of T.

Proof. Let v = (v, τ) ∈ V denote the solution of the adjoint problem (3.3) with the given g ∈ L2(Ω). Let
w = Θ−1v ∈ U denote the element from Lemma 8. Since (v, τ) ∈ H1

0(Ω) × H(div;Ω), the identities in (2.1)
and the adjoint problem (3.3) imply that

(u − uh , g) = b(u − uh , v).

With the bilinear form a( ⋅ , ⋅ ) of the mixed formulation of DPG (Section 3.2) and the fact that

b(w, δv) = (v, δv)V = (δv, v)V for all δv ∈ V,

we infer
(u − uh , g) = b(u − uh , v) = a((u − uh , ε − εh), (w, v)).

Here, ε = 0 and εh ∈ Vhk is the error function which satisfies ‖εh‖V ≲ ‖u − uh‖U (see Section 3.2). This,
Galerkin orthogonality and boundedness of the bilinear form a( ⋅ , ⋅ ) show for arbitrary (wh , vh) ∈ (Uh , Vhk)
that

(u − uh , g) = a((u − uh , ε − εh), (w, v))
= a((u − uh , ε − εh), (w − wh , v − vh))
≲ ‖u − uh‖U(‖w − wh‖U + ‖v − vh‖V ).

It remains to prove ‖w − wh‖U + ‖v − vh‖V ≲ h‖g‖. We estimate ‖v − vh‖V for all three cases simultaneously
and handle the estimation of ‖w − wh‖U for the three cases separately, since the representation of w by
Lemma 8 depends on the choice of norms in V.

We start with the estimation of ‖v − vh‖V : We first consider Uh = Uhp. Note that P1
c,0(T) × RT

p(T) ⊂ Vhk.
Choose vh = (Π1∇v, Πp

divτ) ∈ Vhk. Recall that all norms under consideration are equivalent, i.e.,

‖ ⋅ ‖V,qopt ≃ ‖ ⋅ ‖V,1 ≃ ‖ ⋅ ‖V,2.

Then, using the approximation properties (3.1) together with (3.4), we get

‖v − vh‖V ≃ ‖v − vh‖V,2 ≤ ‖v − Π1∇v‖H1(Ω) + ‖τ − Πp
divτ‖H(div;Ω)

≲ h‖g‖ + ‖div(τ − Πp
divτ)‖.

Then, for the remaining term the commutativity property of the Raviart–Thomas projection, the adjoint prob-
lem (3.3) and g ∈ Pp(T) yield

‖div(τ − Πp
divτ)‖ = ‖(1 − Π

p)div τ‖
= ‖(1 − Πp)(−g − β ⋅ τ + γv)‖
= ‖(1 − Πp)(γv − β ⋅ τ)‖.

Using the approximation properties of Π0, γ ∈ C1(T), β ∈ C1(T)d, and (3.4) shows

‖(1 − Πp)(γv − β ⋅ τ)‖ ≤ ‖(1 − Π0)(γv − β ⋅ τ)‖
≲ h‖∇T(γv − β ⋅ τ)‖
≲ h‖g‖.

Therefore, we obtain ‖v − vh‖V ≲ h‖g‖. If Uh = U+hp, then we choose vh = (Π1∇, Πp+1
div τ) ∈ Vhk. With the same

lines of proof we also infer ‖v − vh‖V ≲ h‖g‖.
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It only remains to estimate ‖w − wh‖U . We distinguish between the three different cases.

Case (a). By Lemma 8 we have w = (g, 0, 0, 0) + w̃, where w̃ = (u∗, σ∗, γ0,Su∗, γn,Sσ∗). We choose

wh = (g, 0, 0, 0) + w̃h ,

where w̃h ∈ Uh0 ⊆ Uh is the best-approximation of (u∗, σ∗, γ0,Su∗, γn,Sσ∗)with respect to ‖ ⋅ ‖U . From Theo-
rem 6 and (3.4) it follows that

‖w − wh‖U = ‖w̃ − w̃h‖U ≲ h‖g‖.

Case (b). By Lemma 8 we have w = (g − γv, 0, 0, γn,Sτ) + w̃ and choose

wh = (g − Π0γv, 0, 0, γn,SΠ0
divτ) + w̃h ,

where w̃h ∈ Uh0 is the best approximation of w̃ with respect to ‖ ⋅ ‖U . Note that the same arguments as before
lead to ‖w̃ − w̃h‖U ≲ h‖g‖. Therefore,

‖w − wh‖U ≤ ‖(1 − Π0)γv‖ + ‖γn,S(τ − Π0
divτ)‖−1/2,S + ‖w̃ − w̃h‖U ≲ h‖g‖,

where we used (3.1) and the approximation property of γn,SΠp
div in the H−1/2(S) norm (see the proof of

Theorem 6) together with (3.4).

Case (c). The proof follows as for Case (b). Therefore, we omit the details.

3.4 Proof of Theorem 3

The best approximation property of Πp and the triangle inequality show that

‖u − Πpu‖ ≤ ‖u − uh‖ ≤ ‖u − Πpu‖ + ‖Πp(u − uh)‖.

With g := Πpu − uh ∈ Pp(T) observe that

‖g‖2 = (g, g) = (Πp(u − uh), g) = (u − uh , g).

We apply Lemma 10, and the approximation result from Theorem 6 to see

‖g‖2 = (u − uh , g) ≲ h‖u − uh‖U‖g‖ ≲ hhp+1(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T))‖g‖.
Dividing by ‖g‖ we infer

‖u − uh‖ ≤ ‖u − Πpu‖ + ‖g‖ ≤ ‖u − Πpu‖ + Chp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)),
which finishes the proof.

3.5 Proof of Theorem 4

The proof is similar to the one for Theorem 3. We consider

‖u − u+h‖ ≤ ‖u − Πp+1u‖ + ‖Πp+1u − u+h‖.
Define g := Πp+1u − u+h ∈ Pp+1(T). To estimate the second term, we argue as in the proof of Theorem 3 to
obtain ‖g‖ ≲ hp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)). The first term is estimated with the approximation property (3.1a)
of the L2 projection, i.e.,

‖u − Πp+1u‖ ≲ hp+2‖u‖Hp+2(Ω).
This finishes the proof.
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3.6 Proof of Theorem 5

Note that (2.9b) is equivalent to Π0ũh = Π0uh. This yields

‖u − ũh‖ ≤ ‖(1 − Π0)(u − ũh)‖ + ‖Π0(u − ũh)‖
≲ h‖∇T(u − ũh)‖ + ‖Π0(u − uh)‖,

where we have used the local approximation property of Π0. We define g := Π0(u − uh). Applying Lemma 10
and Theorem 6 shows

‖g‖2 = (Π0(u − uh), g)
= (u − uh , g)
≲ h‖u − uh‖U‖g‖
≲ hp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T))‖g‖.

It remains to estimate ‖∇T(u − ũh)‖. The proof follows standard arguments fromfinite element analysis and is
included for completeness. To that end define uh ∈ Pp+1(T) as the solution of the auxiliary Neumann problem

(∇uh , ∇vh)T = (Cf − Cσ + βu, ∇vh)T for all vh ∈ Pp+1(T),
(uh , 1)T = 0

for all T ∈ T. Then

‖∇T(uh − ũh)‖2 = (−C(σ − σh) + β(u − uh), ∇T(uh − ũh))
≲ ‖u − uh‖U‖∇T(uh − ũh)‖
≲ hp+1(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T))‖∇T(uh − ũh)‖.

To estimate ‖∇T(u − uh)‖, note that there holds Galerkin orthogonality

(∇T(u − uh), ∇Tvh) = 0 for all vh ∈ Pp+1(T).
Hence, standard approximation results show

‖∇T(u − uh)‖ = min
vh∈Pp+1(T) ‖∇T(u − vh)‖ ≲ hp+1‖u‖Hp+2(Ω).

Putting altogether gives

‖u − ũh‖ ≲ h‖∇T(u − ũh)‖ + ‖g‖
≲ h(‖∇T(u − uh)‖ + ‖∇T(uh − ũh)‖) + hp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T))
≲ hp+2(‖u‖Hp+2(Ω) + ‖σ‖Hp+1(T)),

which finishes the proof.

4 Numerical Studies

In this sectionwe present results of two numerical examples. LetΩ = (0, 1)2 be a square domain. Throughout
we consider the manufactured solution

u(x, y) = sin(πx) sin(πy), (x, y) ∈ Ω,

which is smooth and satisfies u|Γ = 0.
Let uh = (uh , σh , ûh , σ̂h) ∈ Uhp and u+h = (u+h , σ+h , û+h , σ̂+h) ∈ U+hp denote the solutions of the practical DPG

method (2.5) and let ũh ∈ Pp+1(T) be the postprocessed solution of uh, see Section 2.10. We present results
for p = 0, 1, 2, 3, where we use the test space

Vhk := Pp+2(T) × Pp+2(T)d .
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Figure 1: Initial triangulation T1 of domain Ω = (0, 1)2.
To verify our main results (Theorem 3, Theorem 4, and Theorem 5), we check the convergence rates of the
L2 errors ‖Πpu − uh‖, ‖u − u+h‖, and ‖u − ũh‖. In all examples below we choose C to be the identity matrix.
Thus, ‖ ⋅ ‖V,1 = ‖ ⋅ ‖V,2 andCases (b), (c) are identical. The other coefficients are chosen such that the regularity
assumptions (2.8) are satisfied.

All computations start with the initial triangulation T1 visualized in Figure 1.

4.1 Example 1

Define T1 := conv{(0, 0), (1, 0), (12 ,
1
2 )}, T2 := conv{(1, 1), (0, 1), (

1
2 ,

1
2 )}. In the first examplewe set β = 0 and

γ(x, y) :=
{{{
{{{
{

1 (x, y) ∈ T1,
1
2 (x, y) ∈ T2,
0 (x, y) ∈ Ω \ (T1 ∪ T2).

Moreover, we choose

f (x, y) :=

{{{{{
{{{{{
{

(
1
1
) x < 1

2 ,

(
1
−1
) x ≥ 1

2 .

Note that div f = 0 and f ∈ H(div;Ω) ∩ H1(T1). With the coefficients, f and the exact solution at hand, we
calculate the right-hand side f and σ through (1.1). Table 2 resp. Table 3 show errors and convergence rates
when using the test norm ‖ ⋅ ‖V,qopt resp. ‖ ⋅ ‖V,1 = ‖ ⋅ ‖V,2.

4.2 Example 2

For this example we choose

f = 0, γ = 0, β(x, y) = (1, 1)T for (x, y) ∈ Ω .

Note that β is smooth. Again we calculate f and σ through (1.1). Table 4 resp. Table 5 show the results
for Case (a) (‖ ⋅ ‖V = ‖ ⋅ ‖V,qopt) resp. Case (b), (c) (‖ ⋅ ‖V = ‖ ⋅ ‖V,1 = ‖ ⋅ ‖V,2). Observe from Table 5 that we do
not get higher convergence rates neither for solutions from the augmented space U+hp nor for the postpro-
cessed solution. Even for the L2 error of Πpu − uh we do not get higher rates, whereas with the use of the
quasi-optimal test norm ‖ ⋅ ‖V,qopt higher rates are obtained. This demonstrates that the assumption β = 0 in
Section 2.7 for the Cases (b)–(c) is not an artefact used in the proofs but in general is also necessary to obtain
superconvergence results with the norms ‖ ⋅ ‖V,1, ‖ ⋅ ‖V,2.
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p #T ‖u − uh‖ rate ‖Πpu − uh‖ rate ‖u − u+h‖ rate ‖u − ũh‖ rate

0 16 1.94e−01 – 7.41e−02 – 8.37e−02 – 1.23e−01 –
64 9.37e−02 1.05 1.85e−02 2.00 2.09e−02 2.01 3.21e−02 1.94

256 4.64e−02 1.01 4.63e−03 2.00 5.20e−03 2.00 8.12e−03 1.98
1024 2.32e−02 1.00 1.16e−03 2.00 1.30e−03 2.00 2.04e−03 2.00
4096 1.16e−02 1.00 2.90e−04 2.00 3.25e−04 2.00 5.09e−04 2.00

16384 5.79e−03 1.00 7.24e−05 2.00 8.13e−05 2.00 1.27e−04 2.00
65536 2.89e−03 1.00 1.81e−05 2.00 2.03e−05 2.00 3.18e−05 2.00

1 16 3.47e−02 – 3.02e−03 – 5.96e−03 – 7.89e−03 –
64 8.86e−03 1.97 5.58e−04 2.44 8.72e−04 2.77 9.53e−04 3.05

256 2.22e−03 1.99 7.92e−05 2.82 1.16e−04 2.92 1.18e−04 3.01
1024 5.56e−04 2.00 1.02e−05 2.95 1.47e−05 2.98 1.48e−05 3.00
4096 1.39e−04 2.00 1.29e−06 2.99 1.84e−06 2.99 1.84e−06 3.00

16384 3.48e−05 2.00 1.62e−07 3.00 2.31e−07 3.00 2.30e−07 3.00

2 16 4.51e−03 – 2.55e−04 – 3.51e−04 – 6.14e−04 –
64 5.74e−04 2.98 1.30e−05 4.29 1.98e−05 4.14 4.18e−05 3.88

256 7.20e−05 2.99 7.67e−07 4.09 1.21e−06 4.04 2.68e−06 3.96
1024 9.01e−06 3.00 4.72e−08 4.02 7.50e−08 4.01 1.68e−07 3.99
4096 1.13e−06 3.00 2.97e−09 3.99 4.69e−09 4.00 1.05e−08 4.00

3 16 2.20e−04 – 2.08e−05 – 2.01e−05 – 5.48e−05 –
64 1.39e−05 3.98 8.34e−07 4.64 8.38e−07 4.58 1.67e−06 5.03

256 8.70e−07 4.00 2.82e−08 4.89 2.86e−08 4.87 5.18e−08 5.01
1024 5.44e−08 4.00 9.08e−10 4.96 9.24e−10 4.95 1.62e−09 5.00

Table 2: Errors and rates for the problem from Section 4.1 with test norm ‖ ⋅ ‖V = ‖ ⋅ ‖V,qopt.
p #T ‖u − uh‖ rate ‖Πpu − uh‖ rate ‖u − u+h‖ rate ‖u − ũh‖ rate

0 16 1.92e−01 – 6.88e−02 – 7.86e−02 – 8.48e−02 –
64 9.35e−02 1.04 1.73e−02 1.99 1.97e−02 1.99 2.17e−02 1.97

256 4.64e−02 1.01 4.33e−03 2.00 4.94e−03 2.00 5.44e−03 1.99
1024 2.32e−02 1.00 1.08e−03 2.00 1.23e−03 2.00 1.36e−03 2.00
4096 1.16e−02 1.00 2.71e−04 2.00 3.09e−04 2.00 3.41e−04 2.00

16384 5.79e−03 1.00 6.77e−05 2.00 7.71e−05 2.00 8.51e−05 2.00
65536 2.89e−03 1.00 1.69e−05 2.00 1.93e−05 2.00 2.13e−05 2.00

1 16 3.49e−02 – 4.81e−03 – 6.96e−03 – 6.79e−03 –
64 8.87e−03 1.98 7.36e−04 2.71 9.71e−04 2.84 8.82e−04 2.95

256 2.22e−03 2.00 9.82e−05 2.91 1.26e−04 2.95 1.12e−04 2.98
1024 5.56e−04 2.00 1.25e−05 2.97 1.59e−05 2.99 1.41e−05 2.99
4096 1.39e−04 2.00 1.57e−06 2.99 1.99e−06 3.00 1.76e−06 3.00

16384 3.48e−05 2.00 1.96e−07 3.00 2.49e−07 3.00 2.20e−07 3.00

2 16 4.53e−03 – 4.38e−04 – 5.07e−04 – 5.22e−04 –
64 5.74e−04 2.98 2.53e−05 4.11 3.00e−05 4.08 3.25e−05 4.01

256 7.20e−05 2.99 1.54e−06 4.04 1.85e−06 4.02 2.03e−06 4.00
1024 9.01e−06 3.00 9.58e−08 4.01 1.15e−07 4.01 1.27e−07 4.00
4096 1.13e−06 3.00 6.03e−09 3.99 7.22e−09 3.99 7.94e−09 4.00

3 16 2.25e−04 – 5.14e−05 – 5.06e−05 – 6.01e−05 –
64 1.40e−05 4.01 1.75e−06 4.88 1.73e−06 4.87 1.96e−06 4.94

256 8.71e−07 4.00 5.62e−08 4.96 5.55e−08 4.96 6.20e−08 4.98
1024 5.44e−08 4.00 1.80e−09 4.96 1.78e−09 4.96 1.96e−09 4.98

Table 3: Errors and rates for the problem from Section 4.1 with test norm ‖ ⋅ ‖V = ‖ ⋅ ‖V,2.
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p #T ‖u − uh‖ rate ‖Πpu − uh‖ rate ‖u − u+h‖ rate ‖u − ũh‖ rate

0 16 1.96e−01 – 7.95e−02 – 8.85e−02 – 1.27e−01 –
64 9.41e−02 1.06 2.04e−02 1.96 2.25e−02 1.98 3.36e−02 1.92

256 4.65e−02 1.02 5.14e−03 1.99 5.64e−03 1.99 8.51e−03 1.98
1024 2.32e−02 1.00 1.29e−03 2.00 1.41e−03 2.00 2.13e−03 1.99
4096 1.16e−02 1.00 3.22e−04 2.00 3.53e−04 2.00 5.34e−04 2.00

16384 5.79e−03 1.00 8.05e−05 2.00 8.82e−05 2.00 1.34e−04 2.00
65536 2.89e−03 1.00 2.01e−05 2.00 2.21e−05 2.00 3.34e−05 2.00

1 16 3.47e−02 – 2.77e−03 – 5.91e−03 – 8.02e−03 –
64 8.85e−03 1.97 5.22e−04 2.40 8.59e−04 2.78 9.73e−04 3.04

256 2.22e−03 1.99 7.47e−05 2.80 1.14e−04 2.92 1.21e−04 3.01
1024 5.56e−04 2.00 9.69e−06 2.95 1.44e−05 2.98 1.51e−05 3.00
4096 1.39e−04 2.00 1.22e−06 2.99 1.81e−06 2.99 1.89e−06 3.00

16384 3.48e−05 2.00 1.53e−07 3.00 2.27e−07 3.00 2.36e−07 3.00

2 16 4.51e−03 – 2.37e−04 – 3.44e−04 – 6.25e−04 –
64 5.73e−04 2.98 1.19e−05 4.32 1.95e−05 4.14 4.24e−05 3.88

256 7.20e−05 2.99 6.97e−07 4.09 1.19e−06 4.04 2.72e−06 3.97
1024 9.01e−06 3.00 4.28e−08 4.02 7.37e−08 4.01 1.71e−07 3.99
4096 1.13e−06 3.00 2.68e−09 4.00 4.60e−09 4.00 1.07e−08 4.00

3 16 2.20e−04 – 1.95e−05 – 1.98e−05 – 5.51e−05 –
64 1.39e−05 3.98 7.80e−07 4.64 8.14e−07 4.61 1.68e−06 5.04

256 8.70e−07 4.00 2.65e−08 4.88 2.78e−08 4.87 5.21e−08 5.01
1024 5.44e−08 4.00 8.73e−10 4.92 9.16e−10 4.92 1.63e−09 5.00

Table 4: Errors and rates for the problem from Section 4.2 with test norm ‖ ⋅ ‖V = ‖ ⋅ ‖V,qopt.
p #T ‖u − uh‖ rate ‖Πpu − uh‖ rate ‖u − u+h‖ rate ‖u − ũh‖ rate

0 16 4.37e−01 – 3.98e−01 – 4.15e−01 – 4.00e−01 –
64 2.25e−01 0.96 2.06e−01 0.95 2.14e−01 0.96 2.06e−01 0.96

256 1.14e−01 0.99 1.04e−01 0.98 1.08e−01 0.99 1.04e−01 0.99
1024 5.70e−02 1.00 5.21e−02 1.00 5.41e−02 1.00 5.21e−02 1.00
4096 2.85e−02 1.00 2.61e−02 1.00 2.71e−02 1.00 2.61e−02 1.00

16384 1.43e−02 1.00 1.30e−02 1.00 1.35e−02 1.00 1.30e−02 1.00
65536 7.13e−03 1.00 6.52e−03 1.00 6.77e−03 1.00 6.52e−03 1.00

1 16 6.23e−02 – 5.18e−02 – 5.69e−02 – 1.64e−02 –
64 1.63e−02 1.93 1.37e−02 1.92 1.49e−02 1.93 5.70e−03 1.52

256 4.12e−03 1.98 3.47e−03 1.98 3.77e−03 1.98 1.61e−03 1.83
1024 1.03e−03 2.00 8.67e−04 2.00 9.42e−04 2.00 4.19e−04 1.94
4096 2.57e−04 2.00 2.17e−04 2.00 2.35e−04 2.00 1.06e−04 1.98

16384 6.43e−05 2.00 5.41e−05 2.00 5.88e−05 2.00 2.68e−05 1.99

2 16 7.46e−03 – 5.95e−03 – 6.56e−03 – 9.34e−04 –
64 9.32e−04 3.00 7.35e−04 3.02 8.17e−04 3.00 6.23e−05 3.91

256 1.17e−04 3.00 9.17e−05 3.00 1.02e−04 3.00 4.01e−06 3.96
1024 1.46e−05 3.00 1.15e−05 3.00 1.28e−05 3.00 2.57e−07 3.96
4096 1.82e−06 3.00 1.43e−06 3.00 1.59e−06 3.00 1.66e−08 3.95

3 16 6.03e−04 – 5.62e−04 – 5.59e−04 – 7.46e−05 –
64 3.88e−05 3.96 3.63e−05 3.95 3.64e−05 3.94 3.93e−06 4.25

256 2.44e−06 3.99 2.28e−06 3.99 2.29e−06 3.99 2.41e−07 4.03
1024 1.52e−07 4.00 1.42e−07 4.00 1.43e−07 4.00 1.52e−08 3.99

Table 5: Errors and rates for the problem from Section 4.2 with test norm ‖ ⋅ ‖V = ‖ ⋅ ‖V,2.
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5 Concluding Remarks

We conclude this work with some remarks. The results and their proofs are presented in a systematic way
that allow to extend and transfer them to other types of meshes and different model problems. In principle,
the crucial results Lemma 8 and Lemma 10 have to be verified. Consider for instance that T is a mesh with
polygonal elements. Lemma 8 still holds true in that case since it is independent of the underlying mesh so
that only the assertion of Lemma 10 has to be shown. To be more precise: Analyzing the proof one finds out
that it only remains to provide the estimate

min
wh∈Uh
‖w − wh‖U + min

vk∈Vhk
‖v − vk‖V ≲ h‖g‖,

which is an optimal a priori error bound for sufficient regular functions (see Lemma 10 for details on the
definition of the functions w and v). In the case of triangular meshes we have proven the estimate by using
basic properties of well-known interpolation operators. If operators with the same properties can be defined
on meshes with polygonal elements, then, clearly, the estimate holds true as well. We note that the analysis
of DPG methods for ultra-weak formulations on general (polygonal) meshes is an ongoing research. For an
overview we refer to the recent work [21].

Future research will include other model problems, e.g., linear elasticity. Another possible application
of the developed ideas could be to the Stokes problem. Consider its velocity-gradient-pressure formulation:
Find (uS , σS , pS) such that

−∇pS + div σS = f in Ω,
σS − ∇uS = 0 in Ω,

div uS = 0 in Ω,
uS = 0 on ∂Ω.

DPG methods based on ultra-weak formulations are known and thoroughly analyzed [17]. Since regularity
theory is also known, our main results (Theorem 3–5) should carry over (for the velocity variable uS instead
of u) to the Stokes problem following the same lines in the proofs. In particular, the assertion of Theorem 3
has been already observed in numerical experiments [17, Section 3] even for different test norms. We refer
also to [18, Section 3] for numerical evidence in the case of incompressible Navier Stokes problems.

Another point we like to mention is that the principal ideas of the proofs and, thus, our main results
carry over to the low regularity case, i.e., when we do not have the “full” regularity u ∈ H2(Ω), v ∈ H2(Ω) for
solutions of (1.1) and (2.7) but rather u ∈ H1+s(Ω), v ∈ H1+s(Ω) for some s ∈ (12 , 1). This is usually the case
when Ω is a nonconvex polygonal domain. Nevertheless, we stress that our main results (Theorem 3–5) hold
true with hp+2 replaced by hp+1+s. Therefore, one still obtains higher convergence rates than the overall error
‖u − uh‖ = O(hp+1). For the particular case of a reaction-diffusion model problem (C is the identity, β = 0,
and γ = 1) Theorem 4 and 5 are analyzed in [10] for ‖ ⋅ ‖V = ‖ ⋅ ‖V,1 = ‖ ⋅ ‖V,2.

Finally, let us remark the importance of the choice of norms in the test space. Although all test norms
under consideration are equivalent and, thus, the corresponding DPGmethods have the same stability prop-
erties (i.e., the inf–sup constants resp. boundedness constants are equivalent), only one of the norms under
consideration (the quasi-optimal norm ‖ ⋅ ‖V,qopt) yields higher convergence rates for generalmodel problems
with β ̸= 0. This has to be taken into account in the design of DPG methods.

Funding: This work was supported by FONDECYT project 11170050.
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