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Abstract

The aim of this paper is to provide new perspectives on relative finite element accuracy which
is usually based on the asymptotic speed of convergence comparison when the mesh size h
goes to zero. Starting from a geometrical reading of the error estimate due to Bramble-
Hilbert lemma, we derive two probability distributions that estimate the relative accuracy,
considered as a random variable, between two Lagrange finite elements Pk and Pm, (k < m).
We establish mathematical properties of these probabilistic distributions and we get new
insights which, among others, show that Pk or Pm is more likely accurate than the other,
depending on the value of the mesh size h.

keywords: Error estimates, Finite elements, Bramble-Hilbert lemma, Probability.

1 Introduction

The past decades have seen the development of finite element error estimates due to their influ-
ence on improving both accuracy and reliability in scientific computing.

However, in these error estimates, an unknown constant is involved which depends, among oth-
ers, on the basis functions of the considered finite element and on a given semi-norm of the
exact solution one wants to approximate. Moreover, error estimates are only upper bounds of
the approximation error yielding that the precise value of the approximation error is generally
unknown.

Moreover, due to quantitative uncertainties which are generated in the process of the mesh gen-
erator and, as a consequence, in the corresponding approximation too, it gave us the idea of
considering the approximation error as a random variable.

Therefore, we were able to evaluate the probability of the difference between two approximation
errors corresponding to two different finite elements, and then, we got a probabilistic way to
compare the relative accuracy between these two finite elements.

The paper is organized as follows. We recall in Section 2 the mathematical problem we con-
sider and a corollary of Bramble-Hilbert lemma to propose a geometrical interpretation of the
error estimate which appears in this lemma. In Section 3 we derive two probability distribu-
tions to interpret and estimate the relative accuracy, considered as a random variable, between
two Lagrange finite elements Pk and Pm, (k < m). Several mathematical properties of these
probabilistic distributions are established in Section 4. Concluding remarks follow.
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2 The problem model and a geometrical interpretation of an
error estimate

Let Ω be an open bounded, and non empty subset of Rn and Γ its boundary which we assumed
to be C1−piecewise, and let u be the solution to the second order elliptic variational formulation:

(VP)

{
Find u ∈ V solution to:

a(u, v) = l(v), ∀v ∈ V,
(1)

where V is a given Hilbert space endowed with a norm ‖.‖V , a(·, ·) is a bilinear, continuous and
V−elliptic form defined on V × V , and l(·) a linear continuous form defined on V .

Classically, variational problem (VP) has one and only solution u ∈ V (see for example [4]). In
this paper and for simplicity, we will restrict ourselves to the case where V is a usual Sobolev
space of distributions.

Let us also consider an approximation uh of u, solution to the approximate variational formula-
tion:

(VP)h

{
Find uh ∈ Vh solution to:

a(uh, vh) = l(vh), ∀vh ∈ Vh,
(2)

where Vh is a given finite-dimensional subset of V .

To state a corollary of Bramble-Hilbert’s lemma and a corresponding error estimate, we follow
[6] or [5], and we assume that Ω is exactly recovered by a mesh Th composed by NK n-simplexes
Kµ, (1 ≤ µ ≤ NK), which respect classical rules of regular discretization, (see for example [4] for
the bidimensional case and [6] in Rn). Moreover, we denote by Pk(Kµ) the space of polynomial
functions defined on a given n-simplex Kµ of degree less than or equal to k, (k ≥ 1).

Then, we have the following result:

Lemma 2.1 Suppose that there exists an integer k ≥ 1 such that the approximation uh of Vh is a
continuous piecewise function composed by polynomials which belong to Pk(Kµ), (1 ≤ µ ≤ NK).

Then, uh converges to u in H1(Ω):

lim
h→0
‖uh − u‖1,Ω = 0. (3)

Moreover, if the exact solution u belongs to Hk+1(Ω), we have the following error estimate:

‖uh − u‖1,Ω ≤ Ck h
k |u|k+1,Ω , (4)

where Ck is a positive constant independent of h, ‖.‖1,Ω the classical norm in H1(Ω) and |.|k+1,Ω

denotes the semi-norm in Hk+1(Ω).

Let us now consider two families of Lagrange finite elements Pk and Pm corresponding to a set
of values (k,m) ∈ N2 such that 0 < k < m.

The two corresponding inequalities given by (4), assuming that the solution u to (VP) belongs
to Hm+1(Ω), are:

‖u(k)
h − u‖1,Ω ≤ Ckh

k |u|k+1,Ω, (5)

‖u(m)
h − u‖1,Ω ≤ Cmh

m |u|m+1,Ω , (6)
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where u
(k)
h and u

(m)
h respectively denotes the Pk and Pm Lagrange finite element approximations

of u.

Now, if one considers a given mesh for the finite element of Pm which would contains whose
of Pk then, for the particular class of problems where (VP) is equivalent to a minimization
formulation (MP) (see for example [4]), one can show that the approximation error of Pm is
always lower than those of Pk, and Pm is more accurate than Pm for all values of the mesh size
h corresponding to the largest diameter in the mesh Th.

Then, for a given mesh size value of h, we consider two independent meshes for Pk and Pm built
be a mesh generator. So, usually, to compare the relative accuracy between these two finite
elements, one asymptotically considers inequalities (5) and (6) to conclude that, when h goes to
zero, Pm finite element is more accurate that Pk, as hm goes faster to zero than hk.

However, for any application h has a static fixed value and this way of comparison is not valid
anymore. Therefore, our point of view will be to determine the relative accuracy between two
finite elements Pk and Pm, (k < m), for any given value of h for which two independent meshes
have to be considered.

To this end, let us set:
Ck = Ck|u|k+1,Ω and Cm = Cm|u|m+1,Ω. (7)

Therefore, instead of (5) and (6), we consider in the sequel the two next inequalities:

‖u(k)
h − u‖1,Ω ≤ Ckh

k, (8)

‖u(m)
h − u‖1,Ω ≤ Cmh

m. (9)

Then, let us remark that inequalities (8) and (9) show that the two polynomial curves defined
by fk(h) ≡ Ckh

k and fm(h) ≡ Cmh
m play a critical role regarding the values of the two norms

‖u(k)
h − u‖1,Ω and ‖u(m)

h − u‖1,Ω.

More precisely, these inequalities indicate that the norm ‖u(k)
h − u‖1,Ω, (respectively the norm

‖u(m)
h − u‖1,Ω), is below the curve fk(h), (respectively below the curve fm(h)), (see Figure 1).

As we are interested in comparing the relative positions of these curves, we introduce their
intersection point h∗ defined by:

h∗ ≡
(
Ck
Cm

) 1
m−k

. (10)

Now, as often in numerical analysis, there is no a priori information to surely or better specify

the relative distance between ‖u(k)
h − u‖1,Ω, (respectively ‖u(m)

h − u‖1,Ω), and the curve fk or its
precise value in the interval [0, Ckh

k], (respectively the curve fm and the interval [0, Cmh
m]).

Moreover, we have to deal with finite element methods that return quantitative uncertainties
in their calculations. This mainly comes from the way the mesh grid generator will process the

mesh to compute the approximation u
(k)
h , leading to a partial non control of the mesh, even for

a given maximum mesh size. As a consequence, the corresponding grid is a priori random, and

the corresponding approximation u
(k)
h too.

For all of these reasons, we motivate that a probabilistic approach can provide a coherent
framework for modeling quantitative uncertainties in finite element approximations.

This is the purpose of the following section where we will establish two probability distributions
which will allowed us to estimate the relative accuracy between two Lagrange finite elements.
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Figure 1 – Curves fk and fm and existence domain of ‖u(i)
h − u‖1,Ω, i = k or i = m.

3 The two probabilistic models for relative finite elements ac-
curacy

In this section, we will introduce a convenient probabilistic framework to consider the possible

values of the norm ‖u(k)
h − u‖1,Ω as a random variable defined as follows:

— A random trial corresponds to the grid constitution and the associated approximation u
(k)
h .

— The probability space Ω contains therefore all the possible results for a given random trial,
namely, all of the possible grids that the mesh generator may processed, or equivalently,

all of the corresponding associated approximations u
(k)
h .

Then, for a fixed value of k, we define by X(k) the random variable as follows:

X(k) : Ω → [0, Ckh
k] (11)

ω ≡ u(k)
h 7→ X(k)(ω) = X(k)(u

(k)
h ) = ‖u(k)

h − u‖1,Ω. (12)

In the sequel, for simplicity, we will set: X(k)(u
(k)
h ) ≡ X(k)(h).

Now, regarding the absence of information concerning the more likely or less likely values of the

norm ‖u(k)
h − u‖1,Ω in the interval [0, Ckh

k], we will assume that the random variable X(k)(h)
has a uniform distribution on the interval [0, Ckh

k].

So, our interest is to evaluate the probability of the event{
‖u(m)

h − u‖1,Ω ≤ ‖u(k)
h − u‖1,Ω

}
≡
{
X(m)(h) ≤ X(k)(h)

}
, (13)

which will allow us to estimate the relative accuracy between two finite elements of order k and
m, (k < m).

To proceed it, let us now introduce the two random events A and B as follows:

A ≡
{
‖u(m)

h − u‖1,Ω ≤ ‖u(k)
h − u‖1,Ω

}
, (14)

B ≡
{
‖u(k)

h − u‖1,Ω ∈ [Cmh
m, Ckh

k]
}
. (15)

Then, we have the following lemma:
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Lemma 3.1 Let A and B be the events defined by (14) and (15). Then, we have:

∀h < h∗ : Prob {A} =
Prob {B}
Prob {B/A}

. (16)

Proof : Let us use the following splitting:

Prob {A} = Prob {A ∩B}+ Prob
{
A ∩ B̄

}
, (17)

where B̄ denotes the opposite event of B.

Now, by the definition of the conditional probability we have:

Prob {A ∩B} = Prob {A/B} .P rob {B} = Prob {B} , (18)

since the probabilistic interpretation of Bramble-Hilbert lemma in the case h < h∗ corresponds
to:

Prob {A/B} = 1. (19)

Then, equation (17) can be written as:

Prob {A} = Prob {B}+ Prob
{
A ∩ B̄

}
, (20)

which can be transformed by the help of the conditional probability as follows:

Prob {A} = Prob {B}+ Prob
{
B̄/A

}
.P rob {A} , (21)

or equivalently,
Prob {A} =

Prob {B}
1− Prob

{
B̄/A

} =
Prob {B}
Prob {B/A}

, (22)

which corresponds to (16).

Then, we have two options regarding the nature of the dependency between the events A
and B which will lead us to get two different distribution laws of probabilities of the event{
X(m)(h) ≤ X(k)(h)

}
.

The next two subsections are devoted to the dependency modeling between A and B.

3.1 The two steps model

The first case we will consider states that since, a priori, no information is available in numerical
analysis to consider any kind of dependency between the events A and B, we assume in this
subsection that these events are independent.

Corollary 3.2 Let A and B be the two events defined by (14) and (15) and let us assume they

are independent. Then, the probability distribution of the event
{
X(m)(h) ≤ X(k)(h)

}
is given

by:

Prob
{
X(m)(h) ≤ X(k)(h)

}
=

∣∣∣∣∣ 1 if 0 < h < h∗,

0 if h > h∗.
(23)

Proof : As the events A and B are supposed independent, we have:

Prob {A/B} = Prob {A} . (24)
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As a consequence, by lemma 3.1 equation (22) gives after simplification:

Prob {A} = 1,∀h < h∗. (25)

With the same kind of arguments, when h > h∗ we get:

Prob {A} = 0,∀h > h∗. (26)

Let us now examine the main properties of probabilistic distribution (23):

— For any h smaller than h∗, Pm finite element is not only asymptotically better than Pk
finite element as h becomes small, but they are almost surely more accurate for all these
values of h such that h < h∗.

— For any h greater than h∗, Pk finite element becomes almost surely more accurate than
Pm finite element, even if k < m.

This last feature upsets the widespread idea regarding the relative accuracy between Pk and
Pm, (k < m), finite elements. It clearly indicates that there exist cases where Pm finite elements
surely must be overqualified and a significant reduction of implementation and execution cost
can be obtained without a loss of accuracy.

Furthermore, one may expect to get a probabilistic distribution where more variations would ap-

pear, as it is in this two steps model, between the probability of the event
{
X(m)(h) ≤ X(k)(h)

}
and the mesh size h. It is certainly due to the assumption we considered regarding the indepen-
dency between the events A and B.

The purpose of the next subsection we will be devoted to relax this assumption by directly

computing the probability of the event
{
X(m)(h) ≤ X(k)(h)

}
.

3.2 The ”sigmoid” model

To avoid the hypothesis of independency between the events A and B defined by (14) and (15),
we will directly evaluate the probability of the event A without considering anymore the splitting
we wrote in formula (20).

However, we will assume that the two random variables X(i)(h), (i = k or i = m), defined by
(12) are independent and uniformly distributed on [0, Cih

i], (i = k or i = m).

This is the aim of the following theorem.

Theorem 3.3 Let u be the solution to the second order variational elliptic problem (VP) defined

in (1) and u
(i)
h , (i = k or i = m, k < m), the two corresponding Lagrange finite element Pi

approximations, solution to the approximated formulation (VP)h defined by (2).

We assume the two corresponding random variables X(i)(h), (i = k or i = m), defined by (12)
are independent and uniformly distributed on [0, Cih

i], where Ci are defined by (8)-9).

Then, the probability of the event
{
X(m)(h) ≤ X(k)(h)

}
is given by:

Prob
{
X(m)(h) ≤ X(k)(h)

}
=

∣∣∣∣∣∣∣∣∣∣
1− 1

2

(
h

h∗

)m−k
if 0 < h ≤ h∗,

1

2

(
h∗

h

)m−k
if h ≥ h∗.

(27)
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Proof :

I Let us first consider a fixed value of h such that h < h∗.

In this case, fm(h) < fk(h), or in other words, 0 < Cmh
m < Ckh

k and due to Bramble-Hilbert
lemma (see Figure 1), one must deal with the following inequalities:

X(k)(h) ≤ Ckhk and X(m)(h) ≤ Cmhm < Ckh
k. (28)

Then, to compute the probability such that X(m)(h) ≤ X(k)(h), we consider inequalities (28) in
the plane (0;X(m)(h), X(k)(h)), (see Figure 2) in which the two random variables belong to the
rectangle Rt defined on [0, Cmh

m]× [0, Ckh
k].

Our purpose is to characterize the points in Rt that satisfy X(m)(h) ≤ X(k)(h). Obviously, it
only concerns the points which are above the bisector X(k)(h) = X(m)(h), namely the points
which belong to the trapezium Tu (see figure 2) whose surface is given by:

Figure 2 – Area corresponding to X(m)(h) ≤ Xk(h).

S(Tu) = Cmh
m(Ckh

k − Cmhm) +
C 2
mh

2m

2
, (29)

while the total surface of the rectangle Rt is equal to CmCkh
m+k.

As we assume that the two random variablesX(k)(h) andX(m)(h) are independent and uniformly
distributed, the probability Prob

{
X(m)(h) ≤ X(k)(h)

}
corresponds to the ratio between the two

surfaces of Tu and Rt and we have:

Prob
{
X(m)(h) ≤ X(k)(h)

}
=

S(Tu)

S(Rt)
=
Cmh

m(Ckh
k − Cmhm) + C 2

mh
2m/2

CmCkhm+k
,

= 1− 1

2

Cm
Ck

hm−k. (30)

Using the definition (10) of h∗, we get:

∀h < h∗ : Prob
{
X(m)(h) ≤ X(k)(h)

}
= 1− 1

2

Cm
Ck

hm−k = 1− 1

2

(
h

h∗

)m−k
. (31)

I Let us consider now the second case where h > h∗.
The curve fm(h) = Cmh

m is above the curve fk(h) = Ckh
k and by the same arguments we used

above, one must deal with the following inequalities:

X(m)(h) ≤ Cmhm and X(k)(h) ≤ Ckhk < Cmh
m. (32)
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Then, if we change the role between k and m, we can directly write :

Prob
{
X(k)(h) ≤ X(m)(h)

}
=

Ckh
k(Cmh

m − Ckhk) + C 2
k h

2k/2

CmCkhm+k

= 1− 1

2

Ck
Cm

hk−m. (33)

Hence, the probability of the complementary event X(m)(h) ≤ X(k)(h) which interests us is
given by:

Prob
{
X(m)(h) ≤ X(k)(h)

}
= 1− Prob

{
Xk(h) ≤ X(m)(h)

}
=

1

2

Ck
Ck
.

1

hm−k
=

1

2

(
h∗

h

)m−k
, (34)

where we used the definition (10) of h∗.

The global shapes of the two probabilistic distributions (23) and (27) are plotted in Figure 3
and particular features of (27) are described in the next section.

Figure 3 – Casem−k 6= 1: shape of the sigmoid distribution (27) and the two steps corresponding
one (23), (P (h) ≡ Prob{X(m)(h) ≤ X(k)(h)}).

4 Properties of the sigmoid probability distribution

We give now the main properties of the sigmoid probability distribution given by (27). To this
end, we will denote by P(h) the probability defined by:

P(h) ≡ Prob
{
X(m)(h) ≤ X(k)(h)

}
. (35)

— The first feature we observe concerns the global shape of P(h) together with (27), drawn
in Figure 3 for m− k 6= 1, which looks like a kind of sigmoid roughly approximated by a
stepwise function given by (23) from lemma 3.1 of subsection 3.1.

In this way, we achieve our objective to relax the dependency assumption between the
events A and B. As a consequence, non linearity appears in the relation described by (27)
between the probability of the event ”Pm finite element is more accurate than Pk finite
element” and the mesh size h.
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— Behavior of P(h) in the neighborhood of 0+:

Directly, we get:

lim
h→0+

P(h) = lim
h→0+

Prob
{
X(m)(h) ≤ X(k)(h)

}
= 1, (36)

which corresponds to the classical understanding of the error estimate (4) which derives
from Bramble-Hilbert lemma, namely asymptotically when the maximum of the mesh size
h goes to zero.

Indeed, in these cases h ”is sufficiently small”, and despite the unknown values of the
constants Ck and Cm which appear in (8) and (9), one concludes as expected that the
finite element Pm is more accurate than the finite element Pm, if k < m.

But, the question is to determine what does it mean when h ”is sufficiently small”. We
will partially discuss about this in the next point regarding the behavior of P(h) at the
neighborhood of h∗ given by (10).

From a probabilistic point of view the result (36) is also intuitive because, when h goes
to 0+, the quantity Cmh

m goes to 0 faster than Ckh
k, (k < m). Depicting the relative

position of X(m)(h) and X(k)(h) in a one dimensional way, (see Figure 4), it is clear that
the probability of the event

{
X(m)≤ X(k)

}
goes to 1 when h goes to zero, as X(m)≤ Cmhm

due to Bramble-Hilbert lemma.

However, the interest of any probability distribution is to get additional information

Figure 4 – Relative one dimensional position between X(m) and X(k) (h < h∗).

concerning the relative accuracy between two given finite elements, not only when h goes
to zero, as we will see further. Here, we just mentioned that we find again the well known
conclusion to compare two finite elements when the mesh size is arbitrarily small.

Indeed, finite element Pm is not only asymptotically more accurate than Pk as k < m.
Indeed, for all h ≤ h∗, the probability for Pm to be more accurate than Pk is between 0.5
to 1. It means that Pm is more likely accurate than Pk for all of these values of h. We also
notice that we have not anymore the event ”Pm is more accurate than Pk” as an almost
sure event as we got in subsection 3.1 with the law (23). This is because we dropped the
hypothesis of dependency between the events A and B which leads to a more general and
realistic probabilistic distribution.

— Behavior of P(h) in the neighborhood of h∗:

The probabilistic stepwise law (23) did not described the case h equals h∗. However, here,
the sigmoid probability distribution (27) can be extended by continuity to h = h∗ as we
simply have:

lim
h→h∗−

P(h) = lim
h→h∗+

P(h) =
1

2
, (37)
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and then, we extend P(h) by continuity at h∗ by setting:

P(h∗) = Prob
{
X(m)(h∗) ≤ Xk(h∗)

}
≡ 1

2
. (38)

This feature illustrates that when h = h∗, Ckh
∗k = Cmh

∗m, and the two norms ‖u(k)
h −u‖1,Ω

and ‖u(m)
h − u‖1,Ω, which measures each approximation error of the two corresponding

Lagrange finite elements, are somewhere below the two curves (see Figure 1), or in other
words, somewhere in the same interval as we here: [0, Ckh

∗k] = [0, Cmh
∗m]. Then, the

probability to get
{
X(m)(h∗) ≤ Xk(h∗)

}
is equal to 0.5.

This new behavior claims that when h approaches the critical value h∗ the event ”Pm finite
element is more accurate than Pk finite element” is equally likely to occur or not to occur.
As a consequence the accuracy between the two finite element Pk and Pm is equivalent.

It is clearly a new theoretical information because, as we mentioned above, the values
of the two constants Ck and Cm are totally unknown. Indeed, we already suspected and
pointed out by data mining techniques, (see for example [1], [2] and [3]), that this situation
would occur. Here, we complete this suspicion by a theoretical probabilistic framework.

— Despite the usual point of view which claims that Pm finite element are more accurate than
Pk ones, we get here that Pk finite element is more likely accurate than Pm when h > h∗.
This new point of view allows us to recommend that for specific situations, like for adaptive
refinement meshes for example, Pk finite element would be locally more appropriated as
long as one will be able to detect the case h > h∗.

5 Conclusions

In this paper we present a new way to investigate the relative accuracy between two finite ele-
ments. Indeed, leaving the classical asymptotic point of view usually considered to compare the
speed of convergence for different approximation errors, we got new insights for understanding
error estimates. The way we thought the error estimates is not restricted to the finite element
method but can be extended to other approximation methods. Indeed, the underlying idea is
that, given a class of numerical schemes and their corresponding error estimates, one is able to
rank them, not only in terms of asymptotic speed of convergence as usual, but also by evaluating
the almost surely more accurate one.

For example, considering numerical schemes to approximate solution to ordinary differential
equations, one would be able to argue, why (or why not!) RK4 scheme would be implemented
rather than another simplest one.

Homages: The authors want to warmly dedicate this research to pay homage to the memory
of Professors André Avez and Gérard Tronel who largely promote the passion of research and
teaching in mathematics.

References

[1] F. Assous, J. Chaskalovic, Data mining techniques for scientific computing: Application to
asymptotic paraxial approximations to model ultra-relativistic particles, J. Comput. Phys.,
230, pp. 4811–4827 (2011).

10



[2] F. Assous, J. Chaskalovic, Error estimate evaluation in numerical approximations of partial
differential equations: A pilot study using data mining methods, C. R. Mecanique 341 (2013)
304–313.

[3] F. Assous, J. Chaskalovic, Indeterminate constants in numerical approximations of PDE’s:
A pilot study using data mining techniques, J. Comput. Appl. Math, 270 (2014) 462-470.

[4] J. Chaskalovic, Mathematical and numerical methods for partial differential equations,
Springer Verlag, (2013).

[5] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis,
Vol. II, Eds. P.G. Ciarlet and J. L. Lions, North Holland, (1991).

[6] P.A. Raviart et J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées
partielles, Masson (1982).

11


	1 Introduction
	2 The problem model and a geometrical interpretation of an error estimate
	3 The two probabilistic models for relative finite elements accuracy
	3.1 The two steps model
	3.2 The "sigmoid" model

	4 Properties of the sigmoid probability distribution
	5 Conclusions

