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Abstract: The well-posedness and the a priori and a posteriori error analysis of the lowest-order Raviart–
Thomas mixed finite element method (MFEM) has been established for non-selfadjoint indefinite second-
order linear elliptic problems recently in an article by Carstensen, Dond, Nataraj and Pani (Numer. Math.,
2016). The associated adaptive mesh-refinement strategy faces the difficulty of the flux error control in
H(div, Ω) and so involves a data-approximation error ‖f − Π0f‖ in the L2 norm of the right-hand side f and
its piecewise constant approximation Π0f . The separate marking strategy has recently been suggested with
a split of a Dörfler marking for the remaining error estimator and an optimal data approximation strategy
for the appropriate treatment of ‖f − Π0f‖L2(Ω). The resulting strategy presented in this paper utilizes the
abstract algorithm and convergence analysis of Carstensen and Rabus (SINUM, 2017) and generalizes it
to general second-order elliptic linear PDEs. The argument for the treatment of the piecewise constant dis-
placement approximation uRT is its supercloseness to the piecewise constant approximation Π0u of the
exact displacement u. The overall convergence analysis then indeed follows the axioms of adaptivity for
separate marking. Some results onmixed and nonconforming finite element approximations on the multiply
connected polygonal 2D Lipschitz domain are of general interest.
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1 Introduction
The convergence analysis of adaptive mixed finite element methods (AMFEM) stated in [6–8, 11] for the
Laplacian is completed in this paper for non-selfadjoint indefinite second-order linear elliptic problems
via separate marking with the axioms from [8]. Given a right-hand side f ∈ L2(Ω) and piecewise constant
coefficients in a (possibly multiply connected) bounded polygonal Lipschitz domain Ω ⊂ ℝ2, the general
second-order linear elliptic PDE seeks u ∈ H1

0(Ω) such that

L u := −div(A∇u + ub) + γu = f in Ω. (1.1)
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The coefficients A, b, and γ are all piecewise constant functions and the symmetric matrix A is assumed to
be positive definite with universal positive eigenvalue bounds from below and above. The entire paper solely
assumes that L : H1

0(Ω) → H−1(Ω) is injective (i.e., has a trivial kernel); then it is bijective with a bounded
inverse and satisfies a global inf-sup condition. The flux variable p = −(A∇u + ub) with b⋆ = A−1b allows to
recast problem (1.1) as a first-order system: Seek u ∈ H1

0(Ω) such that

A−1p + ub⋆ + ∇u = 0 and divp + γu = f in Ω. (1.2)

The mixed formulation of (1.1) seeks (p, u) ∈ H(div, Ω) × L2(Ω) such that
(A−1p + ub⋆, q)L2(Ω) − (divq, u)L2(Ω) = 0,

(divp, v)L2(Ω) + (γu, v)L2(Ω) = (f, v)L2(Ω)
(1.3)

for all q ∈ H(div, Ω) and for all v ∈ L2(Ω). The well-posedness of (1.3) has been studied in [4, Theorem 2.1]
using the equivalence of the weak formulation of (1.1) and the mixed formulation (1.3). The mixed finite
element discretization of (1.3) utilizes the piecewise constant functions P0(T) on T and the lowest-order
Raviart–Thomas finite element space RT0(T) ⊂ H(div, Ω) and seeks (pRT, uRT) ∈ RT0(T) × P0(T) such that

(A−1pRT + uRTb⋆, qRT)L2(Ω) − (divqRT, uRT)L2(Ω) = 0,
(divpRT, vRT)L2(Ω) + (γuRT, vRT)L2(Ω) = (Π0f, vRT)L2(Ω)

(1.4)

for all qRT ∈ RT0(T) and for all vRT ∈ P0(T). The well-posedness of (1.4) has been established in [4, Theo-
rem 4.2] under the additional assumption that the initial mesh-size is sufficiently small.

The convergence and quasi-optimality of adaptive finite element methods for linear symmetric elliptic
problems has been discussed in the literature [1, 2, 5, 7–9, 17, 18, 20, 21] and the references mentioned
therein. For the non-symmetric case b ̸= 0 and for adaptive conforming FEMs, the optimal convergence rates
have been established in [15] with a collective marking strategy based on a posteriori error estimation, and –
in contrast to the results in [16] – without the interior node property for the refinement. The convergence
of adaptive nonconforming FEMs for the non-symmetric and indefinite problem has been derived in [10]
with a different separate marking strategy. The adaptive mixed FEM (1.4) has been considered in [13] with
a combined norm of the L2 norm in the flux error and the L2 norm in the displacement error. Their quasi-
optimality analysis is based on some nonstandard adaptive separate marking scheme and a special relation
between the mixed FEM and nonconforming schemes.

This paper develops the quasi-optimality of adaptive MFEMs with the natural H(div) norm, that is, the
combination of a flux error in the H(div) norm and the displacement error in the L2 norm via the axioms for
separate marking from [8]. The total adaptive estimator is the sum of the residual-based error estimator η(T)
and the data approximation error μ(T). Given a parameter κ > 0, the separatemarking scheme runs either the
Dörfler marking [14] on η(T) if μ2(T) ≤ κη2(T) or an optimal data approximation algorithm as in [7, 17, 18]
to reduce μ(T). The main challenge is the proof of the axioms of discrete reliability and quasi-orthogonality
for the non-symmetric mixed problem.

The first intermediate solution concerns the discrete flux approximation with a prescribed divergence on
the coarse triangulation in the finer Raviart–Thomas space and a generalization of the corresponding design
from [7, 8, 11]. The second intermediate solution is the integral mean Π0u of the exact displacement u and
its supercloseness

‖Π0u − uRT‖ ≤ Chαmax(‖p − pRT‖H(div,Ω) + ‖u − uRT‖) (1.5)

in the proof of quasi-orthogonality (A4ϵ) below. In fact, this difficulty does not arise in [8] for b ≡ 0. At first
glance, the extendedMarini-type identity [4, equation (4.3)] states that uCR is close to Π0uCR for some associ-
atedCrouzeix–Raviart solution uCR,which is superclose to u by L2-duality argumentswith α > 0 from reduced
elliptic regularity. This argument, however, leads to (1.5) up to an additional term ‖hT divpRT‖, which is not
included in the error estimator η utilized in this paper. In fact, η solely involves the term ‖h2T div pRT‖ with
a higher power of the localized mesh-size hT .

The remaining parts of the paper are organized as follows. Section 2 establishes the notation, the a pos-
teriori error estimators, the adaptive algorithm with separate marking (Safem), and recalls the axioms of
adaptivity (A1)–(A4), (B1)–(B2), and quasimonotonicity (QM) with the optimal convergence rates from [8].
Section 3 starts with the proof of stability (A1) and reduction (A2) for the error estimators and distance
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functions at hand. Section 4 is devoted to the discrete reliability based on a discrete Helmholtz decompo-
sition in 2D for multiply connected domains. Section 5 verifies the quasi-orthogonality based on (1.5) with
a direct proof in Lemma 5.1. Numerical experiments in Section 6 investigate the condition on sufficiently
small parameters such as the bulk parameter and the mesh-size for optimal convergence rates.

The presentation is laid out for two-dimensional polygonal domains and the lowest-order case. The coef-
ficients are assumed piecewise constant for simplicity to avoid extra perturbation terms as in [9]. The gener-
alization to 3Dmay follow the lines of this paper and replaces the discrete Helmholtz decomposition as in [7]
for a simply connected domain. The analysis of higher-order finite element approximations requires a new
argument for the stability of the discrete problems in that [4] and part of the proofs in this paper utilize the
equivalence to the Crouzeix–Raviart nonconforming FEM,which is open in 3D for higher polynomial degrees.

Standard notation on Lebesgue and Sobolev spaces such as L2(Ω), H1
0(Ω), and H(div, Ω) and their

norms with ‖ ∙ ‖ := ‖ ∙ ‖L2(Ω) and ‖ ∙ ‖∞ := ‖ ∙ ‖L∞(Ω) apply throughout the paper. The notation A ≲ B abbrevi-
ates A ≤ CB for amesh-size independent generic constant C > 0,whichmay depend on the domain Ω and the
shape but not the size of the triangles of the corresponding shape-regular triangulation. The constant Cmay
also depend on the coefficients A, b, and γ through lower and upper bounds of the positive eigenvalues of A
and the upper bound ‖b‖∞ + ‖γ‖∞ for the remaining coefficients. Furthermore, A ≈ B abbreviates A ≲ B and
B ≲ A. The context depending symbol | ∙ | denotes the area of a domain, the length of an edge, the counting
measure (cardinality) of a set, the absolute value of a real number, or the Euclidean length of a vector.

2 Preliminaries
This section first introduces the necessary notation for the definition and analysis of adaptive algorithmswith
separate marking. The axioms of adaptivity from [8] are slightly simplified to match the setting of this paper.

2.1 Notation

Let T be an admissible triangulation of the bounded polygonal domain Ω and let𝕋(T) be the set of all admis-
sible triangulations refined from T by newest vertex bisection [20]. Let E(T) denote the set of the three edges
of a triangle T ∈ T, let E (resp. E(Ω) and E(∂Ω)) denote the set of all (resp. interior and boundary) edges in
the triangulation T and letN be the set of its vertices.

Let hmax := maxT∈T hT denote the maximal local mesh-size hT := |T|
1
2 and let νE and τE are the unit nor-

mal and tangential vectors along E ∈ E(T) of T ∈ T. The jump [q]E := q|T+ − q|T− of q is defined across an
interior edge E shared by the two triangles T+ and T−, which form the edge patch ωE. For any boundary edge
E ∈ ∂Ω, let ωE = T+ denote the interior of the triangle T+ = ωE with the edge E ∈ E(ωE) and the jump [ ⋅ ]E
reduces to the trace (that is, the exterior jump contribution vanishes according to the homogeneous boundary
condition). For v ∈ H1(Ω;ℝ) and Φ := (ϕ1, ϕ2) ∈ H1(Ω;ℝ2), the curl and gradient operators read

Curl v = (− ∂v∂y ,
∂v
∂x), curl Φ =

∂ϕ1
∂y −

∂ϕ2
∂x , ∇v = ( ∂v∂x ,

∂v
∂y).

The piecewise gradient ∇NC acts as (∇NCv)|T = ∇(v|T) for all T ∈ T. Let Pr denote the algebraic polynomials of
degree at most r and set

Pr(T) := {v ∈ L2(Ω) : v|T ∈ Pr(T) for all T ∈ T}, S1(T) := P1(T) ∩ C(Ω).

Let Π0 denote the piecewise L2 projection onto P0(T) with respect to the shape-regular triangulation T. The
associated nonconforming Crouzeix–Raviart and lowest-order Raviart–Thomas mixed finite element spaces
read

CR1(T) := {v ∈ P1(T) : v is continuous in all midpoints mid(E) of edges E ∈ E},
CR10(T) := {v ∈ CR1(T) : v(mid(E)) = 0 for all E ∈ E(∂Ω)},
RT0(T) := {q ∈ H(div, Ω) : ∀T ∈ T ∃c ∈ ℝ2 ∃d ∈ ℝ ∀x ∈ T, q(x) = c + dx}.
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2.2 A Posteriori Error Control

The a posteriori error control for problem (1.4) has been established in [4, Theorem 5.5]: Given the unique
solutions (p, u) to (1.3) and (pRT, uRT) to (1.4), for small initial mesh-size h0, the equivalence

‖p − pRT‖2H(div,Ω) + ‖u − uRT‖
2 ≈ σ2(T) := η2(T) + μ2(T) (2.1)

holds for the (squared) error estimator η(T) and data approximation μ(T) defined by

η2(T) := ∑
T∈T

η2(T, T) with

(2.2)
η2(T, T) := |T| 12 ∑

E∈E(T)
‖[A−1pRT+uRTb⋆]E ⋅ τE‖2L2(E) + |T|‖A

−1pRT + uRTb⋆‖2L2(T)

and

μ2(T) := ∑
T∈T

μ2(T) with μ2(T) := ‖f − Π0f‖2L2(T). (2.3)

Given the discrete solution (pRT, uRT) and (p̂RT, ûRT) with respect to the admissible triangulation T and its
refinement T̂ ∈ 𝕋(T), respectively, the distance function reads

δ2(T, T̂) := ‖p̂RT − pRT‖2H(div,Ω) + ‖ûRT − uRT‖
2 (2.4)

with the weighted norm from

‖p̂RT − pRT‖2H(div,Ω) := ‖A
− 12 (p̂RT − pRT)‖2 + ‖div(p̂RT − pRT)‖2.

2.3 Safem – The Adaptive Algorithm with Separate Marking

The separate marking scheme runs two alternatives A and B depending on the ratio of ηℓ and μℓ and some
small positive input parameters θA and κ.

Algorithm 1. Safem(θA , ρB , κ, T0).
Input: T0 with maximal mesh-size h0, 0 < θA < 1, 0 < ρB < 1, 0 < κ.

for ℓ = 0, 1, . . .
Compute indicators η2ℓ (T) := η2(Tℓ, T), μ2(T) for T ∈ Tℓ by (2.2)–(2.3).
if μ2ℓ := μ2(Tℓ) ≤ κη2ℓ // Case (A)

Select a subsetMℓ ⊆ Tℓ of (almost) minimal cardinality with

θAη2ℓ ≤ η2ℓ (Mℓ) := ∑
T∈Mℓ η2ℓ (T).

Run Tℓ+1 := Refine(Tℓ,Mℓ).
else // Case (B)

Run T = approx(ρBμ2ℓ , μ(T) : T ∈ T0).
Compute Tℓ+1 := Tℓ ⊕ T.

Output: Tk, ηk, μk, σk := √η2k + μ
2
k for k = 0, 1, . . . .

The routine Refine applies the newest vertex bisection [20] and refines the marked trianglesMℓ to com-
pute the smallest admissible refinement Tℓ+1 of Tℓ withMℓ ⊂ Tℓ \ Tℓ+1.

The data approximation algorithm approx used in Case B is introduced for separate marking in [8, Sec-
tion 3.3] or [7, 17, 18] with input tolerance ρBμ2ℓ and values (μ(T) : T ∈ T).
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2.4 Axioms and Optimal Convergence

Suppose that there exist universal positive constants Λ1, Λ2, Λ3, Λ4 and 0 < ρ2 < 1 that satisfy (A1)–(A4)
and (B1)–(B2) below. Here and in the following T̂ ∈ 𝕋(T) is an admissible triangulation and refinement
of some T ∈ 𝕋 := 𝕋(T0). Recall the definition of the error estimator in (2.2)–(2.4) and the abbreviation
η2(T,M) := ∑M∈Mη2(T,M) for allM ⊆ T.
(A1) Stability: For all T ∈ 𝕋 and all T̂ ∈ 𝕋(T),

|η(T̂, T ∩ T̂) − η(T, T ∩ T̂)| ≤ Λ1δ(T, T̂).

(A2) Reduction: For all T ∈ 𝕋 and all T̂ ∈ 𝕋(T),

η(T̂, T̂ \ T) ≤ ρ2η(T, T \ T̂) + Λ2δ(T, T̂).

(A3) Discrete Reliability: For all T ∈ 𝕋 and all T̂ ∈ 𝕋(T),

δ2(T, T̂) ≤ Λ3(η2(T, T \ T̂) + μ2(T)).

Let (Tℓ)ℓ∈ℕ and (σℓ)ℓ∈ℕ be the output of Safem of Section 2.3 and abbreviate ηℓ := η(Tℓ) ≡ η(Tℓ, Tℓ) and
η2ℓ := η2(Tℓ, Tℓ) ≡ η2(Tℓ) := η(Tℓ, Tℓ)2, etc.
(A4) Quasi-Orthogonality: For all ℓ ∈ ℕ0,

∞

∑
k=ℓ

δ2(Tk , Tk+1) ≤ Λ4σ2ℓ .

(B1) Rate s Data Approximation: There exists s > 0 such that for Tol> 0, TTol := approx(Tol, μ(T) : T ∈T0) ∈𝕋
satisfies

|TTol| − |T0| ≤ Λ5Tol−
1
2s and μ2(TTol) ≤ Tol.

(B2) Quasimonotonicity of μ: For all T ∈ 𝕋(T) and all T̂ ∈ 𝕋(T),

μ(T̂) ≤ μ(T).

Theorem 2.1 (Quasi-Optimality [8]). Suppose (A1)–(A4) and (B1)–(B2). Then there exists some κ0 > 0 such
that any choice of κ, θA and ρB with

0 < κ < κ1 := min{κ0, Λ−21 Λ−13 }, 0 < θA < θ0 :=
1 − κΛ2

1Λ3

1 + Λ2
1Λ3

,

and 0 < ρB < 1 implies the following. The output (Tℓ)ℓ∈ℕ0 and (σℓ)ℓ∈ℕ0 of Safem (Algorithm 1) of Section 2.3
satisfies the equivalence

Λs
5 + sup
ℓ∈ℕ0
(1 + |Tℓ| − |T0|)sσℓ ≈ Λs

5 + sup
N∈ℕ0
(1 + N)smin σ(𝕋(N)).

The proof of Theorem 2.1 is given in [8] and not recalled here. The version of this paper is even slightly sim-
plified in that Λ̂3 := 0, Λ6 := 1, andR(T, T̂) ≡ T \ T̂ are more general in [8] and are not displayed explicitly in
this paper.

The data approximation axioms (B1)–(B2) are discussed in [8], the results apply verbatim for the set-
ting in this paper. This is exemplified in [8, Section 5] for the mixed FEM and hence not further detailed in
this paper.

3 Verification of (A1)–(A2)
The analysis of (A1)–(A2) follows standard arguments and is outlined here for completeness for the problem
athandwithpiecewise constant coefficientswith little emphasis that theglobal constants Λ1, Λ2 arebounded
by the constant Cjc in the discrete jump control.
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Lemma 3.1 (Discrete Jump Control [8]). There exists a universal constant Cjc, which depends on the interior
angles in the regular triangulation T and the degree k ∈ ℕ0, such that any g ∈ Pk(T) with jumps

[g]E =
{
{
{

(g|T+ )|E − (g|T− )|E for E ∈ E(Ω) with E = ∂T+ ∩ ∂T−,
g|E for E ∈ E(∂Ω) ∩ E(K)

satisfies

√ ∑
K∈T
|K| 12 ∑

E∈E(K)
‖[g]E‖2L2(E) ≤ Cjc‖g‖L2(Ω).

The discrete jump control plus triangle inequalities in Lebesgue spaces and in finite-dimensional Euclidean
spaces imply the stability (A1). Throughout this section, let (pRT, uRT) and (p̂RT, ûRT) denote the discrete solu-
tion with respect to T ∈ 𝕋 and its refinement T̂ ∈ 𝕋(T), respectively, and let δ(T, T̂) be the distance function
(2.4).

Theorem 3.2 ((A1) Stability). Axiom (A1)holdswithΛ2
1 := 2(ϱ−1 + ‖b⋆‖2∞)(h2max + C2jc) for a global lower bound

ϱ > 0 of the piecewise constant eigenvalues of the coefficientmatrixA, the supremumof |b⋆|, themaximalmesh-
size hmax, and for the constant Cjc from the discrete jump control of Lemma 3.1.

Proof. The reverse triangle inequality inℝm for m := |T ∩ T̂| over the element contributions implies that

|η(T̂, T ∩ T̂) − η(T, T ∩ T̂)|2 ≤ ∑
T∈T∩T̂
(η(T̂, T) − η(T, T))2.

Each of the terms η(T̂, T) and η(T, T) is a norm in ℝ4 of terms, which are Lebesgue norms and so allow for
a reverse triangle inequality. This leads to

(η(T̂, T) − η(T, T))2 ≤ |T|‖g‖2L2(T) + |T|
1
2 ∑
E∈E(T)
‖[g] ⋅ τE‖2L2(E)

with the abbreviation g := A−1(p̂RT − pRT) + (ûRT − uRT)b⋆ ∈ P1(T̂;ℝ2). The sum over all T ∈ T ∩ T̂ involves
volume terms and edge jumps. Lemma 3.1 controls the latter terms and so results in

|η(T̂, T ∩ T̂) − η(T, T ∩ T̂)|2 ≤ C2jc‖g‖
2
L2(Ω) + ∑

T∈T∩T̂
|T|‖g‖2L2(T).

The mesh-size is bounded from above and so the right-hand side is bounded by the factor h2max + C2jc times
the squared L2 norm of g. A triangle inequality and the bounds on the coefficients show

‖g‖2 ≤ 2(ϱ−1 + ‖b⋆‖2∞)δ2(T, T̂).

Theorem 3.3 ((A2) Reduction). Axiom (A2) holds with ϱ2 := 2−
1
4 and Λ2 := Λ1.

Proof. For the m refined triangles T ∈ T̂(K) := {T ∈ T̂ : T ⊂ K} of K ∈ T \ T̂, the sum η2(T̂, T̂ \ T) reads

∑
T∈T̂\T
(|T|‖A−1p̂RT + ûRTb⋆‖2L2(T) + |T|

1
2 ∑
F∈E(T)
‖[A−1p̂RT + ûRTb⋆]F ⋅ τF‖2L2(F)).

The reverse triangle inequalities in ℝ4m and in Lebesgue spaces over triangles and edges and the abbrevia-
tion g from the previous proof plus G := A−1pRT + uRTb⋆ show

η(T̂, T̂ \ T) ≤ ( ∑
K∈T\T̂
T∈T̂(K)

(|T|‖G‖2L2(T) + |T|
1
2 ∑
E∈E(T)
‖[G]E ⋅ τE‖2L2(E)))

1
2

+ ( ∑
T∈T̂\T
(|T|‖g‖2L2(T) + |T|

1
2 ∑
E∈E(T)
‖[g]E ⋅ τE‖2L2(E)))

1
2

.

Since [G ⋅ τF]F = 0 for F ∈ Ê(int(K)) and |T| ≤ |K|2 for T ∈ T̂(K), the first termon the right-hand side of the above
displayed formula is bounded fromabove by 2−

1
4 η(T, T \ T̂). The remaining term is estimatedwith Lemma3.1

as in the previous proof and so with the same bound on Λ2 = Λ1.
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4 Verification of (A3)
Throughout this section let (pRT, uRT) and (p̂RT, ûRT) solve (1.4) and let Π0f and Π̂0f denote the L2 orthogonal
projectionof the right-hand side f ontopiecewise constants (P0(T)and P0(T̂))with respect to the triangulation
T and its refinement T̂, respectively.

The main residual R1 is defined, for any test function q̂RT ∈ RT0(T̂), by

R1(q̂RT) := −(A−1pRT + uRTb⋆, q̂RT)L2(Ω) + (div q̂RT, uRT)L2(Ω). (4.1)

Lemma 4.1. There exists some q̂RT ∈ RT0(T̂) with norm ‖q̂RT‖H(div,Ω) = 1 and

δ(T, T̂) ≲ R1(q̂RT) + ‖Π̂0f − Π0f‖.

Proof. The initial mesh-size h0 is sufficiently small throughout this paper to guarantee the existence and
stability of the discrete solutions [4, Theorem 4.3]. The stability of the discrete problem (1.4) with respect to
the refined triangulation T̂ leads to the existence of (q̂RT, v̂RT) ∈ RT0(T̂) × P0(T̂)with ‖q̂RT‖H(div,Ω) + ‖v̂RT‖ ≲ 1
and

δ(T, T̂) = (A−1(p̂RT − pRT) + (ûRT − uRT)b⋆, q̂RT)L2(Ω) − (divq̂RT, ûRT − uRT)L2(Ω)
+ (div(p̂RT − pRT) + γ(ûRT − uRT), v̂RT)L2(Ω).

Since (p̂RT, ûRT) solves (1.4) with respect to the refined triangulation T̂ and divpRT + γuRT = Π0f (1.4) with
respect to T, this reads

δ(T, T̂) = R1(q̂RT) + (Π̂0f − Π0f, v̂RT)L2(Ω).

A Cauchy inequality concludes the proof.

The further analysis of R1 requires a discrete Helmholtz decomposition on a regular triangulation T of
a (possibly) multi-connected domain Ω. The connectivity components Γ0, Γ1, . . . , ΓJ of ∂Ω are enumerated
such that Γ0 denotes the boundary of the unbounded component of ℝ2 \ Ω̄. The modified lowest-order
Crouzeix–Raviart space reads

CR1⋆(T) = {v ∈ CR1(T) : there exist c1, . . . , cJ ∈ ℝ, c0 := 0, such that for all j = 0, 1, . . . , J
and all E ∈ E(Γj), v(mid(E)) = cj}.

(4.2)

(Here and throughout the paper, E(Γj) denotes the set of edges on Γj.)

Lemma 4.2 (Discrete Helmholtz Decomposition). For the multi-connected domain Ω the decomposition of
piecewise constant vector functions

P0(T;ℝ2) = A∇NCCR1⋆(T) ⊕ Curl(S1(T))

is orthogonal with respect to the L2 scalar product weighted by A−1 in the sense that

(∇NCvCR, CurlwC)L2(Ω) = 0 for all vCR ∈ CR1⋆(T) and all wC ∈ S1(T).

Proof. The discrete Helmholtz decomposition is well known for simply-connected domains and J = 0. The
general case followswith the sameargument by counting triangles and edges |T| + |N| = |E| + 1 − J in general;
further details are omitted.

Themodified Crouzeix–Raviart space is accompanied by amodified Raviart–Thomas space Q(T̂)with vanish-
ing integral mean of the normal components over each boundary,

Q(T̂) := {q̂RT ∈ RT0(T̂) : ∫
Γj

q̂RT ⋅ ν ds = 0 for all j = 1, . . . , J}.

The discrete Helmholtz decomposition allows for a characterization of the divergence-free functions.
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Lemma 4.3 (Discrete Divergence). The linear operator

div : Q(T̂) → P0(T̂)

is surjective and its kernel is Curl(S1(T̂)).

Proof. The divergence-free Raviart–Thomas functions in Q(T̂) are piecewise constant and allow for a dis-
crete Helmholtz decomposition as in Lemma 4.2. The decomposition implies that the divergence-free
Raviart–Thomas functions in Q(T̂) are those in Curl(S1(T̂)). Consequently, the kernel of div : Q(T̂) → P0(T̂)
has the dimension |N̂| − 1 for the number |N̂| of nodes in T̂. Since the dimension of the vector space Q(T̂) is
|Ê| − J for the number |Ê| of edges in T̂, the range of div : Q(T̂) → P0(T̂) has dimension |Ê| − |N̂| + 1 − J. Since
|T̂| + |N̂| = |Ê| + 1 − J, the range is P0(T̂).

One key argument of the reliability analysis is the split of the difference p̂RT − pRT into two parts p̂RT − p̂RT⋆

and p̂RT⋆ − pRT for some auxiliary solution: Seek (p̂RT⋆, ûRT⋆) ∈ RT0(T̂) × P0(T̂) with

∫
Γj

p̂RT⋆ ⋅ ν ds = ∫
Γj

pRT ⋅ ν ds, (4.3a)

(A−1p̂RT⋆, q̂RT)L2(Ω) − (div q̂RT, ûRT⋆)L2(Ω) = −(uRTb⋆, q̂RT)L2(Ω), (4.3b)

(div p̂RT⋆, v̂RT)L2(Ω) = (Π0f − γuRT, v̂RT)L2(Ω) (4.3c)

hold for all q̂RT ∈ Q(T̂), for all v̂RT ∈ P0(T̂), and for all j = 1, . . . , J.
The solution to (4.3) is recovered from an auxiliary nonconforming problem: Let ûCR⋆ ∈ CR1⋆(T̂) denote

the Riesz representation of the functional on the right-hand side of

(A∇NCûCR⋆, ∇NCŵCR)L2(Ω) = (Π0f − γuRT, ŵCR)L2(Ω) − (uRTb, ∇NCŵCR)L2(Ω)

−
J
∑
j=1
(−∫

Γj

pRT ⋅ ν ds)(∫
Γj

ŵCR ds) (4.4)

for all test functions ŵCR ∈ CR1⋆(T̂) in the Hilbert space (CR1⋆(T̂), (A∇NC∙, ∇NC∙)L2(Ω)). Here and throughout
the paper, −∫ denotes the integral mean −∫Γj ∙ ds := ∫Γj ∙ ds/|Γj| for the length |Γj| of the closed polygon Γj.

The equivalence of this with (4.3) implies the unique solvability of (4.3). To verify this, let ûCR⋆ solve
(4.4) and, for x ∈ T ∈ T̂, set

S(T) := −∫
T

(x −mid(T)) ⋅ A−1(x −mid(T))dx,

p̂RT⋆(x) := −(A∇NCûCR⋆ + uRTb) +
1
2
(Π0f − γuRT)(x −mid(T)), (4.5)

ûRT⋆(x) := Π0ûCR⋆ + S(T)(Π0f − γuRT). (4.6)

The piecewise constant function S(T) is

S(T)|T = S(T) :=
1
4
−∫
T

(x −mid(T)) ⋅ A−1((x −mid(T))dx

in T ∈ T.

Lemma 4.4. The pair (p̂RT⋆, ûRT⋆) from (4.5)–(4.6) defines the unique solution to (4.3).

Proof. The proof imitates that of [4, Theorem 4.2] and generalizes it to multiply connected domains.
The arguments therein confirm the continuity of normal components along the interior edges and prove
p̂RT⋆ ∈ RT0(T̂) ⊂ H(div, Ω). The present situation involves the connectivity components Γ1, . . . , ΓJ of the
boundary ∂Ω and requires a little modification in the proof that (p̂RT⋆, ûRT⋆) indeed satisfies (4.3). Set

cj := −∫
Γj

ûCR⋆ ds
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and substitute p̂RT⋆ from (4.5) before a piecewise integration by parts shows, for any test function q̂RT ∈Q(T̂),
that

(p̂RT⋆ + uRTb⋆, q̂RT)L2(Ω) − (div q̂RT, Π0ûCR⋆)L2(Ω)

= (
1
2
A−1(Π0f − γuRT)( ∙ −mid(T)), q̂RT)

L2(Ω)
−

J
∑
j=1

cj ∫
Γj

(q̂RT ⋅ ν)ds.

The first term on the right-hand side already appears in [4, p. 567, lines 1–2] and is rewritten as

2((Π0f − γuRT)A−1( ∙ −mid(T)), q̂RT)L2(Ω) = (Π0f − γuRT, S(T)div q̂RT)L2(Ω).

This term combines with −(div q̂RT, Π0ûCR⋆)L2(Ω) in the aforementioned equality and leads with (4.6) to
−(div q̂RT, ûRT⋆)L2(Ω). Recall that c0 = 0 and that ∫Γj q̂RT ⋅ ν ds = 0 for j = 1, . . . , J because of q̂RT ∈ Q(T̂). This
calculation leads to equation (4.3b). Since p̂RT⋆ ∈ RT0(T̂) ⊂ H(div, Ω), the definition of (4.5) immediately
proves (4.3c). Rewrite (4.5) to obtain an identity for A∇NCûCR⋆ and utilize this in (4.4). This leads to an
identity, which allows a piecewise integration by parts and then results in

J
∑
j=1
∫
Γj

ŵCR(p̂RT⋆ − pRT) ⋅ ν ds = 0 for all ŵCR ∈ CR1⋆(T̂).

The design of ŵCR ∈ CR1⋆(T̂)with piecewise integralmeans along the boundary edges of Γj which are constant
for each j = 1, . . . , J proves (4.3a).

This concludes the proof of the existence of a discrete solution to (4.3a)–(4.3c) and it remains to show
the uniqueness of a discrete solution. This follows from the trivial solution to the homogeneous system

(A−1p̂RT⋆, q̂RT)L2(Ω) − (div q̂RT, ûRT⋆)L2(Ω) = 0 = (div p̂RT⋆, v̂RT)L2(Ω)

for all q̂RT ∈Q(T̂), v̂RT ∈ P0(T̂)plus∫Γj p̂RT
⋆ ⋅ ν ds = 0 for j = 0, . . . , J. Given anarbitrary solution (p̂RT⋆, ûRT⋆) to

this discrete homogeneous problem, let q̂RT = p̂RT⋆ to find p̂RT⋆ = 0. It follows (div q̂RT, ûRT⋆)L2(Ω) = 0 for all
test functions. Lemma 4.3 allows for a test function q̂RT with div q̂RT = ûRT⋆ and so ûRT⋆ = 0. This concludes
the proof of the uniqueness of the solution of the homogeneous system.

Lemma 4.5. The test function q̂RT ∈ RT0(T̂) in Lemma 4.1 can be selected additionally to satisfy Π0 div q̂RT = 0
and ∫Γj q̂RT ⋅ ν ds = 0 for all j = 0, 1, . . . , J.

Proof. The first equation in (1.4) shows that RT0(T) belongs to the kernel of R1 from (4.1). Hence we may
and will replace test function q̂RT ∈ RT0(T̂) in Lemma 4.1 by q̂RT − qRT for some appropriate qRT ∈ RT0(T).
The naive choice of the Fortin interpolation qRT of q̂RT leads to the additional properties but leaves open the
subtle question of the uniform bound ‖qRT‖H(div,Ω) in terms of ‖q̂RT‖H(div,Ω) ≈ 1. This proof utilizes the MFEM
solution (qRT, vRT) ∈RT0(T)×P0(T) to the modified Poisson model problem with right-hand side Π0 div q̂RT,

∫
ΓJ

qRT ⋅ ν ds = ∫
Γj

q̂RT ⋅ ν ds for all j = 1, . . . , J, (4.7a)

(qRT, zRT)L2(Ω) = (div zRT, vRT)L2(Ω) for all zRT ∈ RT0(T), (4.7b)

(divqRT, wRT)L2(Ω) = (Π0 div q̂RT, wRT)L2(Ω) for all wRT ∈ P0(T). (4.7c)

Equations (4.7) are a particular version of (4.3) and the equivalence of Lemma 4.4 applies here as well. This
implies the unique existence of (qRT, vRT) ∈ RT(T) × P0(T) and leads the desired bound

‖qRT‖H(div,Ω) ≲ ‖q̂RT‖H(div,Ω) ≈ 1.

Recall that (pRT, uRT) and (p̂RT, ûRT) solve (1.4) with respect to the triangulation T and its refinement T̂,
respectively, and that (p̂RT⋆, ûRT⋆) solves (4.3). Define the modified residual R2 by

R2(q̂RT) := −(A−1p̂RT⋆ + uRTb⋆, q̂RT)L2(Ω) for any test function q̂RT ∈ RT0(T̂). (4.8)
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Lemma 4.5 and the modified test-function q̂RT show

δ(T, T̂) − ‖Π̂0f − Π0f‖ ≤ R1(q̂RT) = −(A−1pRT + uRTb⋆, q̂RT)L2(Ω)
≲ R2(q̂RT) + ‖p̂RT⋆ − pRT‖H(div,Ω). (4.9)

The divergence-free term p̂RT⋆ − pRT is controlled in the subsequent lemma.

Lemma 4.6. It holds ‖p̂RT⋆ − pRT‖H(div,Ω) ≲ η(T, T \ T̂).

Proof. Since div p̂RT⋆ = Π0f − γuRT = divpRT implies div(p̂RT⋆ − pRT) = 0, it follows that p̂RT⋆ − pRT is piece-
wise constant and its discrete Helmholtz decomposition leads to α̂CR ∈ CR1⋆(T̂) and β̂C ∈ S1(T̂) with

p̂RT⋆ − pRT = A∇NCα̂CR + Curl β̂C .

This and the L2 orthogonality (p̂RT⋆ − pRT) ⊥ ∇NCα̂CR show that α̂CR ≡ 0. Consequently,

‖p̂RT⋆ − pRT‖2H(div,Ω) = (p̂RT
⋆ − pRT,A−1 Curl β̂C)L2(Ω). (4.10)

Given any node z ∈ N in the coarse triangulation T, the Scott–Zhang quasi-interpolation [19] defines βC(z)
by a selection of an edge E(z) ∈ E with vertex z and evaluates some weighted integral of β̂C along E(z).
Select the edge E(z) ∈ E ∩ Ê if possible to obtain a Scott–Zhang quasi-interpolation βC ∈ S1(T) of β̂C with
β̂C − βC = 0 a.e. in⋃(T ∩ T̂)plus the local approximation and stability properties. For any edge E ∈ E of length
hE and its neighborhood Ω(E) := ⋃z∈N(E) ωz for the nodal patches ωz, the latter properties and discrete trace
inequalities result in

‖β̂C − βC‖L2(E) ≲ h
1
2
E ‖β̂C‖H1(Ω(E)). (4.11)

The weak formulation (1.4) with qRT = Curl βC ∈ RT0(T) and equation (4.3b) with q̂RT := Curl βC ∈ RT0(T̂)
show (p̂RT⋆ − pRT,A−1 Curl βC)L2(Ω) = 0. Hence (4.10) is (p̂RT⋆ − pRT,A−1 Curl(β̂C − βC))L2(Ω). The test func-
tion q̂RT := Curl(β̂C − βC) in equation (4.3b) shows that (4.10) is (A−1pRT + uRTb⋆, Curl(βC − β̂C))L2(Ω). This
and a piecewise integration by parts leads to

‖p̂RT⋆ − pRT‖2H(div,Ω) = ∑
E∈Ê
∫
E

(βC − β̂C)[A−1pRT + uRTb⋆]E ⋅ τE ds − ∑
T∈T̂
∫
T

(βC − β̂C) curl(A−1pRT + uRTb⋆)ds.

The piecewise curl of the low-order Raviart–Thomas finite element functions vanishes and so do all sum-
mands in the last term. Since β̂C − βC = 0 along any edge E ∈ E ∩ Ê, this proves

‖p̂RT⋆ − pRT‖2H(div,Ω) ≲ ∑
E∈E\Ê
‖[A−1pRT + uRTb⋆]E ⋅ τE‖L2(E)‖β̂C − βC‖L2(E).

The combinationwith estimate (4.11) for ‖β̂C −βC‖L2(E) and the bound ‖∇β̂C‖ = ‖Curl β̂C‖ ≲ ‖p̂RT⋆ − pRT‖H(div,Ω)
imply

‖p̂RT⋆ − pRT‖2H(div,Ω) ≲ ∑
E∈E\Ê

hE‖[A−1pRT + uRTb⋆]E ⋅ τE‖2L2(E). (4.12)

A rearrangement with the triangle-oriented error estimator concludes the proof.

Lemma 4.7. The test function q̂RT from Lemma 4.5 and the residual R2 from (4.8) satisfy

R2(q̂RT) ≲ η(T, T \ T̂) + ‖p̂RT⋆ − pRT‖H(div,Ω).

Proof. Let ∙ −mid(T̂) ∈ P1(T̂;ℝ2) abbreviate the function x −mid(T) for x ∈ T ∈ T̂ and consider the test func-
tion q̂RT = Π̂0q̂RT + 1

2 div q̂RT( ∙ −mid(T̂)) ∈ P1(T̂;ℝ2) from Lemma 4.5. The piecewise constant part Π̂0q̂RT
allows a discrete Helmholtz decomposition

Π̂0q̂RT = A∇NC v̂CR + Curl β̂C

from Lemma 4.2 for some v̂CR ∈ CR1⋆(T̂) and some β̂C ∈ S1(T̂). Altogether, there are three contributions of

R2(q̂RT) = R2(A∇NC v̂CR) + R2(Curl β̂C) + R2(
1
2
div q̂RT( ∙ −mid(T̂))).
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(i) The representation of p̂RT⋆ in (4.5) is utilized in the first contribution and leads to

R2(A∇NC v̂CR) = −(p̂RT⋆ + uRTb, ∇NC v̂CR)L2(Ω) = (∇NCûCR⋆,A∇NC v̂CR)L2(Ω).

On the other hand, A∇NC v̂CR = Π̂0q̂RT − Curl β̂C and Curl β̂C is L2 orthogonal to ∇NCûCR⋆. This and an integra-
tion by parts prove

R2(A∇NC v̂CR) = (∇NCûCR⋆, q̂RT)L2(Ω) = −(ûCR⋆, div q̂RT)L2(Ω).

Recall that div q̂RT is L2 orthogonal onto P0(T) and so

R2(A∇NC v̂CR) = ((Π0 − Π̂0)ûCR⋆, div q̂RT)L2(Ω) ≤ ‖(Π̂0 − Π0)ûCR⋆‖‖div q̂RT‖.

Note that (Π̂0 − Π0)ûCR⋆ vanishes a.e. in T ∈ T ∩ T̂ and a piecewise discrete Poincaré inequality shows
‖(Π̂0 − Π0)ûCR⋆‖ ≲ ‖hT∇NCûCR⋆‖L2(Ω󸀠) with the interior Ω󸀠 of the domain⋃(T \ T̂). Consequently,

R2(A∇NC v̂CR) ≲ ‖hT∇NCûCR⋆‖L2(Ω󸀠).
(ii) Observe from (4.3b) and Curl β̂C ∈ Q(T̂) that R2(Curl β̂C) = 0.

(iii) Since div q̂RT vanishes outside the set Ω󸀠 (for div q̂RT = Π0 div q̂RT on T ∈ T ∩ T̂) and the weight satisfies
| ∙ −mid(T̂)| ≲ hT, the term R2(12 div q̂RT( ∙ −mid(T̂))) is equal to

−
1
2
(A−1p̂RT⋆ + uRTb⋆, ( ∙ −mid(T̂))div q̂RT)L2(Ω󸀠) ≲ ‖hT(A−1p̂RT⋆ + uRTb⋆)‖L2(Ω󸀠).

In conclusion of (i)–(iii), it follows that

R2(q̂RT) ≲ ‖hT∇NCûCR⋆‖L2(Ω󸀠) + ‖hT(A−1p̂RT⋆ + uRTb⋆)‖L2(Ω󸀠). (4.13)

On the other hand, the representation formula (4.5) shows that

‖hT(A−1p̂RT⋆ + uRTb⋆ − ∇NCûCR⋆)‖L2(Ω󸀠) = ‖hT(Π0f − γuRT)A−1( ∙ −mid(T))‖L2(Ω󸀠).
With a lower bound ϱ of the smallest eigenvalue of A and with divpRT = Π0f − γuRT from (1.4),

‖hT(A−1p̂RT⋆ + uRTb⋆ − ∇NCûCR⋆)‖L2(Ω󸀠) ≤ ϱ−1‖h2T divpRT‖L2(Ω󸀠).
For each T ∈ T, ‖hT divpRT‖L2(T) ≈ ‖(1 − Π0)pRT‖L2(T) and an inverse estimate plus a uniform upper bound ϱ
of the eigenvalues of A lead to

ϱ‖h2T divpRT‖L2(T) ≲ ϱ‖hT(1 − Π0)(A−1pRT)‖L2(T)
≤ ‖hT(1 − Π0)(A−1pRT)‖L2(T) ≤ ‖hT(A−1pRT + uRTb⋆)‖L2(T).

The combination of the previously displayed estimates results in

‖hT(A−1p̂RT⋆ + uRTb⋆ − ∇NCûCR⋆)‖L2(Ω󸀠) ≲ ‖hT(A−1pRT + uRTb⋆)‖L2(Ω󸀠).
This and (4.13) plus some triangle inequalities imply

R2(q̂RT) ≲ ‖hT(A−1pRT + uRTb⋆)‖L2(Ω󸀠) + ‖hT(A−1p̂RT⋆ + uRTb⋆)‖L2(Ω󸀠)
≲ ‖hT(p̂RT⋆ − pRT)‖L2(Ω󸀠) + ‖hT(A−1pRT + uRTb⋆)‖L2(Ω󸀠).

Since hT ≤ h0 ≲ 1, this concludes the proof.

Theorem 4.8 ((A3) Discrete Reliability). Under the overall assumption that h0 is sufficiently small, there exists
some universal constant Λ3, which depends on the global lower and upper bounds of the eigenvalues of A and
on the universal stability constant of the discrete problems and on the shape-regularity in 𝕋 such that the fol-
lowing holds. The discrete solutions (pRT, uRT) and (p̂RT, ûRT) of (1.4) with respect to the triangulation T and
its refinement T̂ satisfy

Λ−13 δ2(T, T̂) ≤ η2(T, T \ T̂) + μ2(T) − μ2(T̂).

Proof. This follows from the combination of Lemma 4.5, 4.6, and 4.7 with (4.9).
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Axiom (A3) implies the reliability result of [4, Theorem 5.5].

Corollary 4.9 (Reliability). The solution (p, u) to (1.3) and the solution (pRT, uRT) to (1.4) satisfy

‖(p − pRT, u − uRT)‖H(div,Ω)×L2(Ω) ≤ Λ
1
2
3 σ(T).

Proof. This follows from (A3) for a fixed triangulation T and a sequence of its successive uniform refine-
ments T̂ as then the maximal mesh-size in T̂ tends to zero and standard estimates show convergence
of (p̂RT, ûRT) to (p, u) in the norm of H(div, Ω) × L2(Ω).

5 Verification of (A4)
The following lemmaproves the supercloseness property (1.5) of Π0u to themixed solution uRTwith a duality
argument. For given right-hand side g ∈ L2(Ω), the dual problem seeks ϕ ∈ H1

0(Ω) with

L⋆ ϕ := −div(A∇ϕ) + b ⋅ ∇ϕ + γϕ = g. (5.1)

Under the overall assumption that L is injective, it follows that L and its dual L⋆ are isomorphisms between
H1
0(Ω) and H−1(Ω).
The reduced elliptic regularity of the leading elliptic part −div(A∇ ⋅ ) leads to higher regularity, that is,

there exist α with 0 < α ≤ 1 and Creg < ∞ with

|ϕ|H1+α(Ω) ≤ Creg‖g‖ (5.2)

for any right-hand side g ∈ L2(Ω) with the solution ϕ to (5.1) (see [12, Sections 5 and 14]).
The supercloseness (1.5) is discussed in the introduction and (unlike the remaining results of this paper)

holds without any assumption on the initial mesh-size as long as (1.1) is injective and (1.4) has a solution.

Lemma 5.1 (Supercloseness). The solution (p, u) to (1.3) and the solution (pRT, uRT) to (1.4) satisfy (1.5).

Proof. The dual problem (5.1) and its solution ϕ ∈ H1
0(Ω)∩H1+α(Ω) for the right-hand side g = Π0u−uRT ∈

P0(T) lead to q := A∇ϕ ∈ H(div, Ω) ∩ Lt(Ω;ℝ2) for some t > 2. This allows the application of the Fortin inter-
polation operator IF [3, pp. 107–109] with the commutative property Π0 divq = div IFq. This and ϕh := Π0ϕ
result in

‖g‖2 = −(g, divq)L2(Ω) + (g, b ⋅ ∇ϕ + γϕ)L2(Ω)
= −(u − uRT, div IFq)L2(Ω) + (g, Π0(b ⋅ ∇ϕ) + γϕh)L2(Ω).

Equations (1.3)–(1.4) show Π0 div(p − pRT) = −γg and

(u − uRT, div IFq)L2(Ω) = (A−1(p − pRT)+(u − uRT)b⋆, IFq)L2(Ω).

The combination of the aforementioned identities in the first step and the identity ∇ϕ = A−1q in the second
step plus an integration by parts prove that

‖g‖2 = (A−1(p − pRT)+(u − uRT)b⋆, q − IFq)L2(Ω)
+ (div(p − pRT), ϕ − ϕh)L2(Ω) − (u − uRT, (1 − Π0)(b ⋅ ∇ϕ))L2(Ω).

(5.3)

The error estimates of the Fortin interpolation plus piecewise Poincaré inequalities and the reduced elliptic
regularity (5.2) of the dual problem (5.1) imply

‖q − IFq‖ ≲ hαmax|q|Hα(Ω) ≲ hαmax‖g‖,
‖∇ϕ − Π0(∇ϕ)‖ ≲ hαmax‖ϕ‖H1+α(Ω) ≲ hαmax‖g‖,
‖ϕ − ϕh‖ ≲ hmax‖∇ϕ‖ ≲ hmax‖g‖.

The application of these approximation properties to (5.3) concludes the proof.
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Recall that α > 0 is the positive extra regularity parameter, which exclusively depends on the domain and on
the coefficients, and the maximal initial mesh-size h0 is the maximal mesh-size in T0 (whence in all T ∈ 𝕋)
and Λ3 is from (A3).

Theorem 5.2 ((A4ϵ) Quasi-Orthogonality). There exists a constant Λ󸀠4 < ∞ such that for sufficiently small h0,
any ℓ,m ∈ ℕ0 satisfy

Λ−13
ℓ+m
∑
k=ℓ

δ2(Tk , Tk+1) ≤ 2σ2ℓ + Λ󸀠4h2α0
ℓ+m
∑

k=ℓ+1
σ2ℓ .

Proof. Recall ‖p − pℓ‖2H(div,Ω) := ‖A
− 12 (p − pℓ)‖2 + ‖div(p − pℓ)‖2 and abbreviate

e2ℓ := ‖p − pℓ‖2H(div,Ω) + ‖u − uℓ‖
2 and δ2ℓ,ℓ+1 := ‖pℓ+1 − pℓ‖2H(div,Ω) + ‖uℓ+1 − uℓ‖

2.

Elementary algebra plus (1.3)–(1.4) with respect to the triangulation Tℓ+1, each with the test function
(pℓ+1 − pℓ, uℓ+1 − uℓ), eventually shows that δ2ℓ,ℓ+1 + e2ℓ+1 − e2ℓ is equal to

2(u − uℓ+1, b⋆ ⋅ (pℓ+1 − pℓ) + (γ − 1)div(pℓ+1 − pℓ) − (uℓ+1 − uℓ))L2(Ω). (5.4)

The factor u − uℓ+1 in this L2 scalar product is split into Πℓ+1u − uℓ+1 and u − Πℓ+1u with the L2 projection
Πℓ+1 onto P0(Tℓ+1). Lemma 5.1 applies on the level of Tℓ+1 and controls the L2 norm

‖Πℓ+1u − uℓ+1‖ ≤ Chα0eℓ+1.

This and the Cauchy inequality control the first contribution in (5.4) by hα0eℓ+1δℓ,ℓ+1 times the constant
2C(‖A− 12b‖2∞ + ‖γ − 1‖2∞ + 1)

1
2 . The remaining second contribution in term (5.4) is the L2 scalar prod-

uct of 2(u − Πℓ+1u)b⋆ with (1 − Πℓ+1)(pℓ+1 − pℓ) (recall that b⋆ = A−1b is a constant vector with length
|b⋆| = ‖b⋆‖∞). The Raviart–Thomas function pℓ+1 − pℓ ∈ RT0(Tℓ+1) allows in 2D for

(1 − Πℓ+1)(pℓ+1 − pℓ)(x) =
1
2
(x −mid(T))div(pℓ+1 − pℓ)

at x ∈ T ∈ Tℓ+1 and so

2((u − Πℓ+1u)b⋆, pℓ+1 − pℓ)L2(Ω) ≤
2
3
|b⋆|h0‖u − uℓ+1‖‖div(pℓ+1 − pℓ)‖ ≤

2
3
|b⋆|h0eℓ+1δℓ,ℓ+1.

The combination of the two estimates for the two contributions in (5.4) leads (with h0 ≤ hα0 for α ≤ 1 and
h0 ≤ 1) to

Λ󸀠4 := (
2
3
‖b⋆‖∞ + 2C(‖A−

1
2b‖2∞ + ‖γ − 1‖2∞ + 1)

1
2 )

2

and

δ2ℓ,ℓ+1 + e2ℓ+1 − e2ℓ ≤ hα0(Λ󸀠4)
1
2 eℓ+1δℓ,ℓ+1 ≤

1
2
δ2ℓ,ℓ+1 +

1
2
Λ󸀠4h2α0 e2ℓ+1.

Provided that Λ󸀠4h2α0 ≤ 2, the sum of the above inequalities over different levels shows

ℓ+m
∑
k=ℓ

δ2k,k+1 ≤ 2e
2
ℓ + Λ
󸀠
4h2α0

ℓ+m
∑

k=ℓ+1
e2k .

This and Corollary 4.9 with e2k ≤ Λ3σ2k conclude the proof.

Corollary 5.3 ((A4) Quasi-Orthogonality). Axiom (A4) holds for sufficiently small initial mesh-sizes h0.

Proof. This follows from [8, Theorem3.1] and (A4ϵ) for a sufficiently small ϵ := Λ3Λ󸀠4h2α0 <
1−ρ12
Λ12

with param-
eters 0 < ρ12 < 1 and Λ12 > 0 of the reduction result (A12) in [8, Theorem 4.1].

Remark 5.4 (Generalizations). Several arguments in this section apply to othermixed finite elementmethods
as well but the second contribution in (5.4) solely applies to the Raviart–Thomasmixed finite element family.
The restriction on the smallness of h0 in Theorem 5.2 can be circumvented by the quasi-monotonicity (cf. [8]
for the concept) but is required in Corollary 5.3.
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6 Numerical Experiments
This section is devoted to numerical experiments to investigate the influence of the critical parameters h0,
θA, and κ and the practical performance of the adaptive algorithm Safem. After a few remarks on the imple-
mentation, three examples on the L-shaped domain are displayed with smooth or discontinuous right-hand
sides, before some overall observations conclude the paper.

6.1 Numerical Realization

The data approximation is realized by the Thresholding SecondAlgorithm (TSA) of [1] followed by the closure
algorithm to output a shape-regular triangulation.

Algorithm 2. TSA.
Compute μ̃2(T) = μ2(T) for all T ∈ T0 and set μ2(T0) := ∑T∈T0

μ2(T).
Set P := T0.

while μ2(P) > Tol do
Compute μ̃2(T) for all T ∈ P, set μ̃2max := maxT∈P μ̃2(T).
Select a subsetM := {T ∈ P : ϑμ̃2max ≤ μ̃2(T)} ⊂ P.
Compute P := bisec(P,M).

Compute TTol := completion(P) ∈ 𝕋.

The realization from [17, 18] is slightly modified in the Approx algorithm of [1] through a parameter
ϑ = 1 − 10−6 < 1 in the computation ofM. The functional μ̃(T) in TSA is a weighted error functional, which
depend on the values of μ(T) and μ̃(T) on the parent triangle TP as well as on the siblings of TP, cf. [1, 17, 18]
for more details and the explicit formulas.

The non-homogeneous boundary data in Section 6.2 are not met in the theoretical part of this paper,
which is simplified to homogeneous boundary conditions. The first example with known solution requires
inhomogeneous boundary data on ∂Ω with the modified jump-term (A−1pRT + uRTb⋆)|E ⋅ τE + ∂u

∂s |E along the
boundary edge E ⊂ ∂Ω with the prescribed boundary values u and its tangential derivative ∂u

∂s on E.

Short Notation. The abbreviation error ε (resp. estimator σ) refers to the left-(resp. right-)hand side of (2.1).

6.2 Continuous Right-Hand Side with Known Corner Singularity

The coefficients A = I, b = (1, 1) and γ = −2 on the L-shaped domain Ω = (−1, 1)2 \ [0, 1) × (−1, 0] allow
in (1.1) for a right-hand side f (computed by (1.1) for given u) and inhomogeneous Dirichlet boundary data
(taken from u) for

u(r, θ) = r 2
3 sin(

2θ
3
)

in polar coordinates (r, θ) centered at the origin. The initial mesh T0 consists of 24 congruent right-isosceles
triangles from a criss refinement of the three sub-squares and 28 degrees of freedom.

Figure 1 displays the outcome of Safem (Algorithm 1) with κ = 1, ρB = 1
2 , and various values of θA = 0.1,

0.3, and 0.5. Despite the condition of Theorem 2.1 on the smallness of the bulk parameter θA, all displayed
values result in an improved optimal empirical convergence rate 1

2 compared to uniform mesh-refinement
with a known suboptimal convergence rate 1

3 . The initial mesh is relatively coarse but all convergence rates
are visible right from the beginning, the pre-asymptotic range is not visible. This examples allows the compu-
tation of the errors and the estimators and the equivalence is visible throughoutwith a the expected behavior.
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Figure 1: Convergence history plot for different values of θA in Section 6.2.

In the displayed experiment with κ = 1 only Case A of Safem applies as the right-hand side f is continuous.
In case of κ ≤ 0.1 for instance, only Case B runs in Safem for a very long computational range.

6.3 Constant Right-Hand Side

The coefficients A = 0.1I, b = (1, 2) and γ = −4 on the L-shaped domain Ω with constant right-hand side
f ≡ 1 lead in (1.1) to an unknown weak solution u ∈ H1

0(Ω). Figure 2 (left) displays the output T13 of through
Safem with κ = 1 and ρB = 1

2 = θA. Besides the local mesh-refining at the re-entering corner, some layer of
refinement are visible along some part of the boundary, that mimics a singular perturbed situation with
A = ϵI for very small ϵ. Undisplayed numerical experiments for ϵ = 0.01 have confirmed this observation
even stronger.

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1

−1 −0.5 0 0.5 1
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0

0.5

1

Figure 2: Triangulation T13 on level 13 in Section 6.3 with ndof = 2254 (left) and Section 6.4 with ndof = 4485 and ϵ = 1 (right).
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Figure 3: Convergence history plot for different initial input triangulations in Safem in Section 6.3 ϵ = 0.1.

The convergence history plot of Figure 3 displays the estimators σ as functions of the number of degrees
of freedom for various initial meshes, namely for T0 as described in the previous subsection and also for
an initial mesh red(T0) (of T0 from the previous subsection) with ndof = 140; red-refinement means the
division of each triangle into four congruent sub-triangles by connecting its edges’ midpoints with straight
lines. This is plotted under the label σ(uniform) and shows the expected suboptimal empirical convergence
rate. Those red-refined triangulations, e.g., red2(T0) (with ndof = 544)with two red-refinements and red3(T0)
(with ndof = 2240) for three, serve as initial triangulations in the input of Safem and Figure 3 displays the
respective convergence history plots.

The numerical experiment with the coarsest initial mesh T0 displays a pre-asymptotic range up to 1000
degrees of freedom. The finer initial triangulations lead to a much smaller pre-asymptotic range with a rapid
decrease through a strong local mesh-refinement until the convergence rate of the other adaptive mesh-
refinements is met. For the displayed parameter κ = 1, solely the Case A runs in Safem.

The undisplayed numerical experiment for a smaller parameter ϵ = 0.01 leads to a much larger pre-
asymptotic domain with a systematic error reduction only for a fine initial mesh red3(T0).

6.4 Piecewise Constant Right-Hand Side

Given the constant coefficients with A = ϵI and the domain as in the previous subsection, the right-hand
side f for this example is piecewise constant with the values ±1 and the value −1 exactly on the two squares
ω := (25 ,

3
5 )

2 ∪ (35 ,
4
5 )

2 not aligned to the triangulations; f|Ω\ω ≡ 1 and f|ω ≡ −1. Figure 2 (right) displays the
output T13 of Safem with κ = 1 = ϵ and ρB = 1

2 = θA with two squares ω visible by local mesh-refinements
along ∂ω to resolve the discontinuity of the right-hand side f (recall that f is discontinuous at triangles
that intersect ∂ω). Cases A and B alternate in Safem for this example with ϵ = 1 for the resolution of the
discontinuities of the right-hand side at ∂ω.

The convergence history plot for this example is not displayed as it looks very similar to that of the previ-
ous subsection (namely Figure 3) although the reasons for a larger pre-asymptotic range might be different.

For smaller values of ϵ, the triangulations look more like the picture in Figure 2 (left) from the previous
subsection and solely Case A runs in Safem. Even for ϵ = 0.1 (andmore so for ϵ = 0.01), themesh-refinement
displays boundary layers and no longer the discontinuities along ∂ω.
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6.5 Conclusions

The overall impression from the displayed and undisplayed numerical experiments is that the algorithm
Safem is very robust such that the choice of θA, ρB, κ in the asymptotic convergence regime with an observed
optimal convergence rate: The values θA = 1

2 = ρB and κ = 1 can be recommended throughout the exam-
ples of this paper. The condition on a sufficiently fine initial mesh 0 < h0 ≪ 1 dramatically influences the
pre-asymptotic behavior. Although the examples in Subsection 6.3 and 6.4 are very different in the right-
hand side, the stability of the discrete system is identical. The finer the initial mesh, the smaller is the pre-
asymptotic range in particular for A = ϵI with very small ϵ (e.g., ϵ = 0.01). This paper exploits the situation
when solely L is injective and then 0 < h0 ≪ 1 appears necessary for the well-posedness of the discrete sys-
tems and has to be monitored in practise. It is conjectured that this dominates the difficulty of choosing an
appropriate initial triangulation in Safem.
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