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Transfer operators such as Perron-Frobenius or Koopman operator play a key
role in modeling and analysis of complex dynamical systems, which allow linear
representations of nonlinear dynamics by transforming the original state variables
to feature spaces. However, it remains challenging to identify the optimal low-
dimensional feature mappings from data. The variational approach for Markov
processes (VAMP) provides a comprehensive framework for the evaluation and
optimization of feature mappings based on the variational estimation of modeling
errors, but it still suffers from a flawed assumption on the transfer operator and
therefore sometimes fails to capture the essential structure of system dynamics. In
this paper, we develop a powerful alternative to VAMP, called kernel embedding
based variational approach for dynamical systems (KVAD). By using the distance
measure of functions in the kernel embedding space, KVAD effectively overcomes
theoretical and practical limitations of VAMP. In addition, we develop a data-
driven KVAD algorithm for seeking the ideal feature mapping within a subspace
spanned by given basis functions, and numerical experiments show that the
proposed algorithm can significantly improve the modeling accuracy compared to
VAMP.
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1. Introduction
It has been shown that complex nonlinear processes can be accurately described by linear
models in many science and engineering fields, including wireless communications [19, 56],
molecular dynamics [54, 4, 55], fluid dynamics [28, 43] and control theory [1], where the
linear models can be expressed by a unified formula

E [f(xt+τ )] = K>E[f(xt)], (1)

and the expectation operator can be removed for deterministic systems. In such models,
the state variable x is tranformed into a feature space by the transformation f(x) =
(f1(x), . . . , fm(x))>, and the dynamics with lag time τ is characterized by a linear time-
invariant system in the feature space. Then, all the dynamical properties of the system
can be quantitatively analyzed after estimating the transition matrix K from data via
linear regression. A special case of the linear models is Markov state models [39, 35] for
conformational dynamics, which is equivalent to the well-known Ulam’s method [8, 14]. In a
Markov state model, the feature mapping f consists of indicator functions of subsets of state
and K = [Kij ] represents the transition probability from subset i to subset j. Besides Markov
state models and the Ulam’s method, a large number of similar modeling methods, e.g.,
dynamic mode decomposition [38, 2, 48, 21], time-lagged independent component analysis
(TICA) [30, 34, 41], extended dynamic mode decomposition (EDMD) [50, 16, 40], Markov
transition models [52], variational approach of conformation dynamics (VAC) [31, 32, 33],
variational Koopman models [54] and their variants based on kernel ebmeddings [15, 16] and
tensors [14, 33], are proposed by using different feature mappings.

From the perspective of operator theory, all the models in the form of (1) can be interpreted
as algebraic representations of transfer operators of systems, including Frobenius-Perron
(FP) operators and Koopman operators, and some of them are universal approximators for
nonlinear dynamical systems under the assumption that the dimension of feature space is large
enough [20] or the infinite-dimensional kernel mappings are utilized [45]. However, due to the
limitation of computational cost and requirements of dynamical analysis, the low-dimensional
approximation of transfer operators is still a critical and challenging problem in applications
[17].
One common way to solve this problem is to identify the dominant dynamical structures,

e.g., metastable states [9, 37], cycles [6] and coherent sets [11], and achieve the corresponding
low-dimensional representations via spectral clustering. But this strategy assumes that an
accurate high-dimensional model is known a priori, which is often violated especially for
large-scale systems.

Another way for deterministic systems is to seek the feature mapping f by minimizing the
regression error of (1) under the constraint that the state variable can also be accurately
reconstructed from f [23, 24]. Notice that the constraint is necessary, otherwise a trivial but
uninformative model with f(x) ≡ 1 and K = 1 could be found. Some similar methods are
developed for stochastic systems by considering (1) as a conditional generative model, where
the parameters of f can be trained based on the likelihood or the other statistical criteria
[51, 25]. However, these methods are applicable only if f are non-negative functions and
usually involves the intractable probability density estimation.
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In recent years, the variational approach has led to great progress for low-dimensional
dynamical modeling, which was first proposed for time-reversible processes [31, 32, 27, 54]
and extended to non-reversible processes in [53]. In contrast with the other methods, this
approach provides a general and unified framework for data-driven model choice, reduction
and optimization of dynamical systems based on the presented variational scores related to
approximation errors of transfer operators. It can be easily integrated with deep learning
to effectively analyze high-dimensional time series in an end-to-end manner [26, 3]. The
existing variational principle based methods suffer from two drawbacks: First, it is necessary
to assume that the transfer operator is Hilbert-Schimdt (HS) or compact as an operator
between two weighted L2 spaces so that the maximum values of variational scores exist. But
there is no easy way to test the assumption especially when we do not have strong prior
knowledge regarding the system. Specifically, it can be proved that the assumption does not
hold for most deterministic systems. Second, even for stochastic systems which satisfies the
assumption, the common variational scores are possibly sensitive to small modeling variations,
which could affect the effectiveness of the variational approach.

In this work, we introduce a kernel embedding based variational approach for dynamical
systems (KVAD) using the theory of kernel embedding of functions [44, 46, 47, 45], where
the modeling error is measured by using the distance between kernel embeddings of transition
densities. The kernel based variational score in KVAD provides a robust and smooth
quantification of differences between transfer operators, and is proved to be bounded for
general dynamical systems, including deterministic and stochastic systems. Hence, it can
effectively overcome the difficulties of existing variational methods, and expands significantly
the range of applications. Like the previous variational scores, the kernel based score can also
be consistently estimated from trajectory data without solving any intermediate statistical
problem. Therefore, we develop a data-driven KVAD algorithm by considering f as a linear
superposition of a given set of basis functions. Furthermore, we establish a relationship
between KVAD, diffusion maps[5] and the singular components of transfer operators. Finally,
the effectiveness the proposed algorithm is demonstrated by numerical experiments.

2. Problem formulation and preliminaries
For a Markovian dynamical system in the state space M ⊂ RD , its dynamics can be
completely characterized by the transition density

pτ (x,y) , P (xt+τ = y|xt = x) (2)

and the time evolution of the system state distribution can be formulated as

pt+τ (y) = (Pτpt)(y) ,
∫
pt(x)pτ (x,y)dx, (3)

Here xt denotes the state of the system at time t and pt is the probability density of xt. The
transfer operator Pτ is called the Perron-Frobenius (PF) operator1, which is a linear but

1Another commonly used transfer operator for Markovian dynamics is Koopman operator [49], which describes
the evolution of observables instead of probability densities, and is the dual of the PF operator. In this
paper, we focus only on the PF operator for convenience of analysis.
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usually infinite-dimensional operator. Notice that the deterministic dynamics in the form of
xt+τ = Θτ (xt) is a specific case of the Markovian dynamics, where pτ (x, ·) = δΘτ (x)(·) is a
Dirac function centered at Θτ (x), and the corresponding PF operator is given by∫

A
(Pτpt)(y)dy =

∫
x∈Θ−1

τ (A)
pt(x)dx.

By further assuming that the conditional distribution of xt+τ for given xt = x can always
be represented by a linear combination of m density basis functions q = (q1, . . . , qm)> :
M→ Rm, we obtain a finite-dimensional approximation of the transition density:

p̂τ (x,y) = f(x)>q(y). (4)

The feature mapping f(x) = (f1(x), . . . , fm(x))> are real-valued observables of the state xt =
x, and provide a sufficient statistic for predicting the future states. Based on this approximation,
the time evolution equation (3) of the state distribution can then be transformed into a linear
evolution model of the feature functions f in the form of (1) with the transition matrix

K =
∫

q(y)f(y)>dy, (5)

and many dynamical properties of the Markov system, including spectral components, coherent
sets and the stationary distribution, can be efficiently from the linear model.

It is shown in [20] that Eq. (4) provides a universal approximator of Markovian dynamics if
the set of basis function is rich enough. But in this paper, we focus on a more practically
problem: Given a small m, find f and q with dim(f) = dim(q) = m such that the modeling
error of (4) is minimized.

2.1. Variational principle for Perron-Frobenius operators

We now briefly introduce the variational principle for evaluating the approximation quality of
linear models (1). The detailed analysis and derivations can be found in [53].
For simplicity of notation, we assume that the available trajectory data are organized as

X = (x1, . . . ,xN )>, Y = (y1, . . . ,yN )>,

where {(xn,yn)}Nn=1 are set of all transition pairs occurring in the given trajectories, and we
denote the limits of empirical distributions of X,Y by ρ0 and ρ1.
Due to the above analysis, the approximation quality of (4) can be evaluated by the

difference between the PF operator P̂τ deduced from p̂τ (x,y) and the actual one. In
the variational principle proposed by [53], Pτ is considered as a mapping from L2

ρ−1
0

=

{q| ‖q‖2
ρ−1

0
= 〈q, q〉ρ−1

0
<∞} to L2

ρ−1
1

= {q| ‖q‖2
ρ−1

1
= 〈q, q〉ρ−1

1
<∞} with inner products

〈
q, q′

〉
ρ−1

0
,
∫
q(x)q′(x)ρ0(x)−1dx,

〈
q, q′

〉
ρ−1

1
,
∫
q(x)q′(x)ρ1(x)−1dx.
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From this insight, the Hilbert-Schmidt (HS) norm of the modeling error can be expressed as
a weighted mean square error of conditional distributions∥∥∥P̂τ − Pτ∥∥∥2

HS
=
∫
ρ0(x) ‖p̂τ (x, ·)− pτ (x, ·)‖2

ρ−1
1

dx, (6)

and has the decomposition ∥∥∥P̂τ − Pτ∥∥∥2

HS
= −R [f ,q] + ‖Pτ‖2HS

with

R [f ,q] = tr
(
2En

[
f(xn)g(yn)>

]
− En

[
f(xn)f(xn)>

]
En
[
g(yn)g(yn)>

])
for q(y) = g(y)ρ1(y). Here En[·] denotes the mean value over all transition pairs {(xn,yn)}Nn=1
as N → ∞. Because ‖Pτ‖2HS is a constant independent of modeling and R can be easily
estimated from data via empirical averaging, we can learn parametric models of f(x) and
g(y) by maximizing R as a variational score, which yields the variational approach for Markov
processes (VAMP) [53].
It can be seen that the variational principle is developed under the assumption that
Pτ : L2

ρ−1
0
→ L2

ρ−1
1

is an HS operator.2 However, in many practical applications, it is difficult
to justify the assumption for unknown transition densities. Particularly, for deterministic
systems, this assumption does not hold and the maximization of R could lead to unreasonable
models.

Proposition 1. For a deterministic system xt+τ = Θτ (xt), if L2
ρ−1

1
is an infinite-dimensional

Hilbert space,

1. Pτ is not a compact operator from L2
ρ−1

0
to L2

ρ−1
1

and hence not an HS operator,

2. R [f ,q] can be maximized by an arbitrary density basis q = (g1 · ρ1, . . . , gm · ρ1)> with
En
[
g(yn)g(yn)>

]
= I and fi(x) = gi(Θτ (x)).

Proof. See Appendix A.

2.2. Kernel embedding of functions

Moving away from dynamical systems for a moment, here we introduce the theory of kernel
embedding of functions [46, 45], which will be utilized to address the difficulty of VAMP in
Section 3.
A kernel function κ : M ×M → R is a symmetric and positive definite function, which

implicitly defines a kernel mapping ϕ from M to a reproducing kernel Hilbert space H, and
the inner product of H satisfies the reproducing property

〈ϕ(x), ϕ(y)〉H = κ(x,y).
2This assumption can be relaxed to compactness of Pτ for some variants of the variational principle, but the
relaxed assumption is not satisfied by deterministic systems either (see Proposition 1).

5



By using the kernel mapping, we can embed a function q : M→ R in the Hilbert space H as

Eq =
∫
ϕ(x)q(x)dx ∈ H.

Here E is an injective mapping for q ∈ L1(M) if κ is a universal kernel [47], and we can then
measure the similarity between functions q and q′ by the distance between Eq and Eq′:∥∥q − q′∥∥2

E =
〈
E
(
q − q′

)
, E
(
q − q′

)〉
H

=
∫∫

κ(x,y)
(
q(x)− q′(x)

) (
q(y)− q′(y)

)
dxdy,

where ‖q‖2E , 〈q, q〉E and 〈q, q′〉E , 〈Eq, Eq′〉H. The most commonly used universal kernel
for M ⊂ RD is the Gaussian kernel κ(x,y) = exp

(
−‖x− y‖2 /σ2

)
, where σ denotes the

bandwidth of the kernel.
In the specific case where both q and q′ are probability density functions, ‖q − q′‖E is

called the maximum mean discrepancy (MMD) and can be estimated from samples of q, q′
[45].

3. Theory
In this section, we develop a new variational principle for Markovian dynamics based on the
kernel embedding of trainstion densities.
Assuming that κ : M×M→ R is a universal kernel and bounded by B, Epτ (x, ·) is also

bounded in H with

‖pτ (x, ·)‖2E =
∫∫
κ(y,y′)pτ (x,y)pτ (x,y′)dydy′

= Ey,y′∼pτ (x,·) [κ(y,y′)] ≤ B.

Motivated by this conclusion, we propose a new measure for approximation errors of PF
operators ∫

ρ0(x) ‖p̂τ (x, ·)− pτ (x, ·)‖2E dx (7)

by replacing the L2
ρ−1

1
norm with ‖·‖E in (6), which is finite for both deterministic and

stochastic systems if ‖p̂τ (x, ·)‖E <∞. In contrast with Eq. (6), the new measure provides a
more general way to quantify modeling errors of dynamics. Furthermore, from an application
point of view, Eq. (7) provides a more smooth and effective representation of modeling errors
of the conditional distributions.
Example 2. Let us consider a one-dimensional system with M = [−5, 5] and ρ1(x) =
0.1 · 1x∈M. Suppose that for a given x, pτ (x,y) and p̂τ (x,y) are separately uniform
distributions within [−0.1, 0.1] and [c−0.1, c+ 0.1] as shown in Fig. 1A, where c is the model
parameter. In VAMP, the approximation error between the two conditional distributions
are calculated as ‖p̂τ (x, ·)− pτ (x, ·)‖2

ρ−1
1
, and it can be observed from Fig. 1B that this

quantity is a constant independent of c except in a small range c ∈ [−0.2, 0.2]. But kernel
embedding based error ‖p̂τ (x, ·)− pτ (x, ·)‖2E in (7) is a smooth function of c and provides a
more reasonable metric for the evaluation of c.
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Figure 1: Illustration of distribution distances utilized in VAMP and KVAD. (A) The true
conditional density is pτ (x, y) = 5 · 1|y|≤0.1 for a given x, and the approximate
density is p̂τ (x, y) = 5 · 1|y−c|≤0.1 for the same x. (B) The distribution distances
‖p̂τ (x, ·)− pτ (x, ·)‖2

ρ−1
1

defined in VAMP and ‖p̂τ (x, ·)− pτ (x, ·)‖2E in KVAD with
different values c, where κ is selected as the Gaussian kernel with σ = 1.

The following proposition shows that Eq. (7) can also be derived from the HS norm of
operator error by treating Pτ as a mapping from L2

ρ−1
0

to L2
E =

{
q| ‖q‖2E <∞

}
.

Proposition 3. If κ is a universal and bounded kernel,

1. Pτ is an HS operator from L2
ρ−1

0
to L2

E , and the corresponding
∥∥∥P̂τ − Pτ∥∥∥2

HS
is equal

to (7),

2. the HS norm of
(
P̂τ − Pτ

)
satisfies

∥∥∥P̂τ − Pτ∥∥∥2

HS
= −RE [f ,q] + ‖Pτ‖2HS ,

with

RE [f ,q] = tr (2Cfq −CffCqq)

for p̂τ defined by (4), where

Cff = En
[
f(xn)f(xn)>

]
,

Cqq =
[
〈qi, qj〉E

]
,

Cfq =
[
〈Pτ (fiρ0) , qj〉E

]
,

are matrices of size m×m, and RE [f ,q] is called the KVAD score of f and q.

Proof. See Appendix B.

As a result of this proposition, we can find optimal f and q by maximizing RE .
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4. Approximation scheme
In this section, we derive a data-driven algorithm to estimate the optimal low-dimensional
linear models based on the variational principle stated in Proposition 3.

4.1. Approximation with fixed f

We first propose a solution for the problem of finding the optimal q given that f is fixed.

Proposition 4. If Cff = En
[
f(xn)f(xn)>

]
is a full-rank matrix, the solution to maxqRE [f ,q]

is
q(y) = C−1

ff

∫
ρ0(x)pτ (x,y)f(x)dx (8)

and

RE [f ] , max
q
RE [f ,q]

= tr
(
C−1
ff En,n′

[
f(xn)κ(yn,yn′)f(xn′)>

])
, (9)

where En,n′ [·] denotes the expected value with (xn,yn) and (xn′ ,yn′) independently drawn
from the joint distribution of transition pairs.

Proof. See Appendix C.

As ρ0(x)pτ (x,y) in Eq. (8) is the joint distribution of transition pairs (xn,yn), we can
get a nonparametric approximation of q

q(y) = 1
N

∑
n

C−1
ff f(xn)δyn(y) (10)

by replacing the the transition pair distribution with its empirical estimate. This result gives
us a linear model (1) with transition matrix

K = 1
N

C−1
ff f(X)>f(Y)

= f(X)+f(Y) (11)

with f(X) = (f(x1), . . . , f(xN ))> ∈ RN×m and f(X)+ denoting the Penrose-Moore pseudo-
inverse of f(X), which is equal to the least square solution to the regression problem
f(yn) ≈ K>f(xn).

4.2. Approximation with unknown f

We now consider the modeling problem with the normalization condition∫
p̂τ (x,y)dy =

∫
f(x)>q(y)dy ≡ 1, (12)
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where f and q are both unknown, and we make the Ansatz to represent f as linear combinations
of basis functions χ = (χ1, . . . , χM )>. Furthermore, we assume without loss of generality
that the whitening transformation is applied to the basis functions so that

En [χ(xn)] = 0, En
[
χ(xn)χ(xn)>

]
= I. (13)

(See, e.g., Appendix F in [53] for the details of whitening transformation.)
It is proved in Appendix D that there must be a solution to maxf RE [f ] under constraint

(12) satisfying
f1(x) ≡ 1, Cff = I. (14)

Therefore, we can model f in the form of

f(x) = (1,χ(x)>U)>, U ∈ Rm×M . (15)

Substituting this Ansatz into the KVAD score, shows that U can be computed as the solution
to the maximization problem:

max
U

RE (U)

s.t. Cff = U>U = I (16)

with
RE (U) = 1

N2 tr
(
U>χ(X)>Gyyχ(X)U

)
+ 1
N2 1>Gyy1 (17)

being a matrix representation of RE [f ]. Here

Gyy = [κ (yi,yj)] ∈ RN×N

is the Gram matrix of Y, and χ(X) = (χ(x1), . . . ,χ(xN ))> ∈ RN×M . This problem has
the same form as principal component analysis problem and can be effectively can be solved
via the eigendecomposition of matrix χ(X)>Gyyχ(X) [13]. The resulting KVAD algorithm
is as follows, and it can be verified that the normalization conditions (12) exactly holds for
the estimated transition density (see Appendix E).

1. Select a set of basis function χ = (χ1, . . . , χM )> with M � m.

2. Perform the whitening transformation so that (13) holds.

3. Perform the truncated eigendecomposition

χ(X)>Gyyχ(X) ≈ US2U>,

where S = diag(s1, . . . , sm−1), s1 ≥ s2 ≥ . . . ≥ sm−1 are square roots of the
largest m eigenvalues of χ(X)>Gyyχ(X), and U = (u1, . . . ,um−1) consists of the
corresponding dominant eigenvectors. This step is a bottleneck of the algorithm due
to the large size Gram matrix Gyy, and the computational cost can be reduced by
Nyström approximation or random fourier features [10, 36].

4. Calculate f , q and K by (15, 10, 11) with Cff = I.

9



4.3. Component analysis

Due to the fact that f1, q1 are non-trainable, the approximate PF operator obtained by the
KVAD algorithm can be decomposed as

P̂τq = 〈f1, ρ0〉ρ−1
0
q1 +

m∑
i=2
〈q, fiρ0〉ρ−1

0
qi

= 〈q, ρ0〉ρ−1
0
ρ1 +

m∑
i=2

si 〈q, fiρ0〉ρ−1
0

(
s−1
i qi

)
.

It is worth pointing out that si, s−1
i qi+1, fi+1ρ0 obtained by KVAD algorithm are variational

estimates of the ith singular value, left singular function and right singular function of the
operator P̃τ defined by

Pτq = 〈q, ρ0〉ρ−1
0
ρ1 + P̃τq, (18)

where (P̃τρ0)(y) ≡ 0. Thus, the KVAD algorithm indeed performs truncated singular value
decomposition (SVD) of P̃τ (see Appendix F).

At the limit case where the all singular components of P̃τ are exactly estimated by KVAD,
we have

Dτ
(
x,x′

)2 ,
∥∥pτ (x, ·)− pτ (x′, ·)

∥∥2
E

=
m−1∑
i=1

s2
i

(
fi+1(x)− fi+1(x′)

)2 (19)

for all x,x′ ∈ M. The distance Dτ measures the dynamical similarity of two points in the
state space, and can be approximated by the Euclidean distance derived from coordinates
(s1f2(x), . . . , sm−1fm(x))> as shown in (19). Hence, KVAD provides an ideal low-dimensional
embedding of system dynamics, and can be reinterpreted a variant of the diffusion mapping
method for dynamical model reduction [5] (see Appendix G).

5. Relationship with Other Methods

5.1. EDMD and VAMP

It can be seen from (11) that the optimal linear model obtained by KVAD is consistent with
the model of EDMD [49] for given feature functions f . However, the optimization and the
dimension reduction of the observables are not considered in the conventional EDMD.
Both VAMP [53] and KVAD solve this problem by variational formulations of modeling

errors. As analyzed in Sections 2.1 and 3, KVAD is applicable to more general systems,
including deterministic systems, compared to VAMP. Moreover, VAMP needs to represent
both f and q by parametric models for dynamical approximation, whereas KVAD can obtain
the optimal q from data without any parametric model for given f . Our numerical experiments
(see Section 6) show that KVAD can often provide more accurate low-dimensional models
than VAMP when the same Ansatz basis functions are used.
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5.2. Conditional mean embedding, kernel EDMD and kernel CCA

For given two random variables x and y, the conditional mean embedding proposed in [46]
characterizes the conditional distribution of y for given x by the conditional embedding
operator Cy|x with

E[ϕ(y)|x] = Cy|xϕ(x),
where ϕ denotes the kernel mapping and Cy|x can be consistently estimated from data. When
applied to dynamical data, this method has the same form as the kernel EDMD and its
variants [42, 16, 15], and is indeed a specific case of KVAD with Ansatz functions χ = ϕ
and dimension m = N (see Appendix H).

In addition, for most kernel based dynamical modeling methods, the dimension reduction
problem is not thoroughly investigated. In [18], a kernel method for eigendecomposition of
transfer operators (including PF operators and Koopman operators) was developed. But as
analyzed in [53], the dominant eigen-components may not yield an accurate low-dimensional
dynamical model. Kernel canonical correlation analysis (CCA) [22] can overcome this problem
as a kernelization of VAMP, but it is also applicable only if Pτ is a compact operator from
L2
ρ−1

0
to L2

ρ−1
1
.

Compared to the previous kernel methods, KVAD has more flexibility in model choice,
where the dimension and model class of f can be arbitrarily selected according to practical
requirements.

6. Numerical experiments
In what follows, we demonstrate the benefits of the KVAD method for studies of nonlinear
dynamical systems by two examples, and compare the results from KVAD with VAMP and
kernel EDMD, where the basis functions in VAMP and kernel functions in kernel EDMD are
the same as those in KVAD. For kernel EDMD, the low-dimensional linear model is achieved
by leading eigenvalues and eigenfunctions as in [18], which characterizes invariant subspaces
of systems.
Example 5. Van der Pol oscillator, which is a two-dimensional system governed by

dxt = ytdt+ ξ · dwx,t,

dyt =
(
2
(
0.2− x2

t

)
yt − xt

)
dt+ ξ · dwy,t,

where wx,t and wy,t are standard Wiener processes. The flow field of this system for ξ = 0 is
depicted in Fig. 2A. We generate N = 2000 transition pairs for modeling, where the lag time
τ = 0.2, X = (x1, . . . ,xN )> are randomly drawn from [−1.5, 1.5]2, and Y = (y1, . . . ,yN )>
are obtained by the Euler-Maruyama scheme with step size 0.01.
Example 6. Lorenz system defined by

dxt = 10(yt − xt)dt+ ξ · xt · dwx,t,
dyt = (28xt − yt − xtzt) dt+ ξ · yt · dwy,t,

dzt =
(
xtyt −

8
3zt
)

dt+ ξ · zt · dwz,t,

11



with wx,t, wy,t, wz,t being standard Wiener processes. Fig. 2B plots a trajectory of this system
in the state space with ξ = 0. We sample 2000 transition pairs from a simulation trajectory
with length 200 and lag time τ = 0.1 as training data for each ξ, and perform simulations by
the Euler-Maruyama scheme with step size 0.005.

In both examples, the feature mapping f is represented by basis functions

χi(x) = exp
(
−
(
θ>i x + bi

)2
)
, fori = 1, . . . , 500

with all components of θi and bi randomly drawn from [−1, 1], which are widely used in
shallow neural networks [12, 7]. The kernel κ is selected as the Gaussian kernel with σ = 1.5
for the oscillator and 10 for the Lorenz system.
Fig. 2 shows estimates of singular values of P̃τ : L2

ρ−1
0
→ L2

E (KVAD), singular values
of Pτ : L2

ρ−1
0
→ L2

ρ−1
1

(VAMP) and absolute values of eigenvalues of Pτ (kernel EDMD)
with different noise parameters, where singular values must be nonnegative real numbers but
eigenvalues could be complex or negative. We see that the singular values and eigenvalues
given by VAMP and kernel EDMD decay very slowly. Hence, it is difficult to extract an accurate
model from the estimation results of VAMP and kernel EDMD for a small m. Especially for
VAMP, a large number of singular values are close to 1 as analyzed in Proposition 1 when the
systems are deterministic with ξ = 0. In contrast, the singular values utilized in KVAD rapidly
converges to zero, which implies one can effectively extract the essential part of dynamics
from a small number of feature mappings.

The first two singular components of P̃τ for ξ = 0 obtained by KVAD are shown in Fig. 3
(see Section 4.3).3 It can be observed that f1, f2 of the oscillator characterize transitions
between left-right and up-down areas separately. Those of the Lorenz systems are related to
the two attractor lobes and the transition areas.

It is interesting to note that the singular values of P̃τ given by KVAD are slightly influenced
by ξ as illustrated in Fig. 2. Our numerical experience also show that the right singular
functions remain almost unchanged for different ξ (see Fig. 5 in Appendix I). This phenomenon
can be partially explained by the fact that the variational score Rε estimated by (17) is not
sensitive to small perturbations of Y if the bandwidth of the kernel is large. More thorough
investigations on this phenomenon will be performed in future.
In order to quantitively evaluate the performance of the three methods, we define the

following trajectory reconstruction error:

error =

√√√√ 1
L

L∑
l=1
‖xlτ − Emodel[xlτ |x0]‖,

where xt is the true trajectory data and Emodel[xt|x0] is the conditional mean value of xt
obtained by the model. The average error over multiple replicate simulations is minimized if
and only if Emodel[xlτ |x0] equals to the exact conditional mean value of xlτ for all l. For all

3The qi is approximated by multiple delta functions and hard to visualize.
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Figure 2: (A.1) Flow map of the Van der Pol oscillator, where the arrows represent directions
of (dxt, dyt) with ξ = 0. (B.1) A typical trajectory of the Lorenz system with ξ = 0
generated by the Euler-Maruyama scheme. (A.2 and B.2) Estimated singular values
and absolute values of eigenvalues of the oscillator and the Lorenz system. Red
lines represent singular values of P̃τ estimated by KVAD (see (18)), green lines
singular values of Pτ estimated by VAMP, red lines absolute values of eigenvalues
of Pτ estimated by kernel EDMD, solid lines estimates with ξ = 0, and dashed lines
those with ξ = 0.2 (oscillator) and 0.5 (Lorenz system). Notice the total number
of spectral components changes in different cases due to the rank truncation in
implementations of SVD and pseudo inverse.
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Figure 3: The first two singular components computed by KVAD, where ξ = 0, si is the
estimate of the ith singular value of P̃τ and fi ·ρ0 the estimate of the corresponding
right singular function (see Section 4.3). (A) The oscillator. (B) The Lorenz system.

the three methods,

Emodel[xlτ |x0] = G>Emodel
[
f(x(l−1)τ )|x0

]
=

(
Kl−1G

)>
f(x0),

where G is the least square solution to the regression problem xt+τ ≈ G>f(xt) [49]. Fig. 4
summarizes of reconstruction errors of the two systems obtained with different choices of the
model dimension m and noise parameter ξ, and the superiority of our KVAD is clearly shown.

7. Conclusion
In this paper, we combine the kernel embedding technique with the variational principle for
transfer operators. This provides a powerful and flexible tool for low-dimensional approximation
of dynamical system, and effectively addresses the shortcomings and limitations of the existing
variational approach. In the proposed KVAD framework, a bounded and well defined distance
measure of transfer operators is developed based on kernel embedding of transition densities,
and the corresponding variational optimization approach can be applied to a broader range of
dynamical systems than the existing variational approaches.
Our future work includes the convergence analysis of KVAD and optimization of kernel

functions. From the algorithmic point of view, the main remaining question is how to efficiently
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Figure 4: (A) Reconstruction errors of the oscillator, where L = 50 and x0 is randomly drawn
in [−1.5, 1.5]2. (B) Reconstruction errors of the Lorenz. Here L = 8, x0 is randomly
sampled from a long simulation trajectory, and the trajectory is independent of
the training data. Error bars represent standard deviations calculated from 100
bootstrapping replicates of simulations.
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perform KVAD learning from big data with deep neural networks. It will be also interesting to
apply KVAD to multi-ensemble Markov models [55] for data analysis of enhanced sampling.

Appendix
For convenience of notation, we define〈

a,b>
〉

= [〈ai, bj〉] ∈ Rn1×n2

and
Pτa = (Pτa1, . . . ,Pτan1)>

for a = (a1, . . . , an1)>, b = (b1, . . . , bn1)> and an inner product 〈·, ·〉.

A. Proof of Proposition 1
The proof of first conclusion is given in Appendices A.5 and B of [53], and we prove here the
second conclusion.

We first show R [f ,q] ≤ m. Because En
[
f(xn)f(xn)>

]
is a positive semi-definite matrices,

it can be decomposed as

En
[
f(xn)f(xn)>

]
= QDQ>, (20)

where Q is a orthogonal matrix and D is a diagonal matrix. Let f ′ = (f ′1, . . . , f ′m)> = Q>f
and g′ = (g′1, . . . , g′m)> = Q>g, we have

R [f ,q] = tr
(
2En

[
Q>f(xn)g(yn)>Q

]
− En

[
Q>f(xn)f(xn)>Q

]
En
[
Q>g(yn)g(yn)>Q

])
= tr

(
2En

[
f ′(xn)g′(yn)>

]
− En

[
f ′(xn)f ′(xn)>

]
En
[
g′(yn)g′(yn)>

])
=

m∑
i=1

2En
[
f ′i(xn)g′i(yn)

]
− En

[
f ′i(xn)2

]
En
[
g′i(xn)2

]
≤

m∑
i=1

2En
[
f ′i(xn)g′i(yn)

]
− En

[
f ′i(xn)g′i(yn)

]2
≤ m.

Under the assumption of En
[
g(yn)g(yn)>

]
= I and fi(x) = gi(Θτ (x)), we have

〈giρ1, gjρ1〉ρ−1
1

=
∫
ρ1(y)gi(y)gj(y)dy

= En [gi(yn)gj(yn)]
= 1i=j

16



and

En
[
f(xn)f(xn)>

]
= En

[
g(Θ(xn))g(Θ(xn))>

]
= En

[
g(yn)g(yn)>

]
= I

with g = (g1, . . . , gm)> by considering that yn = Θτ (xn). Consequently,

R [f ,q] = tr
(
2En

[
f(xn)g(yn)>

]
− I
)

= tr
(
2En

[
g(yn)g(yn)>

]
− I
)

= m,

which yields the second conclusion of this proposition.

B. Proof of Proposition 3
Let {e1, e2, . . .} be an orthonormal basis of L2

ρ−1
0
. We have

∑
k

〈
P̂τek,Pτek

〉
κ

=
∑
k

∫∫∫∫
pτ (x,y)ek(x)

〈
ϕ(y),ϕ(y′)

〉
H p̂τ (x′,y′)ek(x′)dxdx′dydy′

=
∫∫∫∫

κ(y,y′) ·
∑
k

pτ (x,y)ek(x)p̂τ (x′,y′)ek(x′)dxdx′dydy′

=
∫∫

κ(y,y′) ·
(∑

k

∫∫
pτ (x,y)ek(x)p̂τ (x′,y′)ek(x′)dxdx′

)
dydy′

=
∫∫

κ(y,y′) ·
∑
k

(∫
pτ (x,y)ek(x)dx

)
·
(∫

p̂τ (x′,y′)ek(x′)dx′
)

dydy′

=
∫∫

κ(y,y′) · 〈pτ (·,y)ρ0(·), p̂τ (·,y)ρ0(·)〉ρ−1
0

dydy′

=
∫∫ ∫

ρ0(x) · pτ (x,y)p̂τ (x,y′) · κ(y,y′)dxdydy′

=
∫
ρ0(x) 〈pτ (x, ·), p̂τ (x, ·)〉E dx.

Therefore, Pτ is an HS operator with

‖Pτ‖2HS =
∑
k

〈Pτek,Pτek〉E

=
∫
ρ0(x) ‖pτ (x, ·)‖2E dx ≤ B

17



if κ is bounded by B, and∥∥∥Pτ − P̂τ∥∥∥2

HS
=

∑
k

〈(
Pτ − P̂τ

)
ek,
(
Pτ − P̂τ

)
ek
〉
κ

= D
(
P̂τ ,Pτ

)2
.

If p̂τ (x,y) = f(x)>q(y), we get∥∥∥P̂τ∥∥∥2

HS
=

∫∫∫
ρ0(x)f(x)>q(y)κ

(
y,y′

)
q(y′)>f(x)dxdydy′

= tr (CffCqq) ,

∑
k

〈
P̂τek,Pτek

〉
κ

=
∫ ∫ ∫

ρ0(x) · pτ (x,y)q(y′)>f(x) · κ(y,y′)dxdydy′

= tr (Cfq) ,

and ∥∥∥Pτ − P̂τ∥∥∥2

HS
= −RE [f ,q] + ‖Pτ‖2HS .

C. Proof of Proposition 4
Let us first consider the case where Cff = I. Then

RE [f ,q] = −tr
(〈

q,q>
〉
E
− 2

〈
q,Pτ (fρ0)>

〉
E

)
= −tr

(〈
q − Pτ (fρ0) , (q − Pτ (fρ0))>

〉
E
−
〈
Pτ (fρ0) ,Pτ (fρ0)>

〉
E

)
= −

∑
i

‖qi − Pτ (fiρ0)‖2E +
∑
i

‖Pτ (fiρ0)‖2E ,

which leads to

arg max
q
RE [f ,q] = Pτ (fρ0)

=
∫
ρ0(x)pτ (x, ·)f(x)dx

and

RE [f ] = ‖Pτ (fρ0)‖2E
= tr

(
En,n′

[
f(xn)κ(yn,yn′)f(xn′)>

])
.

We now suppose that Cff 6= I and let

f ′ = C−
1
2

ff f ,

q′ = C
1
2
ffq.
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Becuase
〈
f ′, f ′>

〉
ρ0

= I, we have

arg max
q′
RE [f ′,q′] =

∫
ρ0(x)pτ (x, ·)f ′(x)dx

and
RE [f ′] = tr

(
En,n′

[
f ′(xn)κ(yn,yn′)f ′(xn′)>

])
.

Considering that the transition density defined by (f ′,q′) is equivalent to that by (f ,q) as

f(x)>q(y) = f ′(x)>q′(y),

we can obtain

arg max
q
RE [f ,q] = C−

1
2

ff Pτ
(
f ′ρ0

)
= C−1

ff

∫
ρ0(x)pτ (x, ·)f(x)dx

and

RE [f ] = RE [f ′]

= tr
(
En,n′

[
C−

1
2

ff f(xn)κ(yn,yn′)f(xn′)>C−
1
2

ff

])
= tr

(
En,n′

[
C−1
ff f(xn)κ(yn,yn′)f(xn′)>

])
.

D. Proof of (14)
Suppose that (f ,q) is a solution to maxRE [f ,q] with dimension m under constraint (12).
From (12), we have

f(x)>
(∫

q(y)dy
)
≡ 1,

which implies that the constant function belongs to the subspace spanned by f . Thus we
can obtain an matrix R so that f ′ = (f ′1, . . . , f ′m)> = Rf satisfies (14) by Gram-Schmidt
orthogonalization, and f ′ and q′ = R−>q also maximizes RE .

E. Normalization property of estimated transition density
For the transition density p̂τ (x,y) = f(x)>q(y) obtained by the KVAD algorithm, we have∫

qi(y)dy = 1
N

∑
n

fi(xn) = 0

for i > 1. Therefore, ∫
p̂τ (x,y)dy = f(x)> (

∫
q(y)dy)

= f(x)>(1, 0, . . . , 0)>

= 1.
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F. Singular value decomposition of P̃τ
Because P̃τ is also an HS operator from L2

ρ−1
0

to L2
E , there exists the following SVD:

P̃τq =
∞∑
i=1

σi 〈q, ψi〉ρ−1
0
φi. (21)

Here σi denotes the ith largest singular value, and φi, ψi are the corresponding left and
right singular functions. According to the Rayleigh variational principle, for the ith singular
component, we have

σ2
i = max

q

〈
P̃τq, P̃τq

〉
E

(22)

under constraints

〈q, q〉ρ−1
0

= 1, 〈q, ψj〉ρ−1
0

= 0, ∀j = 1, . . . , i− 1 (23)

and the solution is q = ψi.
From the above variational formulation of SVD, we can obtain the following proposition:

Proposition 7. The singular functions ψi of P̃τ satisfies

〈ρ0, ψi〉ρ−1
0

= 0

if σi > 0.

Proof. We first show that 〈ρ0, ψ1〉ρ−1
0

= 0 by contradiction. If 〈ρ0, ψ1〉ρ−1
0

= c1 6= 0, ψ1 can
be decomposed as

ψ1 = c1ρ0 + ψ̃1.

Because 〈
P̃τ ψ̃1, P̃τ ψ̃1

〉
E

=
〈
P̃τψ1, P̃τψ1

〉
E
,〈

ψ̃1, ψ̃1
〉
ρ−1

0
= 1− c2

1,

we can get that
〈
ψ̃′1, ψ̃

′
1

〉
ρ−1

0
= 1 and

〈
P̃τ ψ̃′1, P̃τ ψ̃′1

〉
E

= 1
1− c2

1

〈
P̃τψ1, P̃τψ1

〉
E
> σ2

with
ψ̃′1 =

(
1− c2

1

)− 1
2 ψ̃1,

which leads to a contradiction. Therefore, 〈ρ0, ψ1〉ρ−1
0

= 0.
For ψ2, we can also show that

ψ̃′2 =
(
1− c2

2

)− 1
2 (ψ2 − c2ρ0)
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with c2 = 〈ρ0, ψ2〉ρ−1
0

and
〈
ψ1, ψ̃

′
2

〉
ρ−1

0
= 0 is a better solution than ψ2 for the variational

optimization problem (22, 23) if c2 6= 0, and thus 〈ρ0, ψ2〉ρ−1
0

= 0. By mathematical
induction, 〈ρ0, ψi〉ρ−1

0
= 0 for all σi > 0.

Based on this proposition, ψi can be approximated by

ψi = u>i χ (24)

with (13) being satisfied. Substituting the Ansatz (24) into (22, 23) and replacing expected
values with empirical estimates yields

ui = arg maxu
1
N2 tr

(
u>χ(X)>Gyyχ(X)u

)
s.t. u>u = 1, u>uj = 0 for j = 1, . . . , i− 1.

This problem for all i can be equivalently solved by the KVAD algorithm in Section 4.2.
Consequently, si, s−1

i qi+1, fi+1ρ0 are variational estimates of the ith singular value, left
singular function and right singular function of the operator P̃τ .

G. Proof of (19)
From (21) and the orthonormality of φi, we have

Dτ
(
x,x′

)2 = ‖Pτδx − Pτδx′‖2E
=

∥∥∥P̃τδx − P̃τδx′
∥∥∥2

E

=
∥∥∥∥∥∑

i

σi
(
ψi(x)ρ0(x)−1 − ψi(x′)ρ0(x′)−1

)
φi

∥∥∥∥∥
2

E

=
∑
i,j

σiσj
(
ψi(x)ρ0(x)−1 − ψi(x′)ρ0(x′)−1

)
·
(
ψj(x)ρ0(x)−1 − ψj(x′)ρ0(x′)−1

)
〈φi, φj〉E

=
∞∑
i=1

σ2
i

(
ψi(x)ρ0(x)−1 − ψi(x′)ρ0(x′)−1

)2
.

If the KVAD algorithm gives the exact approximation of singular components and σi = 0 for
i > m− 1, we can get

Dτ
(
x,x′

)2 =
m−1∑
i=1

s2
i

(
fi+1(x)− fi+1(x′)

)2
.
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H. Comparison between KVAD and conditional mean
embedding

We consider
fi(x) = u>i ϕ(x),

for i = 1, . . . , N in KVAD, and assume that Gxx = [κ(xi,xj)] ∈ RN×N is invertible.
Here ui is the ith column of U, and ϕ(x) is the kernel mapping and can be explicitly
represented as a function from M to a (possibly infinite-dimensional) Euclidean space with
κ(x,y) = ϕ(x)>ϕ(y) [29]. For a given data set {(xn,yn)}Nn=1, an arbitrary ui can be
decomposed as

ui = ϕ(X)>ai + u⊥i
with ϕ(X) = (ϕ(x1), . . . , ϕ(xN ))> and ϕ(X)>u⊥i = 0, and

u>i ϕ(xn) =
(
ϕ(X)>ai

)>
ϕ(xn), ∀n.

So, we can assume without loss of generality that each ui can be represented as a linear
combination of {ϕ(x1), . . . , ϕ(xN )}, and therefore all invertible A = (a1, . . . ,aN ) can
generate the equivalent model. For convenience of analysis, we set A = I and

f(x) = ϕ(X)ϕ(x).

NCff =
N∑
n=1

ϕ(X)ϕ(xn)ϕ(xn)>ϕ(X)> = G2
xx

Then

q(y) =
∑
n

G−2
xxϕ(X)ϕ(xn)δyn(y),

p̂τ (x,y) = f(x)>q(y)
= ϕ(x)>ϕ(X)>

∑
n

G−2
xxϕ(X)ϕ(xn)δyn(y)

and we can obtain

E[ϕ(y)|x] =
∑
n

ϕ(yn)ϕ(xn)>ϕ(X)>G−2
xxϕ(X)ϕ(x)

= ϕ(Y)>ϕ(X)ϕ(X)>G−2
xxϕ(X)ϕ(x)

= ϕ(Y)>G−1
xx (κ(x1,x), . . . , κ(xN ,x))> ,

which is equivalent to the result of conditional mean embedding [45].

I. Estimated singular components of Examples 5 and 6 with
ξ 6= 0
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Figure 5: The first two singular components computed by KVAD. (A) The oscillator with
ξ = 0.2. (B) The Lorenz system with ξ = 0.5.
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