Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 6, 2021

𝑯(curl 2)-Conforming Spectral Element Method for Quad-Curl Problems

  • Lixiu Wang , Huiyuan Li EMAIL logo and Zhimin Zhang

Abstract

In this paper, we propose an H ( curl 2 ) -conforming spectral elements to solve the quad-curl problem on cubic meshes in three dimensions. Starting with generalized vectorial Jacobi polynomials, we first construct the basis functions of the H ( curl 2 ) -conforming spectral elements using the contravariant transform together with the affine mapping from the reference cube onto each physical element. Falling into four categories, interior modes, face modes, edge modes, and vertex modes, these H ( curl 2 ) -conforming basis functions are constructed in an arbitrarily high degree with a hierarchical structure. Next, H ( curl 2 ) -conforming spectral element approximation schemes are established to solve the boundary value problem as well as the eigenvalue problem of quad-curl equations. Numerical experiments demonstrate the effectiveness and efficiency of the ℎ-version and the 𝑝-version of our H ( curl 2 ) -conforming spectral element method.

MSC 2010: 65N30; 35Q60; 65N15; 35B45

Award Identifier / Grant number: 2020M670117

Award Identifier / Grant number: 11871145

Award Identifier / Grant number: 11971016

Award Identifier / Grant number: 11871092

Award Identifier / Grant number: U1930402

Funding statement: The research of the first author is supported in part by China Postdoctoral Science Foundation (No. 2020M670117). The research of the second author is supported in part by the National Natural Science Foundation of China (NSFC 11871145 and NSFC 11971016). The research of the third author is supported in part by the National Natural Science Foundation of China (NSFC 11871092, NSFC 11926356, and NSAF U1930402).

A Trace Properties on the Vectorial Jacobi Basis

Lemma A.1

Let

ϕ | F = [ ϕ | F 1 , ϕ | F 2 , ϕ | F 3 , ϕ | F 4 , ϕ | F 5 , ϕ | F 6 ]

be the trace on six faces. It then holds that, for k N 0 ,

tr T φ i , j , k | F = { [ 0 , 0 , 0 , 0 , 0 , 0 ] , i , j N 0 { 0 , 2 } , [ φ ^ - 1 , j , k e z ^ h z ^ , 0 , 0 , 0 , 0 , 0 ] , i = 0 , j N 0 { 0 , 2 } , [ 0 , φ ^ - 1 , j , k e z ^ h z ^ , 0 , 0 , 0 , 0 ] , i = 2 , j N 0 { 0 , 2 } , [ 0 , 0 , φ ^ i , - 1 , k e z ^ h z ^ , 0 , 0 , 0 ] , j = 0 , i N 0 { 0 , 2 } , [ 0 , 0 , 0 , φ ^ i , - 1 , k e z ^ h z ^ , 0 , 0 ] , j = 2 , i N 0 { 0 , 2 } , [ φ ^ - 1 , 0 , k e z ^ h z ^ , 0 , φ ^ 0 , - 1 , k e z ^ h z ^ , 0 , 0 , 0 ] , i = 0 , j = 0 , [ φ ^ - 1 , 2 , k e z ^ h z ^ , 0 , 0 , φ ^ 0 , - 1 , k e z ^ h z ^ , 0 , 0 ] , i = 0 , j = 2 , [ 0 , φ ^ - 1 , 0 , k e z ^ h z ^ , φ ^ 2 , - 1 , k e z ^ h z ^ , 0 , 0 , 0 ] , i = 2 , j = 0 , [ 0 , φ ^ - 1 , 2 , k e z ^ h z ^ , 0 , φ ^ 2 , - 1 , k e z ^ h z ^ , 0 , 0 ] , i = 2 , j = 2 .

It also holds for k 2 that

(A.1) tr T ( × φ i , j , k ) | F = { [ 0 , 0 , 0 , 0 , 0 , 0 ] , i , j N 0 { 1 , 3 } , [ 0 , 0 , φ ^ i , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 , 0 ] , i N 0 { 1 , 3 } , j = 1 , [ 0 , 0 , 0 , φ ^ i , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 ] , i N 0 { 1 , 3 } , j = 3 , [ - φ ^ - 1 , j , k e y ^ h x ^ h z ^ , 0 , 0 , 0 , 0 , 0 ] , i = 1 , j N 0 { 1 , 3 } , [ 0 , - φ ^ - 1 , j , k e y ^ h x ^ h z ^ , 0 , 0 , 0 , 0 ] , i = 3 , j N 0 { 1 , 3 } , [ - φ ^ - 1 , 1 , k e y ^ h x ^ h z ^ , 0 , φ ^ 1 , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 , 0 ] , i = 1 , j = 1 , [ - φ ^ - 1 , 3 , k e y ^ h x ^ h z ^ , 0 , 0 , φ ^ 1 , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 ] , i = 1 , j = 3 , [ 0 , - φ ^ - 1 , 1 , k e y ^ h x ^ h z ^ , φ ^ 3 , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 , 0 ] , i = 3 , j = 1 , [ 0 , - φ ^ - 1 , 3 , k e y ^ h x ^ h z ^ , 0 , φ ^ 3 , - 1 , k e x ^ h y ^ h z ^ , 0 , 0 ] , i = 3 , j = 3 ,

for k = 1 that

tr T ( × φ i , j , 1 ) | F = { [ 0 , 0 , 0 , 0 , 0 , a i , j ] , i , j N 0 { 1 , 3 } , [ 0 , 0 , φ ^ i , - 1 , 1 e x ^ h y ^ h z ^ , 0 , 0 , a i , 1 ] , i N 0 { 1 , 3 } , j = 1 , [ 0 , 0 , 0 , φ ^ i , - 1 , 1 e x ^ h y ^ h z ^ , 0 , a i , 3 ] , i N 0 { 1 , 3 } , j = 3 , [ - φ ^ - 1 , j , 1 e y ^ h x ^ h z ^ , 0 , 0 , 0 , 0 , a 1 , j ] , i = 1 , j N 0 { 1 , 3 } , [ 0 , - φ ^ - 1 , j , 1 e y ^ h x ^ h z ^ , 0 , 0 , 0 , a 3 , j ] , i = 3 , j N 0 { 1 , 3 } , [ - φ ^ - 1 , 1 , 1 e y ^ h x ^ h z ^ , 0 , φ ^ 1 , - 1 , 1 e x ^ h y ^ h z ^ , 0 , 0 , a 1 , 1 ] , i = 1 , j = 1 , [ - φ ^ - 1 , 3 , 1 e y ^ h x ^ h z ^ , 0 , 0 , φ ^ 1 , - 1 , 1 e x ^ h y ^ h z ^ , 0 , a 1 , 3 ] , i = 1 , j = 3 , [ 0 , - φ ^ - 1 , 1 , 1 e y ^ h x ^ h z ^ , φ ^ 3 , - 1 , 1 e x ^ h y ^ h z ^ , 0 , 0 , a 3 , 1 ] , i = 3 , j = 1 , [ 0 , - φ ^ - 1 , 3 , 1 e y ^ h x ^ h z ^ , 0 , φ ^ 3 , - 1 , 1 e x ^ h y ^ h z ^ , 0 , a 3 , 3 ] , i = 3 , j = 3 ,

and for k = 0 that

(A.2) tr T ( × φ i , j , 0 ) | F = { [ 0 , 0 , 0 , 0 , a i , j , 0 ] , i , j N 0 { 1 , 3 } , [ 0 , 0 , φ ^ i , - 1 , 0 e x ^ h y ^ h z ^ , 0 , a i , 1 , 0 ] , i N 0 { 1 , 3 } , j = 1 , [ 0 , 0 , 0 , φ ^ i , - 1 , 0 e x ^ h y ^ h z ^ , a i , 3 , 0 ] , i N 0 { 1 , 3 } , j = 3 , [ - φ ^ - 1 , j , 0 e y ^ h x ^ h z ^ , 0 , 0 , 0 , a 1 , j , 0 ] , i = 1 , j N 0 { 1 , 3 } , [ 0 , - φ ^ - 1 , j , 0 e y ^ h x ^ h z ^ , 0 , 0 , a 3 , j , 0 ] , i = 3 , j N 0 { 1 , 3 } , [ - φ ^ - 1 , 1 , 0 e y ^ h x ^ h z ^ , 0 , φ ^ 1 , - 1 , 0 e x ^ h y ^ h z ^ , 0 , a 1 , 1 , 0 ] , i = 1 , j = 1 , [ - φ ^ - 1 , 3 , 0 e y ^ h x ^ h z ^ , 0 , 0 , φ ^ 1 , - 1 , 0 e x ^ h y ^ h z ^ , a 1 , 3 , 0 ] , i = 1 , j = 3 , [ 0 , - φ ^ - 1 , 1 , 0 e y ^ h x ^ h z ^ , φ ^ 3 , - 1 , 0 e x ^ h y ^ h z ^ , 0 , a 3 , 1 , 0 ] , i = 3 , j = 1 , [ 0 , - φ ^ - 1 , 3 , 0 e y ^ h x ^ h z ^ , 0 , φ ^ 3 , - 1 , 0 e x ^ h y ^ h z ^ , a 3 , 3 , 0 ] , i = 3 , j = 3 ,

where

a i , j = J i - 2 , - 2 ( x ^ ) J j - 2 , - 2 ( y ^ ) e x ^ h y ^ h z ^ - J i - 2 , - 2 ( x ^ ) J j - 2 , - 2 ( y ^ ) e y ^ h x ^ h z ^ .

Proof

Note that

^ × φ ^ i , j , k ( x ^ , y ^ , z ^ ) = J i - 2 , - 2 ( x ^ ) J j - 2 , - 2 ( y ^ ) J k - 1 , - 1 ( z ^ ) e x ^ - J i - 2 , - 2 ( x ^ ) J j - 2 , - 2 ( y ^ ) J k - 1 , - 1 ( z ^ ) e y ^ .

Then the results can be obtained by the properties of the generalized Jacobi polynomials immediately, and we omit the details of the proof. ∎

References

[1] F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations, Math. Comp. 68 (1999), no. 228, 1497–1520. 10.1090/S0025-5718-99-01086-8Search in Google Scholar

[2] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1–137. 10.1017/S0962492904000212Search in Google Scholar

[3] S. C. Brenner, J. Cui and L.-y. Sung, Multigrid methods based on Hodge decomposition for a quad-curl problem, Comput. Methods Appl. Math. 19 (2019), no. 2, 215–232. 10.1515/cmam-2019-0011Search in Google Scholar

[4] S. C. Brenner, J. Sun and L.-y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput. 73 (2017), no. 2–3, 495–513. 10.1007/s10915-017-0449-0Search in Google Scholar

[5] W. Cai, Computational Methods for Electromagnetic Phenomena, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139108157Search in Google Scholar

[6] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Probl. Imaging 1 (2007), no. 3, 443–456. 10.3934/ipi.2007.1.443Search in Google Scholar

[7] G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer, Berlin, 2002. 10.1007/978-3-662-04823-8Search in Google Scholar

[8] C. Greif and D. Schötzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl. 14 (2007), no. 4, 281–297. 10.1002/nla.515Search in Google Scholar

[9] B.-Y. Guo, J. Shen and L.-L. Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (2009), no. 5, 1011–1028. 10.1016/j.apnum.2008.04.003Search in Google Scholar

[10] B.-Y. Guo and T.-J. Wang, Composite Laguerre-Legendre spectral method for fourth-order exterior problems, J. Sci. Comput. 44 (2010), no. 3, 255–285. 10.1007/s10915-010-9367-0Search in Google Scholar

[11] Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem, J. Comput. Math. 30 (2012), no. 6, 565–578. 10.4208/jcm.1206-m3572Search in Google Scholar

[12] K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput. 42 (2020), no. 6, A3859–A3877. 10.1137/20M1333390Search in Google Scholar

[13] H. Li, W. Shan and Z. Zhang, C 1 -conforming quadrilateral spectral element method for fourth-order equations, Commun. Appl. Math. Comput. 1 (2019), no. 3, 403–434. 10.1007/s42967-019-00041-wSearch in Google Scholar

[14] J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer Ser. Comput. Math. 43, Springer, Heidelberg, 2013. 10.1007/978-3-642-33789-5Search in Google Scholar

[15] Y. Liu, J. Lee, X. Tian and Q. Liu, A spectral-element time-domain solution of Maxwell’s equations, Microwave Optical Technol. Lett. 48 (2006), no. 4, 673–680. 10.1002/mop.21440Search in Google Scholar

[16] P. Monk and J. Sun, Finite element methods for Maxwell’s transmission eigenvalues, SIAM J. Sci. Comput. 34 (2012), no. 3, B247–B264. 10.1137/110839990Search in Google Scholar

[17] L. Na, L. Tobón, Y. Zhao, Y. Tang and Q. Liu, Mixed spectral-element method for 3-D Maxwell’s eigenvalue problem, IEEE Trans. Microwave Theory Tech. 63 (2015), no. 2, 317–325. 10.1109/TMTT.2014.2387839Search in Google Scholar

[18] S. Nicaise, Singularities of the quad curl problem, J. Differential Equations 264 (2018), no. 8, 5025–5069. 10.1016/j.jde.2017.12.032Search in Google Scholar

[19] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54 (1984), no. 3, 468–488. 10.1016/0021-9991(84)90128-1Search in Google Scholar

[20] J. Shen, T. Tang and L. Wang, Spectral Methods, Springer, Berlin, 2011. 10.1007/978-3-540-71041-7Search in Google Scholar

[21] J. Sun, A mixed FEM for the quad-curl eigenvalue problem, Numer. Math. 132 (2016), no. 1, 185–200. 10.1007/s00211-015-0708-7Search in Google Scholar

[22] J. Sun and L. Xu, Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems, Inverse Problems 29 (2013), no. 10, Article ID 104013. 10.1088/0266-5611/29/10/104013Search in Google Scholar

[23] J. Sun, Q. Zhang and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT 59 (2019), no. 4, 1093–1114. 10.1007/s10543-019-00764-5Search in Google Scholar

[24] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, Chapman and Hall/CRC, Boca Raton, 2016. 10.1201/9781315372419Search in Google Scholar

[25] Z. Sun, J. Cui, F. Gao and C. Wang, Multigrid methods for a quad-curl problem based on C 0 interior penalty method, Comput. Math. Appl. 76 (2018), no. 9, 2192–2211. 10.1016/j.camwa.2018.07.048Search in Google Scholar

[26] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, New York, 1939. Search in Google Scholar

[27] C. Wang, Z. Sun and J. Cui, A new error analysis of a mixed finite element method for the quad-curl problem, Appl. Math. Comput. 349 (2019), 23–38. 10.1016/j.amc.2018.12.027Search in Google Scholar

[28] L. Wang, Q. Zhang, J. Sun and Z. Zhang, A priori and a posteriori error estimates for the quad-curl eigenvalue problem, preprint (2020), https://arxiv.org/abs/2007.01330. 10.1051/m2an/2022027Search in Google Scholar

[29] L. Wang, Q. Zhang and Z. Zhang, Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwell’s equations, J. Sci. Comput. 78 (2019), no. 2, 1207–1230. 10.1007/s10915-018-0805-8Search in Google Scholar

[30] Q. Zhang, L. Wang and Z. Zhang, H ( curl 2 ) -conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput. 41 (2019), no. 3, A1527–A1547. 10.1137/18M1199988Search in Google Scholar

[31] Q. Zhang and Z. Zhang, Curl-curl conforming elements on tetrahedra, preprint (2020), https://arxiv.org/abs/2007.10421. Search in Google Scholar

[32] S. Zhang, Mixed schemes for quad-curl equations, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 1, 147–161. 10.1051/m2an/2018005Search in Google Scholar

[33] S. Zhang, Regular decomposition and a framework of order reduced methods for fourth order problems, Numer. Math. 138 (2018), no. 1, 241–271. 10.1007/s00211-017-0902-xSearch in Google Scholar

[34] B. Zheng, Q. Hu and J. Xu, A nonconforming finite element method for fourth order curl equations in R 3 , Math. Comp. 80 (2011), no. 276, 1871–1886. 10.1090/S0025-5718-2011-02480-4Search in Google Scholar

Received: 2020-09-21
Revised: 2021-01-25
Accepted: 2021-04-08
Published Online: 2021-05-06
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2020-0152/html
Scroll to top button