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1 Introduction

Singularly perturbed boundary value problems, and their numerical solution, is a much stud-
ied topic in the last few decades (see the books [12], [13], [19] and the references therein). It
is well known that a main difficulty in the approximation to the solution of these problems
is the presence of boundary layers in the solution. In order for the approximate solution to
be considered reliable, it must account for these layers. In the context of the Finite Element
Method (FEM), the robust approximation of boundary layers requires either the use of the
h version on non-uniform, layer-adapted meshes (such as the Shishkin [21] or Bakhvalov
[2] mesh), or the use of the high order p and hp versions on specially designed (variable)
meshes [20]. One other layer-adapted mesh that has appeared in the literature is the expo-
nentially graded mesh (eXp) [25]. The finite element analysis on this mesh appears in [5]
for one-dimensional reaction-diffusion and convection-diffusion problems, in [27] for a two-
dimensional convection-diffusion problem posed in a square and in [4] for two-dimensional
reaction-diffusion problems posed in smooth domains. All the aforementioned works concern
second order singularly perturbed problems. Only recently have fourth order singularly per-
turbed problems truly attracted the attention of the numerical analysis research community
(see, e.g., [7, 8, 9, 15, 26] for some recent results and [16, 18, 23] for some earlier results). In
[26] the finite element analysis for a one-dimensional fourth order problem was carried out
on the eXp mesh, in the context of the h version with piecewise polynomials of degree p ≥ 3.
The purpose of this article is to extend the results of [26] to one-dimensional fourth order
singularly perturbed eigenvalue problems. To our knowledge, numerical analysis results for
such problems are scarce in the literature. The only relevant ones we could find are the
following: [6] in which a hybrid scheme based on asymptotic expansions is employed in order
to solve the thin hanging rod problem and [17] where the author presents a finite element
discretization of problem (1)–(2) (see ahead), using a Shishkin mesh and polynomials of
degree p = 3. We will present a finite element discretization using the eXp mesh and poly-
nomials of degree p ≥ 3, proving robust, optimal convergence in both the eigenvalues and the
eigenvectors, assuming they are simple. The error in the eigenvalues is shown to decrease
at the (expected) double rate, and the error in the eigenvectors, measured in the energy
norm, decreases at the optimal rate; both do so independently of the singular perturbation
parameter ε.

The rest of the paper is organized as follows: in Section 2 we present the model problem
and its regularity. The discretization using the exponentially graded mesh is presented in
Section 3 and in Section 4 we present our main results of parameter robust convergence in the
eigenvalues and the eigenvectors. Section 5 shows the results of some numerical computations
that illustrate the theoretical findings and in Section 6 we give our conclusions.

With I ⊂ R a bounded open interval with boundary ∂I and measure |I|, we will denote
by Ck(I) the space of continuous functions on I with continuous derivatives up to order k.
We will use the usual Sobolev spaces Hk(I) = W k,2(I) of functions on I with 0, 1, 2, ..., k
generalized derivatives in L2(I), equipped with the norm and seminorm ‖·‖k,I and |·|k,I ,
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respectively. We will also use the space

Hk
0 (I) =

{
u ∈ Hk (I) : u(i)

∣∣
∂I

= 0, i = 0, ..., k − 1
}
.

The norm of the space L∞(I) of essentially bounded functions is denoted by ‖ ·‖∞,I . Finally,
the notation “a . b” means “a ≤ Cb” with C being a generic positive constant, independent
of any discretization or singular perturbation parameters and possibly having different values
in each occurrence – dependence on various other constants will be indicated.

2 The model problem and its regularity

We consider the following eigenvalue problem: Find 0 6= u(x) ∈ C4(I), λ ∈ C such that

ε2u(4)(x)− (a(x)u′(x))
′
+ b(x)u(x) = λu(x) in I = (0, 1), (1)

along with the boundary conditions

u(0) = u′(0) = u′(1) = u(1) = 0. (2)

The parameter 0 < ε ≤ 1 is given, as are the functions a, b > 0, which are assumed to be
sufficiently smooth on the closed interval I = [0, 1]. Moreover, we assume that ∃ a0 ∈ R
such that

a(x) ≥ a0 > 0, b(x) ≥ 0 ∀x ∈ I.
It is easy to see that the problem (1), (2) is self-adjoint. As a result, the behavior of the
eigenvalues is simplified, as ε → 0, as follows: for all positive eigenvalues λk(ε) there holds
limε→0 λk(ε) = λk(0). The values λk(0) are the eigenvalues of the reduced problem and if
they are real then so are the λk(ε). Moreover, λk(ε) can be expanded in a power series in ε
(see [14] for details).

The variational formulation of (1), (2) reads: Find 0 6= uk ∈ H2
0 (I) , λk ∈ C such that

Bε (uk, v) = λk 〈uk, v〉I ∀ v ∈ H
2
0 (I) , (3)

where, with 〈·, ·〉I the usual L2(I) inner product,

Bε (u, v) = ε2 〈u′′, v′′〉I + 〈au′, v′〉I + 〈bu, v〉I . (4)

It follows that the bilinear form Bε (·, ·) given by (4) is coercive with respect to the energy
norm

‖u‖2E,I := ε2 |u|22,I + ‖u‖21,I , u ∈ H
2
0 (I) ,

i.e., there exists γ ∈ R+, independent of ε, such that

Bε (u, u) ≥ γ ‖u‖2E,I ∀ u ∈ H
2
0 (I) .

The eigenfunctions uk are sufficiently smooth in I and their first derivative features boundary
layers at the endpoints. This is described in the following result.
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Theorem 1. Let u ≡ uk ∈ H2
0 (I) satisfy (3). Then

u = uS + uLBL + uRBL,

and for j = 0, 1, 2, ...

|u(j)S (x)| . Cj(k), |(uLBL)(j)(x)| . C̄j(k)ε1−je−βx/ε, |(uRBL)(j)(x)| . Ĉj(k)ε1−je−β(1−x)/ε,

where Cj, C̄j, Ĉj, β are positive constants independent of ε.

Proof. In [14] we find the following decomposition for the eigenfunctions:

u(x) = G0(x, ε) + εG1(x, ε) exp

(
−1

ε

∫ x

0

a1/2(s)ds

)
+ εG2(x, ε) exp

(
−1

ε

∫ 1

x

a1/2(s)ds

)
where Gi, i = 0, 1, 2 have asymptotic power series expansions with respect to ε (we omit-
ted the dependence on λ.) The decomposition and desired bounds follow from the above
expression.

Remark 2. The dependence of the constants in the previous theorem, on j and k is not
explicitly known. Thus, if Cj(k) → ∞ as j → ∞ and/or k → ∞, our results deteriorate.
Moreover, as our numerical results suggest, the computation of higher modes becomes more
difficult as k is increased. This is in line with classical results for non singularly perturbed
eigenvalue problems, see, e.g. [3].

3 Discretization by an exponentially graded h-FEM

The discrete version of (3) reads: Find uhk ∈ Vh ⊂ H2
0 (I) , λhk ∈ C such that

Bε
(
uhk, v

)
= λhk

〈
uhk, v

〉
I
∀ v ∈ Vh ⊂ H2

0 (I) , (5)

with the finite dimensional subspace Vh defined as follows: let

∆ = {0 = x0 < x1 < ... < xN = 1}

be an arbitrary partition of I and set

Ij = (xj−1, xj) , hj = xj − xj−1, j = 1, ..., N.

With Pp(α, β) the space of polynomials of degree less than or equal to p ≥ 2N + 1 on the
interval (α, β), we define the subspace Vh ⊂ H2

0 (I) as

Vh =
{
u ∈ H2

0 (I) : u|Ij ∈ Pp (Ij) , j = 1, ..., N
}
. (6)

We note that the space Vh consists of the classical (piecewise) Hermite polynomials (see,
e.g., [1]), hence we quote the following relevant results.

4



Definition 3. [1] Let {xi}Ni=0 be an arbitrary partition of the interval [a, b] and suppose that
for a sufficiently smooth function f(x), x ∈ [a, b], the values

f(xi) = yi ∈ R , f ′(xi) = y′i ∈ R , i = 0, 1, ..., N

are given. Then there exists a unique polynomial f I ∈ P2N+1 (a, b), called the Hermite
interpolant of f , given by

f I(x) =
N∑
i=0

(yiH0,i(x) + y′iH1,i(x)) ,

where, with Li(x) the Lagrange polynomial of degree N associated with node xi,

H0,i(x) = [1− 2(x− xi)
dLi
dx

(xi)]L
2
i (x) , H1,i(x) = (x− xi)L2

i (x).

Theorem 4. [1, Thm 1.12] Let v ∈ C2n+2 ([a, b]) and let ∆ = {xi}Ni=0 be a mesh on [a, b] with
maximum meshsize h and with N a multiple of n. If vI is the piecewise Hermite interpolant
of v from Definition 3, having degree at most 2n+1 on each subinterval [xi−1, xi], i = 1, ..., N ,
then ∥∥v(`) − (vI)(`)

∥∥
∞,I . h2n+2−` ∥∥v(2n+2)

∥∥
∞,I , ` = 0, 1, ..., 2n+ 1.

We mention in passing that the classical theory of eigenvalue problems (see, e.g., [22]) gives,
in the case when ε is fixed and piecewise cubic polynomials are used on a uniform mesh with
meshsize h,

λk ≤ λhk ≤ λk + C(ε)λ2kh
4,

with h ≤ h0(ε) for some h0. Numerical experiments, however, indicate that this estimate
does not hold uniformly with respect to ε. This is due to the boundary layer components
that are present in the (first derivative of the) eigenfunctions and in view of Theorem 1, the
‘challenge’ lies in approximating the one-dimensional boundary layer function

e−βx/ε, β ∈ R+, x ∈ [0, 1], ε ∈ (0, 1]. (7)

As mentioned before, there are several layer adapted meshes in the literature, perhaps the
most widely known being the Shishkin or S-type meshes. In this article we choose to use
the exponentially graded (eXp) mesh from [25] – therein the mesh appears for the first time
in the literature. (See also [10] for a connection between the eXp mesh and S-type meshes.)
To define the mesh, let the mesh points be chosen as follows: with N > 4 a multiple of 4,
we split the interval [0, 1] into

[0, xN/4−1] , [xN/4−1, x3N/4+1] , [x3N/4+1, 1]

and on [xN/4−1, x3N/4+1] we choose an equidistant mesh with N/4+1 elements. For the other
two subintervals the mesh will be exponentially graded with N/4−1 elements. In particular,
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the mesh is given by a continuous, monotonically increasing, piecewise continuously differ-
entiable, generating function φ with φ(0) = 0. Then, the nodal points in our mesh are given
by

xj =


ε
β
(p+ 1)φ

(
j
N

)
, j = 0, 1, ..., N/4− 1

xN/4−1 +
(
x3N/4−xN/4−1

N/2+2

) (
j − N

4
+ 1
)

, j = N/4, ..., 3N/4

1− ε
β
(p+ 1)φ

(
N−j
N

)
, j = 3N/4 + 1, ..., N

(8)

with
φ(t) = − ln [1− 4Cp,εt] , t ∈ [0, 1/4− 1/N ], (9)

where

Cp,ε = 1− exp

(
− β

(p+ 1)ε

)
∈ R+. (10)

An example of this mesh is shown in Figure 1.

0 · · · xN/4−1 · · · x3N/4+1 · · · 1

Figure 1: Example of the exponential mesh.

We also define the function ψ by φ = − lnψ, which gives ψ(t) = 1 − 2Cp,εt as well as
ψ′(t) = −2Cp,ε ∈ R−. The meshwidth hj in the intervals [0, xN/4−1], [x3N/4+1, 1] satisfies [5],

hj ≤
ε

β
(p+ 1)N−1 max

Ij
φ′ ≤ ε

β
(p+ 1)e

xj
(p+1)ε , j = 1, ..., N/4− 1, 3N/4 + 1, ..., N. (11)

Moreover, under the assumption ε
β
(p + 1) ln(N − 4) < 1, which means that ε is small and

we are in the singularly perturbed case, it was shown in [5] that

e−βxN/4−1/ε + e−(1−βx3N/4+1)/ε . N−(p+1). (12)

The interpolation result below (Lemma 5) was established in [26] under the the (stronger,
but common) assumption

ε < N−1. (13)

(This is needed in order to be able to approximate the smooth part of the solution at the
correct rate.) Note that under this assumption, one has hj . N−1 for all Ij ⊂ I and the
problem is singularly perturbed.

4 Error estimates

We begin by noting that in our setting, Theorem 4 gives∥∥v(k) − (vI)(k)
∥∥
∞,Ij

. hp+1−k
j

∥∥v(p+1)
∥∥
∞,I , k = 0, 1, ..., p, j = 1, ..., N. (14)
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Using the above and the definition of the exponential mesh the following lemma was estab-
lished in [26].

Lemma 5. Let uBL be given by (7) and let uIBL ∈ Vh be its interpolant as in Theorem 4
based on the mesh ∆ = {xj}Nj=1 with nodes (8) obtained with the mesh generating function
φ given by (9). Then∥∥∥(uBL − uIBL)(`)∥∥∥∞,I . ε1−kN−(p+1−`) , ` = 0, 1, ..., p, (15)

and ∣∣uBL − uIBL∣∣2,I . ε−1/2N−p+1. (16)

The above lemma allows us to prove the following

Lemma 6. Let u be the solution of (3) and let uI ∈ Vh be its interpolant as in Theorem 4
based on the mesh ∆ = {xj}Nj=1 with nodes (8) obtained with the mesh generating function
φ given by (9). Then ∥∥∥(u− uI)(`)∥∥∥

∞,I
. ε1−`N−(p+1−`) , ` = 0, 1, ..., p,

and ∣∣u− uI∣∣
2,I

. ε−1/2N−p+1,

hence ∥∥u− uI∥∥
E,I

. N−p+1.

Proof. We use the decomposition of Theorem 1, u = uS + uLBL + uRBL, and denote the

interpolant by uI = uIS +
(
uLBL

)I
+
(
uRBL

)I
, with the obvious notation. Then,∥∥∥(u− uI)(`)∥∥∥

∞,I
.
∥∥∥(uS − uIS)(`)∥∥∥∞,I +

∥∥∥∥(uLBL − (uLBL)I)(`)∥∥∥∥
∞,I

+

∥∥∥∥(uRBL − (uRBL)I)(`)∥∥∥∥
∞,I

,

with the last two terms being handled by Lemma 5 and the first one by standard techniques
and (13). The other estimates are shown in a similar fashion.

Returning to the eigenvalue problem, set

Ek = span {uk} , Eh
k = span

{
uhk
}
, Eh = ⊕ki=1E

h
i .

Then, the discrete min-max condition says (see [3, eq. (7.6)])

λhk = min
Eh∈V (k)

h

max
v∈Eh

Bε(v, v)

〈v, v〉I
, (17)
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where V
(k)
h denotes the set of all subspaces of Vh with dimension k. We choose

Eh = ΠhV
(k) (18)

in (17), where
V (k) = ⊕ki=1Ei

and Πh : V → Vh is the Ritz projection, defined by

Bε (u− Πhu, v) = 0 ∀ v ∈ Vh. (19)

We may do so since, for h sufficiently small, the bound

‖Πhv‖E,I ≥ ‖v‖E,I − ‖v − Πhv‖E,I ∀ v ∈ V (20)

ensures that the dimension of Eh is equal to k. In particular, if we take h such that

‖v − Πhv‖E,I ≤
1

2
‖v‖E,I ∀ v ∈ V

(k),

then Πh is injective from V (k) to Eh. (The smallness of h depends on k). See [3] for more
details.

As in [23], we have

‖u− Πhu‖2E,I = Bε (u− Πhu, u− Πhu) = Bε (u− Πhu, u− Πhu− v)

= Bε (u− Πhu, u− ṽ)

. ‖u− Πhu‖E,I ‖u− ṽ‖E,I

with ṽ = Πhu − v ∈ Vh arbitrary. Hence, with uI the pth degree interpolant of u on the
exponential mesh, we have by Lemma 6

‖u− Πhu‖E,I . ‖u− ṽ‖E,I .
∥∥u− uI∥∥

E,I
. N−p+1 . hp−1. (21)

The above will be utilized in establishing the following result for the approximation of the
eigenvalues.

Theorem 7. Let λk, uk be the solution of (3) and λhk, u
h
k the solution of (5) on the eXp mesh.

Assuming 〈uk, uk〉I = 1 =
〈
uhk, u

h
k

〉
I

as well as
〈
uk, u

h
k

〉
I
> 0, we have for all h ≤ h0, with h0

independent of ε, the bound

λk ≤ λhk . C̄(k)λk
(
1 + h2p−2

)
,

with C̄(k) independent of ε.

Proof. The proof follows [3, Sec. 2.8] and [22, Ch. 6]. Let k be fixed. Using (18) in (17)
gives

λhk ≤ max
w∈Eh

Bε(w,w)

〈w,w〉I
= max

v∈V (k)

Bε(Πhv,Πhv)

〈Πhv,Πhv〉I
.
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Note that

Bε (Πhv,Πhv) = Bε (v, v) + 2Bε (Πhv,Πhv − v)− Bε (Πhv − v,Πhv − v)

with the last term positive and the second to last zero. Thus,

Bε (Πhv,Πhv) ≤ Bε (v, v) .

Writing

v =
k∑
i=1

ciui , ci ∈ R,

we have

Bε (Πhv,Πhv) ≤ Bε

(
k∑
i=1

ciui,
k∑
j=1

cjuj

)
=

k∑
i=1

c2iBε (ui, ui) =
k∑
i=1

c2iλi 〈ui, ui〉I

≤
k∑
i=1

c2iλi ≤ C(k)λk

and thus,

λhk ≤ C(k)λk max
v∈V (k)

1

‖Πhv‖20,I
.

Note that

‖v‖20,I = 〈v, v〉I =

〈
k∑
i=1

ciui,
k∑
j=1

cjuj

〉
I

=
k∑
i=1

c2i 〈ui, ui〉I =
k∑
i=1

c2i = C(k).

Moreover,

‖v − Πhv‖20,I = 〈v − Πhv, v − Πhv〉I = ‖v‖20,I − 2〈v,Πhv〉I + ‖Πhv‖20,I ,

hence,
‖Πhv‖20,I = ‖v − Πhv‖20,I − C(k) + 2〈v,Πhv〉I .

The term ‖v − Πhv‖20,I may be handled by Lemma 6. For the term 〈v,Πhv〉I , we have

|〈v,Πhv〉I | =

∣∣∣∣∣
k∑
i=1

ci 〈ui,Πhv〉I

∣∣∣∣∣ ≤
k∑
i=1

|ci| |〈ui,Πhv〉I | ≤
k∑
i=1

|ci|
∣∣λ−1i Bε (ui,Πhv)

∣∣
≤

k∑
i=1

|ci|
∣∣λ−1i ∣∣ |Bε (ui − Πhui, v − Πhv)| ≤

k∑
i=1

|ci|
∣∣λ−1i ∣∣ ‖ui − Πhui‖E,I ‖v − Πhv‖E,I

≤
k∑
i=1

∣∣∣∣ ciλi
∣∣∣∣h2p−2 .

[
k∑
i=1

c2i
λ2i

]1/2
h2p−2 = C̃(k)h2p−2,

9



where Galerkin orthogonality and the coercivity of the bilinear form were used. Since

‖Πhv‖20,I ≥ max
v∈V (k)

∣∣∣2〈v,Πhv〉I + ‖v − Πhv‖20,I
∣∣∣− C(k).

we obtain
‖Πhv‖20,I & Ĉ(k)

(
h2p−2 − 1

)
,

with Ĉ(k) = min
{

1, C(k), C̃(k)
}

. This gives

λhk ≤ C(k)λk
1

Ĉ(k) (h2p−2 − 1)
. C̄(k)λk

(
1 + 2h2p−2

)
,

as desired.

For the approximation of the eigenfunctions, we have the following result, under the assump-
tion that all eigenvalues are distinct.

Theorem 8. Let λk, uk be the solution of (3) and λhk, u
h
k the solution of (5) on the eXp mesh.

Assume that 〈uk, uk〉I = 1 =
〈
uhk, u

h
k

〉
I

,
〈
uk, u

h
k

〉
I
> 0 and that all eigenvalues are distinct.

Then,
‖uk − uhk‖E,I . C(k)hp−1,

with C(k) ∈ R independent of ε, u and p.

Proof. We again follow [3] (see also [22]), and introduce the following quantity:

ρhk = max
k 6=j

|λk|
|λk − λhj |

.

We also consider the L2 projection of Πhuk onto span{uhk},

whk =
〈
Πhuk, u

h
k

〉
I
uhk, (22)

which we use as follows:

‖uk − uhk‖0,I ≤ ‖uk − Πhuk‖0,I + ‖Πhuk − whk‖0,I + ‖whk − uhk‖0,I (23)

The first term in (23) is estimated using Lemma 6. To deal with the second term, note that

Πhuk − whk =
∑
j 6=k

〈
Πhuk, u

h
j

〉
I
uhj ,

which gives ∥∥Πhuk − whk
∥∥2
0,I

=
∑
j 6=k

〈
Πhuk, u

h
j

〉2
I
. (24)
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We have 〈
Πhuk, u

h
j

〉
I

=
1

λhj
Bε
(
Πhuk, u

h
j

)
=

1

λhj
Bε
(
uk, u

h
j

)
=
λk

λhj

〈
uk, u

h
j

〉
I

hence
λhj
〈
Πhuk, u

h
j

〉
I

= λk
〈
uk, u

h
j

〉
I
.

We subtract λk
〈
Πhuk, u

h
j

〉
I

from both sides above and we get(
λhj − λk

) 〈
Πhuk, u

h
j

〉
I

= λk
〈
uk − Πhuk, u

h
j

〉
I
,

which in turn gives ∣∣∣〈Πhuk, u
h
j

〉
I

∣∣∣ ≤ ρhk

∣∣∣〈uk − Πhuk, u
h
j

〉
I

∣∣∣ .
From (24) we have∥∥Πhuk − whk

∥∥2
0,I
≤
(
ρhk
)2∑

j 6=k

〈
uk − Πhuk, u

h
j

〉2
I
≤
(
ρhk
)2 ‖uk − Πhuk‖20,I . (25)

To deal with the last term in (23), we point out that if we establish∥∥uhk − whk∥∥0,I ≤ ∥∥uk − whk∥∥0,I , (26)

then ∥∥uhk − whk∥∥0,I ≤ ‖uk − Πhuk‖0,I +
∥∥Πhuk − whk

∥∥
0,I
, (27)

with both terms on the right hand side above having been estimated. From (22) we have

uhk − whk = uhk
(
1−

〈
Πhuk, u

h
k

〉
I

)
.

Also
‖uk‖0,I =

∥∥uhk − whk∥∥0,I ≤ ∥∥whk∥∥0,I ≤ ‖uk‖0,I +
∥∥uhk − whk∥∥0,I

and since uk, u
h
k are normalized, we have

1−
∥∥uk − whk∥∥0,I ≤ ∣∣〈Πhuk, u

h
k

〉
I

∣∣ ≤ 1 +
∥∥uk − whk∥∥0,I

from which we see that ∣∣∣∣〈Πhuk, u
h
k

〉
I

∣∣− 1
∣∣ ≤ ∥∥uk − whk∥∥0,I .

By choosing 〈
Πhuk, u

h
k

〉
I
≥ 0,

we conclude that (26) is satisfied. Utilizing (23), (25) and (27) we conclude that there is an
appropriate choice of the sign of uhk such that∥∥uk − uhk∥∥0,I ≤ 2

(
1 + ρhk

)
‖uk − Πhuk‖0,I . C(k)hp+1.

To get the energy norm estimate we proceed as follows:∥∥uk − uhk∥∥2E,I . Bε
(
uk − uhk, uk − uhk

)
= Bε (uk, uk)− 2Bε

(
uk, u

h
k

)
+ Bε

(
uhk, u

h
k

)
= λk − 2λk

〈
uk, u

h
k

〉
I

+ λhk = λk
[
1− 2

〈
uk, u

h
k

〉
I

]
− λk + λhk

= λk‖uk − uhk‖20,I + λhk − λk
. C(k)h2(p−1).

This completes the proof.

11



5 Numerical results

In this section we present the results of numerical computations for the approximation of
(1) by cubic Hermite polynomials (i.e. p = 3) in the case when the data is chosen as
a(x) = ex, b(x) = x. Since no exact solution is available, we use a reference solution for the
calculation of the errors computed with higher accuracy. First we would like to verify the
result of Theorem 7, so in Figure 2 we show the estimated percentage relative error in the
first two (smallest) eigenvalues, 100× |λi − λhi |/|λi|, i = 1, 2 versus the number of degrees of
freedom DOF (i.e. the dimension of the subspace) in a log-log scale. We used p = 3 and
the resulting lines have slope −4 (= −2p+ 2), just as Theorem 7 predicts.

100 101 102

DOF

10-4

10-3

10-2

10-1

100

101

102

E
st

. 
%

 R
e
la

tiv
e
 E

rr
o
r 

in
 

1

= 10-j, p = 3

slope - 4

j = 3

j = 4

j = 5

j = 6

j = 7

100 101 102

DOF

10-3

10-2

10-1

100

101

102

E
st

. 
%

 R
e

la
tiv

e
 E

rr
o

r 
in

 
2

= 10-j, p = 3

slope - 4

j = 3

j = 4

j = 5

j = 6

j = 7

Figure 2: Estimated convergence in λ1 (left) and λ2 (right).

We also show in Table 1 the computations for the first 5 eigenvalues, for ε = 10−6 (the same
behavior was noticed for other values of ε). We see that for larger eigenvalues the convergence
takes longer to set in, as was also observed for non-singularly perturbed eigenvalue problems
(see, e.g. [3]). In Figure 3 we illustrate this phenomenon, by comparing the convergence
between λ1 and λ5, for ε = 10−3, 10−6. As can be seen, while ε → 0 does not affect the
behavior (after all, the method is proven to be robust), there is a clear difference between
the case λ1 and the case λ5, which suggests that the constants C(k) in Theorem 7, grow
with k.

λNi \DOF 2 8 14 20 26 32 38

λN1 22.1093 16.6812 16.6803 16.6801 16.6801 16.6801 16.6801

λN2 94.9592 64.6500 64.5403 64.5203 64.5148 64.5130 64.5122

λN3 − 145.7632 144.7402 144.3536 144.2593 144.2278 144.2149

λN4 − 264.6963 258.3972 257.0769 256.2126 255.9574 255.8615

λN5 − 423.2341 410.7243 402.9403 401.7117 400.1930 399.6647

Table 1: Approximate eigenvalues for ε = 10−6.
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Figure 3: Convergence comparison for λ1 and λ5.

We now turn our attention to the eigenfunctions: Figure 4 shows the first two approximate
eigenfunctions uh1 , u

h
2 and their derivatives. The computations shown were performed for

ε = 10−3 and p = 3 with N = 32 nodal points. We see the boundary layers being present in
the derivatives and how the proposed method is able to capture them.
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Figure 4: Approximate eigenvectors (left) and their derivatives (right) for ε = 10−3.

In terms of convergence, we compute the percentage relative error in the energy norm

Error = 100×

∥∥ui − uhi ∥∥E,I
‖ui‖E,I

,

and plot it versus the number of DOF , in a log-log scale. We do so for i = 1 and show the
result in Figure 5. The slope is approximately −2(= p− 1), which verifies the prediction of
Theorem 8.
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Figure 5: Energy norm convergence for the fist eigenfunction.

We also consider the error in the first eigenfunction and its derivative measured in a ‘discrete
maximum norm’, defined as

error = 100×
maxx`∈[0,1]

∣∣|u1(x`)| − ∣∣uh1(x`)
∣∣∣∣

|u1(x`)|
.

The points x` ∈ [0, 1] are chosen so that we have equal number of points in the layer regions
and outside – we used 1000 point in each. This is not covered by our theory, so it may be
seen as an extension of our results. Figure 6 shows the convergence rate which seems to be
robust and of order O (hp) for the eigenvector and O (hp−1) for its derivative.
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Figure 6: Discrete maximum norm convergence for the fist eigenfunction (left) and its first
derivative (right).
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6 Conclusions

We considered a singularly perturbed fourth order eigenvalue problem and the numerical
approximation of its solution using the h-version FEM with Hermite polynomials of degree
p ≥ 3 defined on an exponentially graded mesh. We established optimal, uniform (in ε)
convergence for both the eigenvalues and the eigenfunctions, when the error was measured
in absolute value and in the energy norm, respectively. We should point out that a smallness
assumption on h is necessary to establish our results and this is seen in our numerical exper-
iments, especially for higher modes. While the analysis was performed in one-dimension, the
results are extendable to higher dimensions, since the boundary layer effect is one-dimensional
(in the direction normal to the boundary). Unfortunately, constructing C1 elements in two-
dimensions is difficult – even for simple domains. Some progress has been made [24], but
we believe that a mixed formulation is a viable alternative choice. This is the focus of our
current research efforts.
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