
FORMALIZED MATHEMATICS

Vol. 23, No. 2, Pages 93–99, 2015
DOI: 10.1515/forma-2015-0009 degruyter.com/view/j/forma

Euler’s Partition Theorem1

Karol Pąk
Institute of Informatics
University of Białystok

Ciołkowskiego 1M, 15-245 Białystok
Poland

Summary. In this article we prove the Euler’s Partition Theorem which
states that the number of integer partitions with odd parts equals the number of
partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes
[28] (see also [1]).

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100
Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/
100/ [27].
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The notation and terminology used in this paper have been introduced in the
following articles: [22], [2], [3], [17], [7], [16], [19], [14], [15], [23], [9], [10], [24],
[5], [18], [6], [11], [29], [12], [26], and [13].

1. Preliminaries

From now on x, y denote objects and i, j, k, m, n denote natural numbers.
Let r be an extended real number. One can verify that 〈r〉 is extended real-

valued and 〈r〉 is decreasing, increasing, non-decreasing, and non-increasing.
Now we state the proposition:
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(1) Let us consider non-decreasing, extended real-valued finite sequences f ,
g. If f(len f) ¬ g(1), then f a g is non-decreasing.
Proof: Set f3 = f a g. For every extended reals e1, e2 such that e1,
e2 ∈ dom f3 and e1 ¬ e2 holds f3(e1) ¬ f3(e2) by [7, (25)], [25, (25)]. �

Let R be a binary relation. We say that R is odd-valued if and only if

(Def. 1) rngR ⊆ Nodd.
(2) n ∈ Nodd if and only if n is odd.

Let us note that every binary relation which is odd-valued is also non-zero
and natural-valued.

Let F be a function. Observe that F is odd-valued if and only if the condition
(Def. 2) is satisfied.

(Def. 2) for every x such that x ∈ domF holds F (x) is an odd natural number.

One can check that every binary relation which is empty is also odd-valued.
Let i be an odd natural number. Let us observe that 〈i〉 is odd-valued.
Let f , g be odd-valued finite sequences. Note that f a g is odd-valued and

every binary relation which is Nodd-valued is also odd-valued.
Let n be a natural number. A partition of n is a non-zero, non-decreasing,

natural-valued finite sequence and is defined by

(Def. 3)
∑
it = n.

Now we state the proposition:

(3) ∅ is a partition of 0.

Let n be a natural number. Observe that there exists a partition of n which
is odd-valued and there exists a partition of n which is one-to-one.

Let us observe that sethood property holds for partitions of n.
Let f be an odd-valued finite sequence.
An odd organization of f is a valued reorganization of f and is defined by

(Def. 4) 2 · n− 1 = f(itn,1) and ... and 2 · n− 1 = f(itn,len(it(n))).

(4) Let us consider an odd-valued finite sequence f , and a double reorga-
nization o of dom f . Suppose for every n, 2 · n − 1 = f(on,1) and ... and
2 · n− 1 = f(on,len(o(n))). Then o is an odd organization of f .
Proof: For every n, there exists x such that x = f(on,1) and ... and
x = f(on,len(o(n))). For every natural numbers n1, n2, i1, i2 such that
i1 ∈ dom(o(n1)) and i2 ∈ dom(o(n2)) and f(on1,i1) = f(on2,i2) holds
n1 = n2 by [25, (25)]. �

(5) Let us consider an odd-valued finite sequence f , a complex-valued finite
sequence g, and double reorganizations o1, o2 of dom g. Suppose o1 is an
odd organization of f and o2 is an odd organization of f . Then (

∑
(g �

o1))(i) = (
∑

(g � o2))(i).
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Proof: For every double reorganizations o1, o2 of dom g such that o1
is an odd organization of f and o2 is an odd organization of f holds
rng((f � o1)(n)) ⊆ rng((f � o2)(n)) by [19, (49), (1)], [25, (29), (25)]. �

(6) Let us consider a partition p of n. Then there exists an odd-valued finite
sequence O and there exists a natural-valued finite sequence a such that
lenO = len p = len a and p = O · 2a and p(1) = O(1) · 2a(1) and ... and
p(len p) = O(len p) · 2a(len p).
Proof: Define P[object, object] ≡ for every i and j such that p($1) =
2i · (2 · j + 1) holds $2 = 〈〈2 · j + 1, i〉〉. For every k such that k ∈ Seg len p
there exists x such that P[k, x] by [20, (1)], [4, (4)]. Consider O3 being a
finite sequence such that domO3 = Seg len p and for every k such that k ∈
Seg len p holds P[k,O3(k)] from [7, Sch. 1]. Define Q(object) = O3($1)1.
Consider O being a finite sequence such that lenO = len p and for every
k such that k ∈ domO holds O(k) = Q(k) from [7, Sch. 2]. For every x

such that x ∈ domO holds O(x) is an odd natural number by [20, (1)].
Define T (object) = O3($1)2. Consider A being a finite sequence such that
lenA = len p and for every k such that k ∈ domA holds A(k) = T (k)
from [7, Sch. 2]. For every x such that x ∈ domA holds A(x) is natural
by [20, (1)]. Set O2 = O · 2A. p(1) = O(1) · 2A(1) and ... and p(len p) =
O(len p) · 2A(len p) by [25, (25)], [20, (1)]. For every i such that i ∈ dom p

holds p(i) = O2(i) by [25, (25)]. �

(7) Let us consider a finite set D, and a function f from D into N. Then there
exists a finite sequence K of elements of D such that for every element d
of D, Coim(K, d) = f(d).
Proof: Define P[natural number] ≡ for every finite set D such that D =
$1 for every function f from D into N, there exists a finite sequence K
of elements of D such that for every element d of D, Coim(K, d) = f(d).
P[0]. If P[i], then P[i+ 1] by [21, (55)], [8, (63)], [25, (57)], [13, (56)]. P[i]
from [5, Sch. 2]. �

(8) Let us consider complex-valued finite sequences f1, f2, g1, g2. Suppose
len f1 = len g1. Then (f1 a f2) · (g1 a g2) = (f1 · g1) a (f2 · g2).

(9) Let us consider natural-valued finite sequences f , K. Suppose for every

i, Coim(K, i) = f(i). Then
∑
K = 1 ·f(1)+2 ·f(2)+((iddom f ·f), 3) + . . ..

Proof: Define P[natural number] ≡ for every natural-valued finite sequ-

ences f , K such that len f = $1 and for every i, Coim(K, i) = f(i) holds∑
K = ((iddom f · f), 1) + . . .. P[0] by [25, (25)], [9, (72)], [19, (20), (22)].

If P[i], then P[i + 1] by [25, (55)], [5, (13)], [7, (59)], [8, (51)]. P[i] from
[5, Sch. 2]. �

(10) Let us consider a natural-valued finite sequence g, and a double reorgani-



96 karol pąk

zation s1 of dom g. Then there exists a (2 · len s1)-element finite sequence
K of elements of N such that for every j, K(2 · j) = 0 and K(2 · j −
1) = g(s1j,1) + ((g � s1)(j), 2) + . . .. Proof: Define P[object, object] ≡ if
$1 = 2 ·j−1, then $2 = g(s1j,1)+((g�s1)(j), 2) + . . . and if $1 = 2 ·j, then
$2 = 0. Set S = Seg(2 · len s1). For every k such that k ∈ S there exists x
such that P[k, x] by [22, (9)]. Consider f being a finite sequence such that
dom f = S and for every i such that i ∈ S holds P[i, f(i)] from [7, Sch. 1].
rng f ⊆ N by [22, (9)]. f(2·i) = 0. f(2·i−1) = g(s1i,1)+((g�s1)(i), 2) + . . .

by [25, (25)], [5, (13)], [19, (15)]. �

2. Euler Transformation

Now we state the proposition:

(11) Let us consider a one-to-one partition d of n. Then there exists an odd-
valued partition e of n such that for every natural number j for every odd-
valued finite sequence O1 for every natural-valued finite sequence a1 such
that lenO1 = len d = len a1 and d = O1·2a1 for every double reorganization
s1 of dom d such that 1 = O1(s11,1) and ... and 1 = O1(s11,len(s1(1))) and
3 = O1(s12,1) and ... and 3 = O1(s12,len(s1(2))) and 5 = O1(s13,1) and
... and 5 = O1(s13,len(s1(3))) and for every i, 2 · i − 1 = O1(s1i,1) and ...

and 2 · i − 1 = O1(s1i,len(s1(i))) holds Coim(e, 1) = 2a1(s11,1) + ((2a1 �
s1)(1), 2) + . . . and Coim(e, 3) = 2a1(s12,1) + ((2a1 � s1)(2), 2) + . . . and

Coim(e, 5) = 2a1(s13,1) + ((2a1 � s1)(3), 2) + . . . and Coim(e, j · 2− 1) =
2a1(s1j,1) + ((2a1 � s1)(j), 2) + . . ..
Proof: Consider O being an odd-valued finite sequence, a being a natural-
valued finite sequence such that lenO = len d = len a and d = O · 2a
and d(1) = O(1) · 2a(1) and ... and d(len d) = O(len d) · 2a(len d). n =
d(1) + ((d, 2) + . . .+(d, len d)) by [19, (22)]. n = 2a(1) ·O(1) + 2a(2) ·O(2) +
((O · 2a, 3) + . . .+(O · 2a, len d)) by [19, (20)], [25, (25)]. Reconsider s1 =
the odd organization of O as a double reorganization of dom 2a. Consider
µ being a (2 · len s1)-element finite sequence of elements of N such that for
every j, µ(2 · j) = 0 and µ(2 · j−1) = 2a(s1j,1) + ((2a� s1)(j), 2) + . . .. Set
α = a ·s1(1). Set β = a ·s1(2). Set γ = a ·s1(3). n = (2α(1)+(2α, 2) + . . .) ·
1+(2β(1)+(2β, 2) + . . .) ·3+(2γ(1)+(2γ , 2) + . . .) ·5+((iddomµ ·µ), 7) + . . .

by [25, (29)], [19, (41)], [25, (25)], [9, (12)]. n = µ(1) · 1 + µ(3) · 3 + µ(5) ·
5 + ((iddomµ · µ), 7) + . . . by [19, (42), (41), (25)]. Consider K being an
odd-valued finite sequence such that K is non-decreasing and for every i,
Coim(K, i) = µ(i). n = Coim(K, 1) · 1 + Coim(K, 3) · 3 + Coim(K, 5) ·
5 + ((iddomµ · µ), 7) + . . .. n =

∑
K by [19, (20)], (9). For every j such
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that 1 ¬ j ¬ len d holds O(j) = O1(j) and a(j) = a1(j) by [25, (25)],

[22, (9)], [4, (4)]. For every j, Coim(K, j · 2− 1) = 2a1(sort1j,1) + ((2a1 �
sort1)(j), 2) + . . . by [19, (42)], [25, (29)], [9, (72)], [19, (22)]. �

Let n be a natural number and p be a one-to-one partition of n. The Euler
transformation p yielding an odd-valued partition of n is defined by

(Def. 5) for every odd-valued finite sequence O and for every natural-valued finite
sequence a such that lenO = len p = len a and p = O · 2a for every
double reorganization s1 of dom p such that 1 = O(s11,1) and ... and 1 =
O(s11,len(s1(1))) and 3 = O(s12,1) and ... and 3 = O(s12,len(s1(2))) and 5 =
O(s13,1) and ... and 5 = O(s13,len(s1(3))) and for every i, 2 · i− 1 = O(s1i,1)

and ... and 2 · i−1 = O(s1i,len(s1(i))) holds Coim(it , 1) = 2a(s11,1) + ((2a�
s1)(1), 2) + . . . and Coim(it , 3) = 2a(s12,1) + ((2a � s1)(2), 2) + . . . and

Coim(it , 5) = 2a(s13,1) + ((2a � s1)(3), 2) + . . . and Coim(it , j · 2− 1) =
2a(s1j,1) + ((2a � s1)(j), 2) + . . ..

Now we state the proposition:

(12) Let us consider a natural number n, a one-to-one partition p of n, and
an odd-valued partition e of n. Then e = the Euler transformation p if
and only if for every odd-valued finite sequence O and for every natural-
valued finite sequence a and for every odd organization s1 of O such that
lenO = len p = len a and p = O · 2a for every j, Coim(e, j · 2− 1) =
((2a � s1)(j), 1) + . . ..
Proof: If e = the Euler transformation p, then for every odd-valued finite
sequence O and for every natural-valued finite sequence a and for every
odd organization s1 of O such that lenO = len p = len a and p = O · 2a

for every j, Coim(e, j · 2− 1) = ((2a � s1)(j), 1) + . . . by [25, (29)], [19,
(42), (20)]. For every j and for every odd-valued finite sequence O and
for every natural-valued finite sequence a such that lenO = len p = len a
and p = O · 2a for every double reorganization s1 of dom p such that
1 = O(s11,1) and ... and 1 = O(s11,len(s1(1))) and 3 = O(s12,1) and ... and
3 = O(s12,len(s1(2))) and 5 = O(s13,1) and ... and 5 = O(s13,len(s1(3))) and
for every i, 2 · i− 1 = O(s1i,1) and ... and 2 · i− 1 = O(s1i,len(s1(i))) holds

Coim(e, 1) = 2a(s11,1)+((2a�s1)(1), 2) + . . . and Coim(e, 3) = 2a(s12,1)+

((2a � s1)(2), 2) + . . . and Coim(e, 5) = 2a(s13,1) + ((2a � s1)(3), 2) + . . .

and Coim(e, j · 2− 1) = 2a(s1j,1)+((2a�s1)(j), 2) + . . . by [25, (29)], (4),
[19, (42), (20)]. �

One can verify that every real-valued function which is one-to-one and non-
decreasing is also increasing.
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(13) Let us consider an odd-valued finite sequence O, a natural-valued finite
sequence a, and an odd organization s of O. Suppose lenO = len a and
O · 2a is one-to-one. Then (a� s)(i) is one-to-one.
Proof: (a� s)(i) is one-to-one by [9, (11), (12)], [25, (25)]. �

(14) Let us consider one-to-one partitions p1, p2 of n. Suppose the Euler
transformation p1 = the Euler transformation p2. Then p1 = p2.

(15) Let us consider an odd-valued partition e of n. Then there exists a one-
to-one partition p of n such that e = the Euler transformation p.
Proof: Define K(object) = Coim(e, $1). Consider H being a finite se-
quence such that lenH = n and for every k such that k ∈ domH holds
H(k) = K(k) from [7, Sch. 2]. rngH ⊆ N.

∑
e =
∑

(idseq(n) ·H) by [25,
(25)], [5, (14)], [9, (72)], [30, (5)]. Define F [natural number, object] ≡ there
exists an increasing, natural-valued finite sequence f such that H($1) =
2f (1) + (2f , 2) + . . . and $2 = $1 · 2f . There exists a finite sequence p

of elements of N∗ such that dom p = Seg lenH and for every k such
that k ∈ Seg lenH holds F [k, p(k)] by [19, (31)]. Consider p being a
finite sequence of elements of N∗ such that dom p = Seg lenH and for
every k such that k ∈ Seg lenH holds F [k, p(k)]. For every k such that
p(k) 6= ∅ holds k is odd by [18, (83)], [12, (85)], [19, (22)], [9, (72)]. Set
N = the concatenation of N. Set n3 = N�p. Set s2 = sorta n3. s2 is a one-
to-one partition of n by [19, (1)], [25, (25)], [12, (45)], [18, (83)]. For every
odd-valued finite sequence O and for every natural-valued finite sequence
a and for every odd organization s1 of O such that lenO = len s2 = len a
and s2 = O · 2a for every j, Coim(e, j · 2− 1) = ((2a � s1)(j), 1) + . . . by
[25, (29)], [5, (14)], [9, (72)], [25, (25)]. �

3. Main Theorem

Now we state the proposition:

(16) Euler’s partition theorem:
the set of all p where p is an odd-valued partition of n =
the set of all p where p is a one-to-one partition of n . The theorem is a
consequence of (15) and (14).
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