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Abstract

A cylinder C1
u is the set of infinite words with fixed prefix u. A double-

cylinder C2
[1,u] is “the same” for bi-infinite words. We show that for every

word u and any automorphism ϕ of the free group F the image ϕ(C1
u)

is a finite union of cylinders. The analogous statement is true for double

cylinders. We give (a) an algorithm, and (b) a precise formula which allows

one to determine this finite union of cylinders.

1 Introduction

This paper goes back to a remark of a rather well known member of the “Outer

space" community, who some years ago during a talk in Bonn explained that

rational currents are dense in the space of currents, but that, other than using

this fact and a bit of approximation, she didn’t know how to compute the image of

a current under the induced action of an automorphisms ϕ of a finitely generated

free group F .
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By definition, a current µ is a measure on the double boundary ∂2F , i.e. the

space ∂F × ∂F minus the diagonal. The image measure ϕ∗(µ), of course, is

simply the measure µ evaluated on the preimages of subsets of ∂2F under the

homeomorphisms induced by ϕ. The problem, it turns out, is that even for the

simplest sets in ∂2F , the so called double cylinders C2
[u,v] (see Definition 5.4),

given by two distinct elements u, v ∈ F and the choice of a basis A of F , it is

not at all evident how to describe ϕ(C2
[u,v]) (or ϕ−1(C2

[u,v])). For example, using

the results of this paper, it is easy to give examples of double cylinders with

ϕ(C2
[u,v]) 6= C2

[ϕ(u),ϕ(v)].

Indeed, we prove here (see §5):

Theorem 1.1. Let ϕ be an automorphism of the free group F with finite basis

A. For any u, v ∈ F with u 6= v there exist finite sets U, V ⊂ F such that:

ϕ(C2
[u,v]) =

˙⋃

ui∈U
vj∈V

C2
[ui,vj ]

The sets U and V can be algorithmically derived from u, v ∈ F and from the

elements of ϕ(A) and of ϕ−1(A), all expressed as reduced words in A ∪ A−1.

To simplify the arguments, one considers first one-sided cylinders C1
w ⊂ ∂F :

they too depend on the chosen basis A of F , since one has to pass from the

element w ∈ F to the corresponding element of F (A), by which we denote the

set of reduced words in A ∪ A−1. One thus obtains C1
w as the set of all elements

of ∂F that are represented by one-sided infinite reduced words in A∪A−1 which

have w as prefix. We also need to consider multi-cylinders C1
U =

⋃

u∈U

C1
u for finite

subsets U ⊂ F . In §4 below we show:

Theorem 1.2. Let ϕ be an automorphism of the free group F with finite basis

A.

(a) For any u ∈ F (A) there exists a finite set U ⊂ F (A) such that:

ϕ(C1
u) = C1

U
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(b) A set U as in statement (a) can be algorithmically derived from u ∈ F (A)

and from the words in the finite subsets ϕ(A) and ϕ−1(A) of F (A). Indeed, the

equality in (a) is true for

U = {ϕ(u′)|S(ϕ)2 | u
′ ∈ u|k} ,

with k = S(ϕ)4 + S(ϕ)3 + S(ϕ)2, where S(ϕ) is the maximal length of any ϕ(ai)

or ϕ−1(ai) among all ai ∈ A, see §2.

Here for any reduced word w ∈ F (A) and any integer l ≥ 0 we denote by w|l

the word obtained from w by erasing the last l letters, and by w|l the set of reduced

words obtained from w by adding l letters from A ∪A−1 at the end of w.

The set U from the above Theorem 1.2 is not uniquely determined by u, A

and ϕ: The set U exhibited in part (b) is only one of infinitely many finite subsets

U ′ ⊂ F (A) which all satisfy the equality ϕ(C1
u) = C1

U ′ from part (a).

This non-uniqueness can be easily understood by considering the following

two typical examples, given by the pairs U1 = {ab, aba−1}, U2 = {ab} and by

U3 = {aba−1, aba, abb}, U4 = {ab}, which satisfy C1
U1

= C1
U2

and C1
U3

= C1
U4

.

The resulting ambiguity is resolved by the following proposition, which is proved

below in §3:

Proposition 1.3. For every multi-cylinder C1
U , determined by a finite set U ⊂

F (A), there is a unique finite subset Umin ⊂ F (A) of minimal cardinality which

determines the same multi-cylinder:

C1
Umin

= C1
U

The set Umin can be derived algorithmically from U by a finite sequence of ele-

mentary operations (of two types, illustrated by the two examples presented in the

previous paragraph), each of which strictly decreases the cardinality.

This enables us to define a map ϕ∗
A on elements (and on finite subsets of F (A))

by associating to u ∈ F (A) the minimal set Umin for the multi-cylinder ϕ(Cu):
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the set Umin can be derived algorithmically from any finite set U ∈ F (A) as in

Theorem 1.2, with C1
U = ϕ(Cu).

We can thus reformulate and specify the main case of Theorem 1.1 slightly,

by stating (see §5):

Proposition 1.4. Let u, v ∈ F (A) be such that none is prefix of the other. Then

one has

ϕ(C2
[u,v]) =

˙⋃

ui∈ϕ
∗

A(u)
vj∈ϕ∗

A(v)

C2
[ui,vj ]

The extra hypothesis in the last proposition is necessary since double cylinders

behave properly under the action of F on the indices (see Lemma 5.7), while for

a single cylinder C1
u one has wC1

u = C1
wu only if u is not a prefix of w−1. For a

general formula see Remark 5.10.
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2 Notation, set-up and basic facts

Throughout this paper we denote by F a finitely generated non-abelian free group,

and by ϕ an automorphism of F . We choose a basis A of F once and for all, which

allows us to identify F with the set F (A) of finite reduced words in the elements
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of A and their inverses. We denote by ∂F (A) the set of infinite reduced words:

∂F (A) = {x1x2x3 · · · | xi ∈ A ∪ A−1, xi 6= x−1
i+1}

The set ∂F (A) is in a canonical bijective correspondence with the end completion

∂F of F . The latter also coincides with the Gromov boundary of F . The set

∂F (and thus ∂F (A)) carries a topology; indeed it is homeomorphic to a Cantor

set. Every automorphism ϕ of F induces canonically a homeomorphism of ∂F ,

which for simplicity we denote also by ϕ. For background and details about these

classical facts see [2].

The word length of an element w ∈ F (A) with respect to A will be denoted by

|w|A or simply by |w|. We write v ≤ w, if v is a prefix (= initial subword) of w,

and we write v < w if in addition one has |v| < |w|. This puts a partial ordering

on F (which heavily depends on A). The longest prefix common to elements w1

and w2 of F (A) ∪ ∂F (A) is denoted w1 ∧w2. One has |w−1
1 ∧w2| = 0 if and only

if the product w1w2 is reduced; in this case we denote w1w2 by w1 · w2.

The size of an automorphism ϕ ∈ Aut(F ) (with respect to A) is defined by

S(ϕ) := SA(ϕ) := max
a∈A∪A−1

{|ϕ(a)|, |ϕ−1(a)|}

We obtain directly from this definition:

Lemma 2.1. For any w ∈ F (A) and any ϕ ∈ Aut(F ) one has:

|w|

S(ϕ)
≤ |ϕ(w)| ≤ |w| · S(ϕ)

The following is a classical result of D. Cooper, see [3].

Proposition 2.2. Let ϕ be an automorphism of the finitely generated free group

F , and let A be a basis of F . Then there exists a constant C ≥ 0 such that for

any elements u, v ∈ F one has:

0 ≤ |ϕ(u)|A + |ϕ(v)|A − |ϕ(uv)|A ≤ C

The smallest such constant C will be denoted by C(ϕ).
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In the literature the above proposition is sometimes referred to as “bounded

cancellation lemma”. It follows directly from this proposition that the analogous

statement, i.e. the upper bound on the possible cancellation, remains true if u−1

or v (or both) are replaced by elements from ∂F , i.e. by infinite words.

Remark 2.3. In [3] it has been shown that for any ϕ ∈ Aut(F ) the constant

C(ϕ) is always bounded above by S(ϕ)2.

Definition 2.4. Let w = a1 · · · ar ∈ F (A). For any integer k ≥ 0 we define:

(1) w|k = a1 · · · ar−k (if k ≤ r), and

(2) w|k = {v | w < v and |v| = |w|+ k}

From this definition we obtain directly, for any u ∈ F (A) and any integers

m,n ≥ 0 with k = m+ n, that u|k =
⋃

v∈u|m
v|n.

3 Cylinders and multi-cylinders

It is crucial in this section that one distinguishes between elements of the free

group F , with basis A = {a1, . . . , an}, and reduced words in the ai and a−1
i which

are used to represent these elements. We denote the set of reduced words by

F (A).

Similarly, we denote by ∂F (A) the set of infinite reduced words X = x1x2 . . .

in A∪A−1 which are used to represent the elements of the Gromov boundary ∂F .

We will denote in this section by U the set of all finite subsets of F (A).

Definition 3.1. For any u ∈ F (A) we define C1
u = {X ∈ ∂F (A) | u < X}. The

set C1
u is called the cylinder defined by u (and by A).

Remark 3.2. Let u, v ∈ F (A). Then from the definition of C1
u one derives

directly:

(1) If C1
u = C1

v then u = v.
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(2) If C1
u ∩C1

v 6= ∅ then one has v ≤ u and thus C1
u ⊆ C1

v , or else u ≤ v and thus

C1
v ⊆ C1

u.

(3) For any integer k ≥ 0 one has C1
u = ˙⋃

ui∈u|k
C1

ui
.

From parts (1) and (2) of Remark 3.2 we obtain directly:

Lemma 3.3. Given u, u′ ∈ F (A) with |u| = |u′|, then either C1
u ∩ C1

u′ = ∅, or

else u = u′ and thus C1
u = C1

u′.

Definition 3.4. For any subset U ⊂ F (A) we will denote by C1
U ⊂ ∂F the union

of all cylinders C1
u with u ∈ U :

C1
U =

⋃

ui∈U

C1
ui

From Lemma 3.3 we obtain directly:

Lemma 3.5. Let k ∈ N, U ⊂ F (A) and |ui| = k for all ui ∈ U . Then one

obtains a disjoint union:

C1
U =

˙⋃

ui∈U

C1
ui

Recall that U denotes the set of all finite subsets of F (A).

Lemma 3.6. Let k ∈ N and U, U ′ ∈ U, and assume for all u ∈ U ∪ U ′ that

|u| = k. Then we have C1
U = C1

U ′ if and only if U = U ′.

Proof. If U = U ′ then clearly one has C1
U = C1

U ′. Conversely, from the

hypothesis |u| = k for all u ∈ U ∪U ′ we obtain, by Lemma 3.5, that C1
U = ˙⋃

ui∈U

C1
ui

and C1
U ′ = ˙⋃

u′

j∈U
′

C1
u′

j
. Thus, if C1

U = C1
U ′, we obtain ˙⋃

ui∈U

C1
ui

= ˙⋃

u′

j∈U
′

C1
u′

j
. From

Lemma 3.3 we deduce that for any C1
ui

⊂ C1
U there exists a unique C1

u′

j
⊂ C1

U ′

with C1
ui

= C1
u′

j
and thus ui = u′

j (by Remark 3.2 (1)). This shows U ⊂ U ′, and

from the symmetry between U and U ′ we obtain U = U ′. �

We define now an “elementary” relation ց on U as follows:
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Definition 3.7. For any U1, U2 ∈ U we write U1 ց U2 if one of the following

conditions is satisfied:

1. There are distinct elements ui, uj ∈ U1 with ui < uj such that U2 = U1 r

{uj}. In this case we sometimes specify the notation U1 ց U2 to U2 ց
(1) U1.

2. There exists an element u ∈ F (A) r U1 with u|1 ⊂ U1, and one has U2 =

(U1 r u|1) ∪ {u}. In this case we write sometimes U2 ց
(2) U1.

For example, let F be a free group with base A = {a, b}, and let U =

{aba, abab, bba, bbb, bba−1}. Then for U1 = {aba, bba, bbb, bba−1} we have U ց(1) U1,

and for U2 = {aba, bb} we obtain U1 ց
(2) U2.

Remark 3.8. It is clear that the relation ց strictly decreases the cardinality of

the given set U :

U ց U ′ =⇒ #U > #U ′

Definition 3.9. For any U, U ′ ∈ U we write U ∼ U ′ if there exists a finite

sequence U1 = U, U2, · · · , Un = U ′ of elements of U, with Ui ց Ui+1 or Ui+1 ց Ui

for all 1 ≤ i ≤ n− 1.

In other words : The relation ∼ is the equivalence relation on U generated by

the elementary relation ց .

Definition 3.10. We say that U ∈ U is reduced if and only if there is no U ′ ∈ U

with U ց U ′.

Remark 3.11. (a) For any U ∈ U there exists a reduced set U ′ ∈ U with

U ց · · · ց U ′. This follows directly from the finiteness of U and from Remark

3.8.

(b) However, it is a priori not clear that the reduced set U ′ depends only on U

and not on the particular way how one choses the reduction U ց · · · ց U ′. To

show that in each equivalence class [U ]∼ there is precisely one reduced set U ′ is

the goal of the rest of this section.
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Lemma 3.12. (a) Let U, U ′ ∈ U and assume U ց U ′. Then we have C1
U = C1

U ′.

(b) In particular, if U ∼ U ′ then one has C1
U = C1

U ′.

Proof. (a) From the above definition of ց we distinguish two cases:

(1) If U ց(1) U ′ then there exist u1, u2 ∈ U with u1 < u2 and U ′ = U r{u2}. Thus

one has U = U ′ ∪ {u2}, and thus C1
U = C1

U ′ ∪ C1
u2

. But C1
u2

⊂ C1
u1

⊂ C1
U ′, so that

C1
U = C1

U ′.

(2) If U ց(2) U ′ then there exists u ∈ F (A) with u 6∈ U , u|1 ⊂ U and U ′ =

(U ru|1)∪{u}. Thus we have C1
U = C1

U ′r{u}∪C1
u|1 and C1

U ′ = C1
Uru|1 ∪C1

u. From

Remark 3.2 (3) one has C1
u = C1

u|1, so that the last two equalities give C1
U ⊃ C1

U ′

and C1
U ′ ⊃ C1

U , and thus C1
U = C1

U ′.

(b) This is a direct consequence of (a), by the definition of ∼. �

We now define another elementary relation ր which allows us to extend a set

U1 to a larger set U2:

For any U1, U2 ∈ U we write U1 ր U2 if u ∈ U1 and U2 = U1 ∪ u|1 r {u}.

Remark 3.13. (a) We observe that U1 ր U2 does not necessarily imply that

U2 ց(2) U1. For example, if U1 = {b, ba} and U2 = {ba, bb, ba−1} = b|1 then we

have U1 ր U2 and U2 ց
(2) {b} $ U1.

(b) If U1 ր U2 then one has U1 ∼ U2. To see this, we observe from U1 ր U2 that

there exists u ∈ U1 such that u 6∈ U2 and u|1 ⊂ U2. Now we apply ց(2) to obtain

U2 ց
(2) U ′

2, where U ′
2 = {U2−u|1}∪{u}. Thus all elements of U2−U ′

2 are contained

in u|1. Since u ∈ U ′
2, a multiple application of ց(1) yields U2 ց(1) · · · ց(1) U ′

2. This

implies U1 ∼ U ′
2.

(c) In particular, by Lemma 3.12 (b), if U1 ր U2 then C1
U1

= C1
U2

.

Proposition 3.14. For all U, U ′ ∈ U one has:

C1
U = C1

U ′ ⇐⇒ U ∼ U ′

9



Proof. If U ∼ U ′ then by Lemma 3.12 (b) we have C1
U = C1

U ′ . For the

converse direction assume C1
U = C1

U ′. Let k = max{|u| | u ∈ U ∪ U ′}. We set

U0 = U and define iteratively Ui+1 from Ui by postulating

Ui+1 = (Ui r {u}) ∪ u|1

for some u ∈ Ui with |u| < k. Then one obtains U = Ui ր Ui+1 ր Ui+2 ր · · · ր

Un, where for all v ∈ Un one can assume |v| = k. By part (b) of Remark 3.13 we

obtain U ∼ Un and thus C1
U = C1

Un
.

We do the same for U ′ to find U ′ = U ′
0 ր U ′

1 ր · · · ր U ′
m, where for all

v′ ∈ U ′
m one has |v′| = k. Again we obtain U ′ ∼ U ′

m and thus C1
U ′ = C1

U ′

m
. But we

assumed C1
U = C1

U ′, which gives C1
Un

= C1
U ′

m
and thus, by Lemma 3.13 , Un = U ′

m.

This gives U ∼ Un = U ′
m ∼ U ′ and hence U ∼ U ′. �

Definition 3.15. For any subset B ⊂ ∂F (A) we define

U∗(B) = {u ∈ F (A) | C1
u ⊂ B and C1

u|1
6⊂ B} .

For U ∈ U we write U∗ := U∗(C1
U) ∈ U.

Remark 3.16. From Definition 3.15 we obtain directly:

(a) If U, V ∈ U, with C1
U = C1

V , then U∗ = V ∗.

(b) For all U ∈ U we have C1
U∗ ⊂ C1

U .

(c) For all U ∈ U one has (U∗)∗ = U∗.

Lemma 3.17. For any U ∈ U one has C1
U∗ = ˙⋃

u∈U∗

C1
u.

Proof. If, by way of contradiction, we assume C1
U∗ 6= ˙⋃

u∈U∗

C1
u, then there

exist u1, u2 ∈ U∗, u1 6= u2, with C1
u1

∩ C1
u2

6= ∅. By part (2) of Remark 3.2

one has u1 < u2 or u2 < u1 and thus u1 ≤ u2|1 or u2 ≤ u1|1. This implies

C1
u2|1

⊂ C1
u1

⊂ C1
U or C1

u1|1
⊂ C1

u2
⊂ C1

U , which contradicts the assumption

u1, u2 ∈ U∗. Hence we have proved C1
U∗ = ˙⋃

u∈U∗

C1
u. �
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Lemma 3.18. For each U ∈ U there is no U ′ ∼ U with U ′ $ U∗.

Proof. From Lemma 3.17 we know C1
U∗ = ˙⋃

u∈U∗

C1
u, and from Remark 3.16

(b) we have C1
U∗ ⊂ C1

U . On the other hand, U ′ ∼ U implies by Proposition 3.14

the equality C1
U = C1

U ′ and thus C1
U∗ ⊂ C1

U ′. As a consequence, one deduces

from U ′ ⊂ U∗ that ˙⋃

u∈U∗

C1
u = ˙⋃

u∈U ′

C1
u, which implies U ′ = U∗, since every C1

u is

non-empty. �

Lemma 3.19. If U ∈ U is reduced, then one has U = U∗.

Proof. By way of contraction assume U 6= U∗. By Lemma 3.18 this implies

that U − U∗ is non-empty. Let n = max{|u| | u ∈ U − U∗}, and let u ∈ U − U∗

with |u| = n. By definition of U∗ we have that C1
u|1

⊂ C1
U , so that one of the

following three properties must hold:

(1) u|k ∈ U for some k ≥ 1.

(2) u|1
∣

∣

1
⊂ U .

(3) u|k 6∈ U for all k ≥ 1, and there exists v ∈ u|1
∣

∣

1
(i.e. |v| = n) with v 6∈ U .

The cases (1) and (2) are impossible because U is reduced and u ∈ U . In case (3),

since C1
v ⊂ C1

u|1
⊂ C1

U , there exists v′ ∈ v
∣

∣

k
, with k ≥ 1, |v′| = n + k, v′ ∈ U and

C1
v′ ⊂ C1

U . We deduce C1
v′|1

⊂ C1
u|1

⊂ C1
U , and thus v′ ∈ U − U∗: This contradicts

the definition of n above because |v′| > n. �

Proposition 3.20. (a) For every U ∈ U there is precisely one reduced set Umin ∈

U with Umin ∼ U .

(b) In particular, one has Umin = U∗ and C1
U = C1

Umin
= C1

U∗, and this is the

disjoint union of all C1
u with u ∈ Umin.

Proof. Let U ′ ∈ U be a reduced set with U ∼ U ′. By Remark 3.11 (a) such

a set U ′ exists. By Proposition 3.14 we have C1
U = C1

U ′ and thus U∗ = U ′∗. As

U ′ is reduced, by Lemma 3.19 we have U ′ = U ′∗ and thus U ′ = U∗. This shows

the uniqueness of the set U ′ =: Umin, as well as the equalities stated in claim (b). �
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We now obtain Proposition 1.3 stated in the Introduction as an immediate

consequence of Remark 3.11, Proposition 3.14 and Proposition 3.20.

4 The ϕ-image of a cylinder C1
w

The objective of this section is to determine the image of any cylinder C1
w, with

w ∈ F (A), under a given automorphism ϕ of the free group F (A). We will see

that there exists a finite set U ⊂ F (A) of words in A such that

ϕ(C1
w) =

˙⋃

u∈U

C1
u

In this section we will first prove the existence of such a finite set U , and in a

second step we will define an algorithm that determines U , for any given word

w ∈ F (A) and any automorphism ϕ of F (A) (given by the finite set of words

ϕ(ai) for any ai ∈ A).

Remark 4.1. Given w ∈ F (A), we first note that in general one has:

ϕ(C1
w) 6= C1

ϕ(w)

For example, let F (a, b) be the free group with base {a, b}, and let ϕ ∈ Aut(F (a, b)),

given by:

a 7→ aba , b 7→ ba

We consider w = ba and obtain ϕ(w) = baaba, as well as

C1
w = {baz1z2 · · · | z1 ∈ {a, b, b−1}, zi ∈ {a, b, a−1, b−1}r {z−1

i−1} ∀i ≥ 2}

and

C1
ϕ(w) = {baabaz1z2 · · · | z1 ∈ {a, b, b−1}, zi ∈ {a, b, b−1, a−1}r {z−1

i−1} ∀i ≥ 2}.

Then for W = bab−1a−1a−1a−1a−1 · · · ∈ C1
w we obtain

ϕ(W ) = bab−1a−1a−1b−1a−1a−1b−1a−1a−1b−1a−1 · · · ∈ ϕ(C1
w) ,

and we observe ϕ(W ) 6∈ C1
ϕ(w), which implies ϕ(C1

w) 6= C1
ϕ(w).
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We’d like to thank P. Arnoux for having pointed out to us that a proof of the

following statement should be possible along the lines given below in the proof.

Proposition 4.2. For any ϕ ∈ Aut(F ) and w ∈ F (A) there is a finite set

U ⊂ F (A) such that

ϕ(C1
w) =

⋃

ui∈U

C1
ui

Proof. With respect to its natural topology (see §2) the space ∂F is compact,

and for any u ∈ F (A) the cylinder C1
u is open and compact. Since every ϕ ∈

Aut(F ) induces a homeomorphism on ∂F , for any u ∈ F (A) the image set ϕ(C1
u)

must also be open and compact. Thus, since the set {C1
u | u ∈ F} constitutes a

basis of the topology of ∂F , it follows from ϕ(C1
u) open that there is a (potentially

infinite) family of C1
ui

⊂ ϕ(C1
u) which covers all of ϕ(C1

u). By the compactness

of the latter we can extract a finite subfamily {C1
ui

| u ∈ U} which still covers

ϕ(C1
u), while each C1

ui
remains a subset of ϕ(C1

u). This proves the claim. �

It should be noted that the above proof of Proposition 4.2 has no algorithmic

value. Indeed, it does not even allow us to find U by trial and error (unless one

first derives an algorithm that verifies the equality of Proposition 4.2 for any given

ϕ,w and U).

Lemma 4.3. Let ϕ ∈ Aut(F ) and w ∈ F (A) with |w| ≥ S(ϕ) · C(ϕ).

Then one has:

ϕ(C1
w) ⊂ C1

ϕ(w)|C(ϕ)

Proof. For all Z ∈ C1
w there exists X ∈ ∂F (A) such that Z = w · X and

hence ϕ(Z) ∈ ϕ(C1
w) and ϕ(Z) = ϕ(w)ϕ(X). By the definition of S(ϕ) (see §2)

we have |ϕ(w)| ≥ |w|
S(ϕ)

, and by assumption we know |w| ≥ S(ϕ) · C(ϕ), so that

|ϕ(w)| ≥ C(ϕ). Thus we can decompose ϕ(w) = w1 · w2, where |w2| = C(ϕ) and

w1 = ϕ(w)|C(ϕ). The cancelation between ϕ(w) and ϕ(X) is bounded by C(ϕ) (see

Proposition 2.2 and the subsequent paragraph), so that for some decomposition
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w2 = w′
2 · w

′′
2 we obtain ϕ(Z) = w′ ·X ′ with w′ = w1 · w

′
2 and ϕ(X) = w′−1

2 ·X ′.

This shows ϕ(Z) ∈ C1
w′ ⊂ C1

w1
, which in turn proves ϕ(C1

w) ⊂ C1
ϕ(w)|C(ϕ)

. �

Proposition 4.4. Let u, u′ ∈ F (A), and assume:

1. u ≤ u′|k for k = S(ϕ) · C(ϕ) + C(ϕ−1)

2. |ϕ(u′)| ≥ S(ϕ) · C(ϕ−1) + C(ϕ)

Then one has:

C1
ϕ(u′)|C(ϕ)

⊂ ϕ(C1
u)

Proof. From hypothesis 1. we obtain that |u′| ≥ S(ϕ) · C(ϕ), and thus we

deduce from Lemma 4.3 that

(I) ϕ(C1
u′) ⊂ C1

ϕ(u′)|C(ϕ)
.

As a direct consequence we obtain that

(II) C1
u′ = ϕ−1(ϕ(C1

u′)) ⊂ ϕ−1(C1
ϕ(u′)|C(ϕ)

).

Now we apply hypothesis 2. to obtain |ϕ(u′)|C(ϕ)| ≥ S(ϕ) · C(ϕ−1). This allows

us to again apply Lemma 4.3, with w = ϕ(u′)|C(ϕ) and with ϕ−1 instead of ϕ, to

obtain

(III) ϕ−1(C1
ϕ(u′)|C(ϕ)

) ⊂ C1
ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1)

.

From (II) and (III) we deduce

(IV) C1
u′ ⊂ C1

ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1)
,

which is equivalent to

(V) ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1) ≤ u′.

By hypothesis 2. we can write ϕ(u′) := u′′ · u′′′ with |u′′′| = C(ϕ) and u′′ =

ϕ(u′)|C(ϕ). We calculate

|u′| = |ϕ−1(u′′ · u′′′)|

≤ |ϕ−1(u′′)|+ |ϕ−1(u′′′)|

≤ |ϕ−1(u′′)|+ S(ϕ) · C(ϕ)

14



and thus obtain

|ϕ−1(u′′)| − C(ϕ−1) ≥ |u′| − S(ϕ) · C(ϕ)− C(ϕ−1) .

As u′′ = ϕ(u′)|C(ϕ), we can rewrite the last inequality as:

|ϕ−1
(

ϕ(u′)|C(ϕ)

)

| − C(ϕ−1) ≥ |u′| − S(ϕ) · C(ϕ)− C(ϕ−1)

But
∣

∣ϕ−1
(

ϕ(u′)|C(ϕ)

)

|C(ϕ−1)

∣

∣ =
∣

∣ϕ−1
(

ϕ(u′)|C(ϕ)

)
∣

∣− C(ϕ−1)

so that we obtain
∣

∣ϕ−1
(

ϕ(u′)|C(ϕ)

)

|C(ϕ−1)

∣

∣ ≥ |u′| − k. Hence we obtain from (V)

that u′|k ≤ ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1), and thus from hypothesis 1. that

u ≤ ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1).

This is equivalent to C1
ϕ−1(ϕ(u′)|C(ϕ))|C(ϕ−1)

⊂ C1
u. From (III) we then deduce that

ϕ−1(C1
ϕ(u′)|C(ϕ)

) ⊂ C1
u, which is equivalent to

C1
ϕ(u′)|C(ϕ)

⊂ ϕ(C1
u)

�

Proposition 4.5. Let u ∈ F (A) with |u| ≥ S2(ϕ)C(ϕ−1) − C(ϕ−1), and let

k = S(ϕ) · C(ϕ) + C(ϕ−1). Then one has:

ϕ(C1
u) =

⋃

u′∈u|k

C1
ϕ(u′)|C(ϕ)

Proof. For all u′ ∈ u|k one has |u′| ≥ k ≥ S(ϕ) · C(ϕ). Thus by Lemma

4.3 we obtain ϕ(C1
u′) ⊂ C1

ϕ(u′)|C(ϕ)
. Recall from part (3) of Lemma 3.2 that

C1
u =

⋃

u′∈u|k
C1

u′, which gives ϕ(C1
u) = ϕ(

⋃

u′∈u|k
C1

u′) =
⋃

u′∈u|k
ϕ(C1

u′), so that one ob-

tains

1. ϕ(C1
u) ⊂

⋃

u′∈u|k
C1

ϕ(u′)|C(ϕ)
.
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On the other hand, the hypothesis |u| ≥ S2(ϕ)C(ϕ−1)−C(ϕ−1) is equivalent

to

|u| ≥ S(ϕ)
(

S(ϕ)C(ϕ−1) + C(ϕ)
)

− S(ϕ)C(ϕ)− C(ϕ−1),

which gives by |u′| = |u|+ k the inequality

|u′| ≥ S(ϕ) (S(ϕ)C(ϕ−1) + C(ϕ))− S(ϕ)C(ϕ)− C(ϕ−1) + S(ϕ)C(ϕ) + C(ϕ−1)

= S(ϕ) (S(ϕ)C(ϕ−1) + C(ϕ)).

Since |ϕ(u′)| ≥ |u′|
S(ϕ)

we obtain |ϕ(u′)| ≥ S(ϕ)C(ϕ−1) + C(ϕ).

Thus we can now apply Proposition 4.4, to obtain C1
ϕ(u′)|C(ϕ)

⊂ ϕ(C1
u) for all

u′ ∈ u|k, so that one has

2.
⋃

u′∈u|k
C1

ϕ(u′)|C(ϕ)
⊂ ϕ(C1

u).

From 1. and 2. together we derive

ϕ(C1
u) =

⋃

u′∈u|k

C1
ϕ(u′)|C(ϕ)

�

Corollary 4.6. Let k = k1 + k2, with k1 = S2(ϕ)C(ϕ−1)− C(ϕ−1) and

k2 = S(ϕ)C(ϕ) + C(ϕ). Then for all u ∈ F (A) we have

ϕ(C1
u) =

⋃

u′∈u|k

C1
ϕ(u′)|C(ϕ)

Proof. For any v ∈ u|k1 we have |v| ≥ S2(ϕ)C(ϕ−1)− C(ϕ−1). Thus we can

apply Proposition 4.5 to get

ϕ(C1
v ) =

⋃

u′∈v|k2

C1
ϕ(u′)|C(ϕ)

(1)

Recall from part (3) of Remark 3.2 that C1
u =

⋃

v∈u|k1

C1
v and thus ϕ(C1

u) =

⋃

v∈u|k1

ϕ(C1
v ), so that we can deduce from equality (1):

ϕ(C1
u) =

⋃

v∈u|k1

(

⋃

u′∈v|k2

C1
ϕ(u′)|C(ϕ)

)
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Since u|k = u|k1+k2 this is equivalent to

ϕ(C1
u) =

⋃

u′∈u|k

C1
ϕ(u′)|C(ϕ)

�

Remark 4.7. There are several alternative approaches to determine the image

of a cylinder C1
u under an automorphism ϕ. We briefly describe here two of them:

(a) Since every automorphism ϕ of F is a product of elementary automorphisms,

one obtains a proof by induction over the length of such a product if one shows

that for every elementary automorphism the image of a cylinder is a finite union of

cylinders, and that those can be computed algorithmically. For permutations or

inversions of the generators this is trivial; for elementary Nielsen automorphisms

one has to work a little bit, but it is still not very difficult. On the other hand,

this method doesn’t permit one to describe ϕ(C1
u) by a closed formula as given

in Corollary 4.6.

(b) Passing from u ∈ F (A) to u|k for large k is computationally rather an effort,

so that the formula exhibited in Corollary 4.6 is perhaps sometimes not very

practical. We will thus sketch now a variation of the same basic approach, which

has the advantage of being computationally more efficient (and also avoids some

of the lengthly computations from above, after Lemma 4.3):

1. In a first step we pass from u to some u|k, but we pick the smallest possible

k ≥ 0 such that any w ∈ u|k satisfies the hypothesis of Lemma 4.3. This gives us

a finite collection W of words wi such that ϕ(C1
u) ⊂

⋃

wi∈W

C1
wi

.

2. We now prolong again every wi ∈ W to some wi|
ki, where ki ≥ 0 is chosen

minimally to achieve two goals:

(i) We can again apply Lemma 4.3 to any uj ∈ wi|
ki, but this time with ϕ−1

instead of ϕ. This gives ϕ−1(C1
uj
) ⊂ C1

ϕ−1(uj)|C(ϕ−1)
.

(ii) For any uj ∈ wi|
ki the word ϕ−1(uj)|C(ϕ−1) is not a prefix of u.

17



3. We now check for every uj ∈ wi|
ki whether u is a prefix of ϕ−1(uj)|C(ϕ−1), and

if this is not the case, we eliminate uj from the collection of words given by wi|
ki.

We do this for any of the wi ∈ W and obtain thus a collection U of words uj

which all have the property that u is a prefix of ϕ−1(uj)|C(ϕ−1). This is precisely

the finite set U ⊂ F with the desired property ϕ(C1
u) =

⋃

uj∈U

C1
uj

.

(The reason for this last statement is that the length bound, imposed in step

2. on all uj ∈ wi|
ki, ensures by condition (ii) above that every C1

ϕ−1(uj)|C(ϕ−1)
is

either contained in C1
u or disjoint from the latter. Since from step 1 we know

that ϕ−1(C1
uj
) ⊂ C1

ϕ−1(uj)|C(ϕ−1)
, the same statement is true for ϕ−1(C1

uj
) replacing

the C1
ϕ−1(uj)|C(ϕ−1)

. Hence, if we eliminate in step 3 those ϕ−1(C1
uj
) from the

collection which are disjoint from C1
u, to determine the set U , then one obtains

⋃

uj∈U

ϕ−1(C1
uj
) ⊂ C1

u and thus
⋃

uj∈U

C1
uj

⊂ ϕ(C1
u).

On the other hand, the inclusion ϕ(C1
u) ⊂

⋃

wi∈W

C1
wi

⊂
⋃

wi∈W

⋃

uj∈wi|ki

C1
uj

remains

true if one eliminates from the right hand term those C1
uj

which are disjoint from

ϕ(C1
u) (noting here that disjointness is preserved by the homeomorphism ϕ !),

which gives the converse inclusion ϕ(C1
u) ⊂

⋃

uj∈U

C1
uj

.)

We’d like to point out that Lluís Bacardit and Ilya Kapovich have informed

us that each of them observed independently the fact stated in part (1) of Re-

mark 4.7. Furthermore, the Examples 3.9 and 3.10 in the paper [1] by Berstock-

Bestvina-Clay make us feel that the authors probably also had some knowledge

along the lines of part (b) of Remark 4.7. We would also like to point the reader’s

attention to the forthcoming paper [5], which is in many ways a continuation

of the work started here. In particular, we will treat there the question of the

complexity of the algorithmic determination of the image of a given cylinder.

We now use the results of §3 to define a “dual map” ϕ∗, for any automorphism

ϕ of F . It is important, however, to always keep in mind that the definition of

this map depends (heavily !) on the choice of the basis A of F .

18



Definition 4.8. Let A be a basis of F . For any u ∈ F (A) we consider the finite

set U = {ϕ(u′)|C(ϕ) | u
′ ∈ u|k}, for k as in Corollary 4.6. Let Umin be the unique

minimal set which satisfies C1
Umin

= C1
U (= ϕ(C1

u), see Proposition 3.20). We

define:

ϕ∗
A(u) = Umin

Similarly, for any U ∈ U we define ϕ∗
A(U) as the unique minimal set which defines

the same cylinder as
⋃

ui∈U

ϕ∗
A(ui).

Remark 4.9. Note that this last definition gives directly, via Corollary 4.6 and

Proposition 3.20, that ϕ∗
A(u) does not depend on U but only on C1

U = ϕ(C1
u), and

that ϕ(C1
u) =

˙⋃

u′∈ϕ∗

A(u)

C1
u′.

5 Double cylinders C2
[u,v]

Definition 5.1. Let A be a basis for the free group F . We say that u, v are

anti-prefix if u is not prefix of v and v is not prefix of u. Similarly, we say that

U, V ∈ U are anti-prefix if any two elements u ∈ U and v ∈ V are anti-prefix.

Remark 5.2. Recall from Remark 3.2 (2) that for any u, v ∈ F (A) the cylinders

C1
u and C1

v are disjoint if and only if u and v are anti-prefix.

Lemma 5.3. If u, v ∈ F (A) are anti-prefix, then ϕ∗
A(u), ϕ

∗
A(v) are anti-prefix as

well.

Proof. This is a direct consequence of Remark 5.2, since ϕ acts as homeo-

morphism and hence as bijection on ∂F (A), so that it preserves disjointness of

subsets. �

We now consider the Cayley graph (a tree !) Γ := Γ(F,A) of the free group F

with respect to the basis A. There is a canonical identification between the ver-

tices of Γ and the elements of F , which in turn induces a canonical identification
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between the boundary ∂F and the set ∂Γ of ends of Γ. For any two X, Y ∈ ∂F

there is a well defined biinfinite reduced path γ(X, Y ) in Γ which connects the

point of ∂Γ associated to X to that associated to Y .

Definition 5.4. For any u, v ∈ F (A) with u 6= v we define the double cylinder

C2
[u,v] as follows:

C2
[u,v] = {(X, Y ) ∈ ∂2FN | γ(X, Y ) passes through u and v (in that order)}

Lemma 5.5. If u, v ∈ F (A) are anti-prefix, then one has:

C2
[u,v] = C1

u × C1
v

Proof. For w := u ∧ v (see §2) it follows from the assumption “u and v are

anti-prefix” that |w| < |u| and |w| < |v|. Hence for every (X, Y ) ∈ C2
[u,v] the

geodesic γ(X, Y ) must pass (in the given order) through the points u, w and v.

In particular, it follows that w < u < X and w < v < Y and hence that X ∈ C1
u

and Y ∈ C1
v .

Conversely, for every pair (X, Y ) ∈ C1
u × C1

v it follows that w < u < X and

w < v < Y , and that for X = w ·X ′ and Y = w · Y ′ the biinfinite word X ′−1Y ′ is

reduced. Hence the geodesic γ(X, Y ) must pass (in the given order) through the

points u, w and v, which implies (X, Y ) ∈ C2
[u,v]. �

Proposition 5.6. Let u, v ∈ F (A) be anti-prefix. Then one has

ϕ(C2
[u,v]) =

˙⋃

ui∈ϕ
∗

A(u)
vj∈ϕ∗

A(v)

C2
[ui,vj ]

Proof. Since u, v are anti-prefix, by Lemma 5.5 we have C2
[u,v] = C1

u × C1
v ,

which gives ϕ(C2
[u,v]) = ϕ(C1

u) × ϕ(C1
v ). By Remark 4.9 we have ϕ(C1

u) =
˙⋃

ui∈ϕ∗

A
(u)

C1
ui

and ϕ(C1
v ) =

˙⋃

vj∈ϕ∗

A
(v)

C1
vj

and thus:

ϕ(C2
[u,v]) =

˙⋃

ui∈ϕ∗

A(u)

C1
ui
×

˙⋃

vj∈ϕ∗

A(v)

C1
vj
=

˙⋃

ui∈ϕ∗

A(u)
vj∈ϕ

∗

A(v)

(

C1
ui
× C1

vj

)
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By Lemma 5.3 the sets ϕ∗
A(u), ϕ

∗
A(v) are anti-prefix, so that by Lemma 5.5 we

have C1
ui
× C1

vj
= C2

[ui,vj ]
for all ui ∈ ϕ∗

A(u), vj ∈ ϕ∗
A(v), which gives

ϕ(C2
[u,v]) =

˙⋃

ui∈ϕ∗

A(u)
vj∈ϕ∗

A(v)

C2
[ui,vj ]

.

�

Lemma 5.7. For all u, v, w ∈ F (A) one has wC2
[u,v] = C2

[wu,wv].

Proof. This is a direct consequence of the definition of C2
[u,v], see Definition

5.4. �

Before passing to the general case of double cylinders, we need to consider

the following “small” special cases, the proof of which follows directly from the

definitions:

Lemma 5.8. For any ai ∈ A one has:

C2
[1,ai]

= ˙⋃

aj∈A∪A−1r{ai}

C2
[aj ,ai]

.

C2
[1,1] =

˙⋃

ai∈A∪A−1

C2
[1,ai]

= ˙⋃

aj ,ai∈A∪A−1

ai 6=aj

C2
[aj ,ai]

.

Proposition 5.9. For any two distinct u, v ∈ F (A) there exist finite computable

sets U, V ⊂ F (A) such that

ϕ(C2
[u,v]) =

˙⋃

ui∈U
vj∈V

C2
[ui,vj ]

Proof. If u and v are anti-prefix, then Proposition 5.6 gives the desired

statement (and furthermore a precise description of the sets U and V ).

Otherwise, one has u ≤ v or v ≤ u, and if
∣

∣|u| − |v|
∣

∣ ≥ 2 we can find some

w ∈ F (A) with u < w < v or v < w < u. Hence Lemma 5.7 allows us to replace u

by w−1u and v by w−1v, which reduces this case to the one treated in the previous

paragraph.
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Finally, if
∣

∣|u| − |v|
∣

∣ ≤ 1 we can first again apply Lemma 5.7 to achieve that

u = 1 or v = 1. But then Lemma 5.8 brings us again back to the case treated in

the first paragraph. �

Remark 5.10. From the arguments given in the last proof one can derive the

following improvement of Proposition 5.6:

For any two distinct u, v ∈ F (A) (i.e. without supposing that they are anti-

prefix) one has:

ϕ(C2
[u,v]) =

˙⋃

ui∈ϕ(v)ϕ∗

A(v−1u)

vj∈ϕ(u)ϕ∗

A(u−1v)

C2
[ui,vj ]
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