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NON-COMMUTATIVE DIGITAL SIGNATURES

DELARAM KAHROBAEI AND CHARALAMBOS KOUPPARIS

Abstract. The objective of this work is to survey several dig-
ital signatures proposed in the last decade using non-commuta-
tive groups and rings and propose a digital signature using non-
commutative groups and analyze its security.

1. Introduction to Digital Signatures

We start by describing digital signatures using an analogy of a signed
message (document) from the non-digital world, whereby a person signs
a document, seals it in an envelope and mails it to a recipient. Upon
receipt of the envelope the recipient opens and examines the document,
specifically the signature, to verify the authenticity of the document
and that the author was in fact the expected sender of the envelope.
Similarly a digital signature scheme provides a way for each user to

sign messages so that the signatures can later be verified by anyone
else. To be precise, each user creates a matched pair of private and
public signatures for the message (using the signer’s public key). The
verifiers can convince themselves that the message contents have not
been altered since the message was signed. Furthermore, the signer
cannot later deny having signed the message, since no one but the
signer possesses his private key. The recipient can perform the inverse
operations of opening the letter and verifying the signature. Such sig-
nature schemes for electronic mail are already quite widespread today
(see [7]). This is often cited as one of the most fundamental and useful
inventions of modern cryptography.

2. The Ingredients of Digital Signatures

We follow the notation of Goldwasser and Bellare in their MIT lec-
ture notes (for further reading and definitions see [7]). A digital signa-
ture scheme within the public key framework, is defined as a tuple of
algorithms (G, σ, V ). The key generation algorithm G takes as input a
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security parameter α and outputs P and S, a public key and a secret
key respectively. The signing algorithm σ takes as input a security
parameter α, the secret key S and a message m. The output produced
is a string s, the signature of the message m. Finally, the verification
algorithm V when given the public key P , a digital signature s, and a
message m, returns either true or false indicating whether or not the
signature is valid.

2.1. Classical digital signatures. We briefly mention a couple of
classical digital signatures, again following [7].

2.1.1. RSA Digital Signature Scheme. The RSA digital dignature scheme
is based on the RSA cryptosystem. The public key consists of a pair of
integers (n, e) where n is the product of two large primes, e is relatively
prime to φ(n) ( φ is Euler’s totient function). The secret key, d, is cho-
sen such that ed = 1 mod φ(n). One signs a message by computing the
signature σ(m) = md mod n. To verify that this is a valid signature
one raises the signature to the power e and compares it to the original
message.

2.1.2. El Gamal Digital Signature Scheme. The El Gamal digital sig-
nature scheme is based on the Diffie-Hellman key exchange (DHKE)
problem, and the difficulty of solving this problem. Presently, it is sug-
gested that the best approach to tackling the DHKE problem is to first
solve the discrete log problem. However, it is unknown whether com-
puting a discrete log is as hard as solving the Diffie-Hellman problem.
The DHKE problem upon input a prime p, a generator g of the group
Z
∗

p and the two elements gx and gy (for x, y ∈ Z), seeks to determine
gxy mod p.

2.1.3. Schnorr Digital Signature Scheme. The Schnorr signature algo-
rithm’s security is based on the intractability of certain discrete log-
arithm problems [14]. This signature scheme is considered one of the
simplest digital signature schemes to be provably secure in a random
oracle model. It is both efficient and allows for the generation of short
signatures.

2.2. Non-commutative digital signatures using non-commutative

groups and rings.

2.2.1. Braid Groups. In 2002 Ko, Choi, Cho and Lee [11] proposed a
digital signature using braid groups where they assume the conjugacy
search problem is hard, but the conjugacy decision problem is feasible.
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In 2009 Wang and Hu [15] proposed a new digital signature based
on a non-commutative group. Their signature scheme is based on the
root extraction problem over braid groups.
We note that in general the conjugacy search problem in braid group

based schemes are susceptible to length-based attacks (see [13], [5] and
[8]) and as such may not be suitable as platforms for non-commutative
digital signatures.

2.2.2. Division Semirings. Another example of generating digital sig-
natures over non-commutative algebraic objects was given by Anjaneyulu,
Reddy and Reddy in 2008 [1]. They consider polynomials over non-
commutative division semirings. They assume that the computational
Diffie-Hellman problem is hard in their setup. Additionally their sig-
nature also relies on the difficulty of the generalized symmetrical de-
composition (GSD) problem as applied to their rings.
The authors propose that their signature is both secure against data

forging of the message and against existential forgery. However, we
believe that both these claims may be incorrect. In their scheme if
someone replaces the valid message M with a forged message Mf , then
the signature already sent would be valid. Although M is used in
creating the signature, it is not needed in verification of the signature.
Hence the verification test will succeed.
For existential forgery one is required to produce a valid signature

for any message of their choosing. As such, one can at will choose
parameters that satisfy their verification algorithm.

2.2.3. General Non-Commutative Rings. In order to limit the ability
of a third party to verify the validity of a signature, Chaum and van
Antwerpen [3] introduced the notion of undeniable signatures. Like a
digital signature, undeniable signatures depend on the signer’s public
key as well as on the message signed. However, verification can only be
achieved by interacting with the legitimate signer through a confirma-

tion protocol. This method also allows the signer to deny the signature.
In particular, if the signer refuses to deny, or fails to deny the signature,
then the signature is assumed to be legitimate. Furthermore, as the
signer’s cooperation is required for verification of the signature they
are protected from verification attempts by unauthorized third parties.
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3. A non-commutative digital signature

Let G be an infinite finitely presented group with exponential growth
rate, such that there is no known polynomial-time algorithm for solv-
ing the conjugacy search problem. In the signature we use f repre-
sents a simple mapping function f : G → {0, 1}∗, which maps our
group to some binary representation that can be digitally encoded. We
will also be using a collision-free hash function H which maps into G.
We note that for our algorithm Alice’s public key will have to be up-
dated/changed periodically depending on the number of messages she
transmits.

• Setup The signer, Alice, chooses a group element g, a pri-
vate key s ∈ G and an integer n ∈ N. We note that in our
scheme n should be chosen to be a highly composite number,
n =

∏l

k=1
p
ek
k , where pk are prime and ek ∈ N. She then com-

putes x = gns and publishes x. Note, when exponentiating
with an element of h ∈ G we are representing conjugation,
gh = h−1gh. Furthermore, the centralizer of g should be trivial,
i.e. the set of group elements commuting with g should consist
of only the identity.

• Key generation: The signer wishes to sign the message m

which is a bit string. She picks t uniformly at random from
G, a random factorization of n = ninj , and computes the key
y = gnit.

• Signature: To generate the signature σ compute the following:

h = H(m||f(y))

α = t−1shy

Alice then publishes her signature σ = (y, α, nj) and the mes-
sage m.

• Verification: To verify the signature compute h′ = H(m||f(y)).
The signature is valid and accepted if and only if

ynjα = xh′y

3.1. Security Analysis of the Signature Protocol. We note that
the idea for this algorithm was generated by Schnorr’s digital signature
for commutative groups. In particular, the use of string concatenation
and a hash function were borrowed from this scheme.

3.1.1. Completeness. Given a signature generated by Alice (y, α, nj),
and the public key x, Bob will always accept the signature as valid
following the verification algorithm.
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First Bob computes h′ = H(m||f(y)) = h. He then verifies the
equation ynjα = xh′y. The left hand side yields

ynjα = ynjt
−1shy = gninjtt

−1shy = gnshy = xhy.

As h′ = h the equation is valid, hence the protocol is complete.

3.1.2. Data forging. Suppose that the forger Eve replaces the valid
message to be signed, m, with a forged message, mf . Then when
Bob computes h′ = H(mf ||f(y)) 6= H(m||f(y)) = h he won’t be able
to verify that ynjα = xh′y 6= xhy. This equation in general doesn’t hold
unless there is a collision in the hash function for the particular choices
of (m, y, f), which is unlikely given our assumptions about H .

3.1.3. Existential Forgery. Suppose Eve wishes to sign a forged mes-
sage mf . She would then have to generate a valid signature σ =
(yf , αf , njf ) which passes the verification algorithm. It is here where
is becomes necessary to use an exponent n. For if n = 1 then the
verification reads yα = xh′y ⇒ yβh

′y = xh′y ⇒ yβ = x. Hence choosing
β determines y, which in turn gives us h and hence α. Combining all
this yields an existentially forged signature for any m.
Repeating the above in our case yields ynjβ = x. In order to solve this

equation y, β and nj must be determined. A priori it is not clear how
this may be done. One may proceed by choosing 2 of the 3 unknowns
and solving for the third. In this case, if β is the last parameter left,
then we are left to solve the CSP problem, which is we know to be
difficult for a given platform group. Hence one must choose β. If
we next choose nj , then we need to solve ynj = xβ−1

. We are not
guaranteed a solution of this equation in general as this implies the
existence of and the ability to compute roots in the underlying group.
Hence this forces us to choose both β and y, which again means we
need to solve a DH problem which may or may not have a solution and
is already computationally hard.
Based on the above we believe that existential forgery of this protocol

is not possible unless one already knows a root of x. It turns out that
this can be done once Alice has sent out a message and its signature.
One can determine an nth

j root of x by computing yαy
−1h−1

. In order
to stop Eve from forging a message using this nj Alice needs to keep
a public list updated with the nj ’s she has used to far. If we receive
a message with an nj already used then we know it must not be from
Alice.
Another option is an adaptive chosen ciphertext attack, where Eve

gets to submit messages of her choosing for signing. Again this method
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of attack is unlikely to succeed as the most Eve will obtain is a distri-
bution of t−1s, which is random and should yield no information about
s nor t. In addition, Eve will be receiving information about n as well,
however, as suggested before, once Alice has exhausted a small list of
factorizations we recommend switching to a new x and n. This switch
can be prolonged if careful choices are made in the factorization of n.
In particular we can specifically choose not to include certain primes
in the integer nj that is published, or even to restrict the exponents of
the primes used in nj .

3.1.4. Soundness. One method of breaking the security requires the
eavesdropper to recover s, t or n. Since g nor n was never published,
nor needed, there isn’t a clear method of starting a CSP attack. You
would either have to be able to attack the random algorithm which
generates t and hence obtain information about t−1s, or there would
have to be some method of attacking the hash function. Hence the
security of this signature generation protocol relies on the appropriate
choice of hash function and the method by which one obtains random
group elements. Care must also be taken as to how the elements are
transmitted. Since an eavesdropper can always read back s−1t, for
random t, we must make sure that this doesn’t leak any information
about s.

3.2. Proposed Platforms. We advocate using platform groups for
which the conjugacy search problem is hard. Such non-commutative
groups have been discussed in [12]. In particular, any group which has
been deemed secure against length based attacks and other attacks may
be used. Such groups include polycyclic groups as they have been pro-
posed for cryptography in [4], [9] and [10]. Garber, Kahrobaei and Lam
in [6] have done some experiments which shows that well-chosen poly-
cyclic groups with high Hirsch length are secure against length based
attacks. For a survey on non-commutative group-based cryptography
see [2] and [12].
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