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Abstract

We propose a slight weakening of the definitions of Artin monoids

and Coxeter monoids. We study one ‘infinite series’ in detail.

1 Introduction

This paper begins with a classification of monoids generated by two idempo-

tents such that the ordering of left-division is a lattice ordering.

The result suggests a definition (definition 4) of a class of monoids which

we call AI monoids (A for Artin, I for idempotent). It contains the well-known

Artin monoids.

Every AI monoid comes hand-in-hand with what we call a CI monoid (C

for Coxeter, I for idempotent). The twin of an Artin monoid may be called a

Coxeter monoid.

An example of an AI monoid is An presented by generators {pa | 1 ≤ a ≤
n} and relations

pa pb = pb pa if |a − b| > 1

pa−1 pa pa−1 = pa pa−1 pa pa−1 if 2 ≤ a ≤ n.

The CI monoid Mn of the same type is presented by generators {ma | 1 ≤
a ≤ n} and relations

ma mb = mb ma if |a − b| > 1

ma−1 ma ma−1 = ma ma−1 ma ma−1 if 2 ≤ a ≤ n

ma−1 ma ma−1 = ma−1 ma ma−1 ma if 2 ≤ a ≤ n

ma ma = ma if 1 ≤ a ≤ n.

The monoid Mn appeared earlier in [He], [O] and [D2] as an overarching

object in Garside theory; also see section 7. In [He] and [O] Qn is the nota-

tion for Mn.

If a Coxeter group is finite then the corresponding Artin group A is com-

monly called spherical. Equivalent to this is that any two elements of A have

a common right-multiple. Again equivalent is that the corresponding Cox-

eter monoid M has an element w0, called a sink, such that x w0 y = w0 for

all x, y ∈ M. Again equivalent to this is that the Coxeter monoid is finite.
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We shall show that Mn has a sink. This is proposition 67 and was previ-

ously proved in [D2] and [He]. On the other hand Mn is infinite if n ≥ 3

(proposition 69).

Thus Mn has some properties in common with the spherical Coxeter

monoids, some with the nonspherical ones. We feel however that the simi-

larity with the spherical Coxeter monoids is stronger.

As the full class of AI monoids seems beyond reach (even assuming that

the corresponding CI monoid has a sink) we decide to focus on the monoids

An and Mn. Two of our main results, corollaries 37 and 66, are fast solutions

to the word problems in An and Mn. For both monoids we use the shortlex

language.

Spherical Artin groups are examples of Garside groups. See [D1] or [D2]

for Garside theory. Being a Garside group is an elegant and powerful prop-

erty implying, among others, a fast solution to the word problem.

Our solution to the word problem for An is very different and seems

unrelated to Garside properties. Instead we conjecture that An is a weak

kind of left-Garside monoid, see conjecture 57. As partial results towards

this conjecture we prove that An is left-cancellative (proposition 39) and

that it has a Garside element (proposition 56).

It is known that every Artin monoid A satisfies the so-called cube condi-

tion. A closely related property is that if two elements of A have a common

right-multiple then they have a least such. AI monoids are not this well-

behaved. In section 5 we present an AI monoid which doesn’t satisfy the

cube condition.

Every Coxeter group comes with a well-known faithful linear representa-

tion defined over R [Hu]. In proposition 12 we present a similarly looking

linear representation of any CI monoid, with the difference that we make the

base ring depend on the Coxeter monoid in question. We don’t know if these

representations are faithful.

Acknowledgement. Many thanks to V. Ozornova for pointing out the

relevance of the thesis of A. Hess [He].

2 Monoids generated by two idempotents

An element x of a monoid is said to be idempotent if x2 = x.

If a, b are elements of a monoid and n ≥ 0 we write

[a, b; 2n] = (ab)n , [a, b; 2n + 1] = (ab)na.

A lattice is an ordered set in which any two elements x, y have a least

common upper bound or join and a greatest common lower bound or meet.

Proposition 1. Let M be a monoid generated by two idempotents a, b. Let ≤
be the relation on M defined by x ≤ y if and only if y ∈ xM, in words, x is a

left-divisor of y. Suppose 1, a, b are distinct and neither a ≤ b nor b ≤ a. Then

the following are equivalent:

(a) The relation ≤ is an ordering, and a lattice ordering.
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(b) There are k, ℓ ≥ 2 with |k − ℓ| ≤ 1 satisfying the following. Let M′ be the

monoid presented by

M′ =
〈

A, B
∣

∣ [A, B; k] = [A, B; k + 1] = [B, A; ℓ] = [B, A; ℓ+ 1]
〉

.

Then there exists an isomorphism f : M′ → M such that f (A) = a and

f (B) = b.

(c) After interchanging a, b if necessary there exists k ≥ 2 such that M admits

one of the following presentations:

M = 〈a, b | [a, b; k] = [b, a; k]〉, or (2)

M = 〈a, b | [a, b; k] = [a, b; k + 1] = [b, a; k + 1]〉. (3)

The Hasse diagram of M is defined to be the directed graph with vertex

set M and which has an arrow labelled s from x to xs whenever s ∈ {a, b}
and x 6= xs. If (b) holds with k = 3 and ℓ = 4 then it looks as follows.

a ab

1 aba = baba

b ba bab

a

b

a

b

a b

a

Proof. Note that if (b) holds and ℓ = k + 1 then M is presented by (3). The

equivalence (b) ⇔ (c) is now clear.

Proof of (a) ⇒ (b). Since (M,≤) is a lattice there exists a join ∆ of {a, b}.

There are k, ℓ ≥ 1 such that

[a, b; k] = ∆ = [b, a; ℓ]

because a, b are idempotents and M is generated by a, b and ∆ ∈ aM and

∆ ∈ bM. Choose k, ℓ minimal with the above properties. Note k, ℓ ≥ 2

because neither a ≤ b nor b ≤ a.

After interchanging a, b if necessary we may assume k ≤ ℓ.
We have

[a, b; k] ≤ [a, b; ℓ+ 1] = a [b, a; ℓ] = a∆ = a [a, b; k] = [a, b; k]

so equality holds throughout, proving [a, b; k] = [a, b; k + 1]. It follows that

∆ = ∆a = ∆b (because a, b are idempotents) and therefore [a, b; ℓ] =
[a, b; ℓ+ 1].

We shall next prove ℓ ≤ k + 1. Suppose to the contrary ℓ ≥ k + 2. Put

x = [a, b; ℓ− k − 2] if k is odd and x = [b, a; ℓ− k − 2] if k is even. Then

[b, a; ℓ] = b [a, b; k + 1] x = b [a, b; k] x = b [a, b; k] = [b, a; k + 1]

whence ℓ ≤ k + 1 because ℓ was chosen minimal. This is a contradiction and

proves ℓ ≤ k + 1.
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We have proved that there exists a unique surjective homomorphism

f : M′ → M such that f (A) = a and f (B) = b. It remains to prove that

f is injective. Suppose x, y ∈ M are distinct with f (x) = f (y). We need to

derive a contradiction.

Let ≤ be the relation of left division in M′ and 0 = [A, B; k] = [B, A; ℓ].
Note 0u = u0 = 0 for all u ∈ M′.

Suppose first A ≤ x, B ≤ y, say, x = [A, B; p] and y = [B, A; q]. Then

[a, b; p] = [b, a; q]. But a, b have a join and k, ℓ are minimal so k ≤ p and

ℓ ≤ q. The definition of M′ now implies x = 0 = y, a contradiction.

Suppose next A ≤ x, A ≤ y, say, x = [A, B; p], y = [A, B; q]. Also assume

p < q. Then [a, b; p] = [a, b; q]. But ≤ is an ordering so [a, b; r] is independent

of r as long as p ≤ r ≤ q. In particular [a, b; p] = [a, b; p + 1]. But a, b are

idempotents so f (x) = f (x)a = f (x)b. So [a, b; p] = ∆. Since k was chosen

to be minimal we have k ≤ p < q. Hence x = [A, B; p] = [A, B; q] = y. This

is the required contradiction.

Suppose now 1 = x, A ≤ y. Then 1M < a = f (A) ≤ f (y) = f (x) = 1M.

This contradicts our assumption that ≤ is an ordering.

Up to interchanging a with b or x with y or both this covers all cases. This

proves that f is injective and thereby (a) ⇒ (b).

Proof of (a) ⇐ (b). Write ∆ = [a, b; k] = [b, a; ℓ]. Note that ∆ is a sink,

that is, x∆y = ∆ for all x, y ∈ M. Therefore every element of M r {1, ∆}
can uniquely be written [a, b; p] (0 < p < k) or [b, a; q] (0 < q < ℓ).

Conversely, [a, b; p] 6= ∆ and [b, a; q] 6= ∆ if p < k and q < ℓ because

|k − ℓ| ≤ 1. Therefore the Hasse diagram of M is

◦ ◦ · · · ◦ ◦
}

k − 1

vertices

◦ ◦

◦ ◦ · · · ◦ ◦
}

ℓ− 1

vertices

a

b a

b

a b

which proves that ≤ is an ordering and a lattice ordering. This finishes the

proof of (a) ⇐ (b). �

3 CI monoids and AI monoids

Definition 4. A CI matrix (C for Coxeter, I for idempotent) consists of a set

S and a map m: S × S → Z≥1 ∪ {∞} such that:

◦ m(a, b) = 1 if and only if a = b.

◦ m(a, b) = ∞ if and only if m(b, a) = ∞.

◦ |m(a, b) − m(b, a)| ≤ 1 for all a, b ∈ S.

With a CI matrix (S, m) we associate the CI monoid M presented by gener-

ating set S and relations

◦ (5)a2 = a for all a ∈ S.
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◦ (6)[a, b; m(a, b)] = [b, a; m(b, a)] whenever m(a, b) 6= ∞.

◦ (7)[a, b; m(a, b)] = [a, b; m(a, b) + 1] whenever m(a, b) 6= ∞.

Moreover we associate an AI monoid A (A for Artin, I for idempotent) pre-

sented by generating set S and relations (6).

It is easy to show that the natural map S → M is injective. We shall

consider S as a subset of M and A. Clearly there is a unique homomorphism

A → M which is the identity on S.

A pair (M′, S′) is called a CI system if M′ is a monoid and there exists

an isomorphism M → M′ (with M as above) taking S to S′. Likewise, a

pair (A′, S′) is called an AI system if A′ is a monoid and there exists an

isomorphism A → A′ taking S to S′.

The number #S is called the rank of M and A. �

So part (b) of proposition 1 says that (M, {a, b}) is a CI system of rank 2.

Consider definition 4 and suppose that m is symmetric, that is, m(a, b) =
m(b, a) for all a, b ∈ S. Then the definition reduces to the following well-

known things. Firstly, (S, m) is then known as a Coxeter matrix and A is

called an Artin monoid. Likewise we shall call M a Coxeter monoid though

this terminology is not common. More commonly studied is the Coxeter group

W which is by definition the quotient of A by the additional relations a2 = 1

for all a ∈ S (provided m is symmetric).

The CI graph or diagram associated with a CI matrix (S, m) is the graph

with vertex set S and the following edges:

◦ If m(a, b) = m(b, a) > 2 then there is an unoriented edge between a, b
labelled 2m(a, b) = m(a, b) + m(b, a).

◦ If m(a, b) + 1 = m(b, a) then there is an arrow from a to b labelled

m(a, b) + m(b, a).

So m is symmetric if and only if all edge labels in the Coxeter graph are even.

Warning: If all labels are even then our definition of Coxeter graph differs

from the usual one because our labels are twice the usual labels. Labels equal

to 6 are suppressed as usual.

Coxeter groups and Artin monoids have been studied extensively. A good

introduction is [Hu]. Proposition 1 is our main motivation for generalising

Artin monoids to AI monoids.

If M, N are monoids then a map φ: M → N is called an anti-homomor-

phism if φ(xy) = φ(y)φ(x) for all x, y ∈ M.

Lemma 8. Let (M, S) be a CI monoid. Assume that no edge label is in 1 + 4Z.

That is, m(a, b) + m(b, a) 6∈ 1 + 4Z for all a, b ∈ S. Then there exists a unique

anti-automorphism φ of M such that φ(a) = a for all a ∈ S.

Proof. We may assume #S = 2, say, S = {a, b}. Write k = m(a, b), ℓ =
m(b, a). After interchanging a, b if necessary we may also assume k ≤ ℓ.

If k = ℓ the result is clear. We are left to consider the case k < ℓ. Then

ℓ = k + 1 and k is odd. By definition M is presented by generating set {a, b}
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and relations a2 = a, b2 = b and

[a, b; k] = [b, a; k + 1] (9)

[a, b; k] = [a, b; k + 1] (10)

[b, a; k + 1] = [b, a; k + 2]. (11)

Note that (11) is a formal consequence of (9) and (10) and can therefore

be supressed. The effect of reversing the multiplication is to interchange (9)

and (10) because k is odd. The result follows. �

4 A linear representation for any CI monoid

The following proposition gives a linear representation of any CI monoid. It

looks a bit like the well-known faithful representation of any Coxeter group

[Hu]. We don’t know if our representations are faithful.

Proposition 12. Let (M, S) be a CI system and let m be the associated CI

matrix. Let R be the associative ring presented by generators xab whenever

a, b ∈ S are distinct and relations

[xab, xba; m(a, b)− 1] = 0 (13)

whenever a, b ∈ S are distinct. Let V be a free left R-module with basis (ea | a ∈
S). Then there exists an M-action on V given by

ea a = 0, eb a = eb + xba ea

whenever a, b ∈ S are distinct.

Proof. For a ∈ S consider the R-linear map Ta: V → V defined by

ea Ta = 0, eb Ta = eb + xba ea

whenever a, b are distinct. Until further notice we shall not use the relations

(13) between the xab.

We begin by proving that Ta is idempotent. Firstly ea T2
a = 0 = ea Ta.

Moreover if b 6= a then eb T2
a = (eb + xba ea)Ta = eb Ta thus proving that Ta is

idempotent.

Fix distinct a, b, c ∈ S. For n ∈ Z write

(

a(n), b(n)
)

=

{

(a, b) if n is even,

(b, a) if n is odd.

By induction on n we shall prove

eb [Ta, Tb; n] = [xba, xab; n − 1] ea(n) + [xba, xab; n] eb(n) if n ≥ 1. (14)

For n = 1 this is given. If it is true for n then

eb [Ta, Tb; n + 1] = eb [Ta, Tb; n] Ta(n)

=
(

[xba, xab; n − 1] ea(n) + [xba, xab; n] eb(n)

)

Ta(n)

6



= [xba, xab; n] eb(n)Ta(n) = [xba, xab; n] (eb(n) + xb(n),a(n) ea(n))

= [xba, xab; n] eb(n) + [xba, xab; n + 1] ea(n)

= [xba, xab; n] ea(n+1) + [xba, xab; n + 1] eb(n+1).

This proves (14).

Since Ta, Tb are idempotents

[Ta, Tb; p + 1]− [Tb, Ta; p + 1] (15)

=
(

[Ta, Tb; p]− [Tb, Ta; p]
)

(Ta + Tb − 1)

for all p ≥ 1.

By induction on n we shall prove

ec

(

[Ta, Tb; n]− [Tb, Ta; n]
)

= xca[xab, xba; n − 1] eb(n) (16)

− xcb[xba, xab; n − 1] ea(n) if n ≥ 1.

It holds for n = 1 because

ec(Ta − Tb) = (ec + xca ea)− (ec + xcb eb) = xca ea − xcb eb.

If it is true for n − 1 then by (15)

ec

(

[Ta, Tb; n]− [Tb, Ta; n]
)

= ec

(

[Ta, Tb; n − 1]− [Tb, Ta; n − 1]
)

(Ta + Tb − 1)

=
(

xca[xab, xba; n − 2] ea(n) − xcb[xba, xab; n − 2] eb(n)

)

(Ta + Tb − 1)

= xca[xab, xba; n − 2] ea(n)(Tb(n) − 1)

− xcb[xba, xab; n − 2] eb(n)(Ta(n) − 1)

= xca[xab, xba; n − 2] xa(n),b(n) eb(n) − xcb[xba, xab; n − 2] xb(n),a(n) ea(n)

= xca[xab, xba; n − 1] eb(n) − xcb[xba, xab; n − 1] ea(n).

This proves (16).

We are ready to use the relations (13) in the ring R. Write k = m(a, b)
and ℓ = m(b, a).

First suppose k = ℓ. Write

X = [Ta, Tb; k], Y = [Tb, Ta; k].

We must prove X = Y. Well, (14) shows that all among eaX, ebX, eaY, ebY
are zero. Also (16) shows that ec(X − Y) = 0. This settles the case k = ℓ.

Finally suppose ℓ = k + 1 and write

X = [Ta, Tb; k], Y = [Tb, Ta; k + 1], Z = [Ta, Tb; k + 1].

We must prove X = Y = Z. Well, (14) proves eaU = 0 = ebU for all

U ∈ {X, Y, Z}. Moreover (16) shows that ec(Y − Z) = 0.

Applying [Ta, Tb; k] to both sides of the equation ec(Tb − 1) = xcb eb yields

ec

(

[Tb, Ta; k + 1]− [Ta, Tb; k]
)

= xcb eb [Ta, Tb; k]

so ec(Y − X) = 0 by (14). This finishes the case ℓ = k + 1. The proof is

complete. �
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5 An AI monoid not satisfying the cube condition

It is known that if two elements of an Artin monoid have a common upper

bound then they have a join. For AI monoids this is false in general as we

shall now show.

Consider the AI monoid A of diagram

a b c.
6 7

This monoid is presented by

A =
〈

a, b, c
∣

∣ aba = bab, bcb = cbcb, ac = ca
〉

. (17)

Consider the ordering ≤ of left-division on A, that is, x ≤ y ⇔ y = xz for

some z.

A congruence on a monoid N is an equivalence relation ∼ on N such that

there exists a (necessarily unique) structure of monoid on the set N/∼ of

equivalence classes such that the natural map N → N/∼ is a homomorphism

of monoids.

Let F be the free monoid on {a, b, c} and ∼ the congruence generated

by the relations in (17), so that A = F/∼. For x ∈ F let [x] denote the

equivalence class of ∼ containing x.

Put p = [bcb], q = [cabcbab] and note

cabcbab ∼ acbcbab ∼ abcbab ∼ abcaba ∼ abacba ∼ babcba.

We have

p = [bcb] = [cbcb], q = [cabcbab] = [babcba]

so p, q are two upper bounds of {[b], [c]}.

The proof of the following proposition doesn’t use any background on

Garside theory.

Proposition 18.

(a) The set of all words in a, b, c representing p is {ck b c b | k ≥ 0}.

(b) p is a minimal upper bound of {[b], [c]}. Here minimal means that if r is

an upper bound of {[b], [c]} with r ≤ p then r = p.

(c) The set of all words representing q is contained in

{

ck b cℓ a cm b c b a
∣

∣ k, ℓ, m ≥ 0
}

∪
{

ck a cℓ b a c b a
∣

∣ k, ℓ ≥ 0
}

∪
{

ck a cℓ b c b a b
∣

∣ k, ℓ ≥ 0
}

∪
{

ck a cℓ b c a b a
∣

∣ k, ℓ ≥ 0
}

.

(d) q is not an upper bound of p.

(e) {[b], [c]} has an upper bound but no join.

Proof. Parts (a)–(c) are straightforward. By (c) no word for q starts with bcb
and so (d) follows. Part (e) follows from (b) and (d). �
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There is also a mechanical method for proving that A contains two ele-

ments with a common upper bound but without join. To do this one proves

that A fails to satisfy the so-called cube condition. See [D1] or [D2] for the

necessary background including the \ operation. One finds

(a\b)\(a\c) = cba, (b\a)\(b\c) = cbab

but cba, cbab represent distinct elements of A.

6 A CI graph

From now we shall deal with the CI monoid and the AI monoid of diagram

◦
7

−→ ◦
7

−→ · · ·
7

−→ ◦
7

−→ ◦
x1 x2 xn.

(19)

Fix a natural number n. Let Fn be the free monoid on a set Xn =
{x1, . . . , xn} of n elements. An element of Fn is called a word and an ele-

ment of X a letter.

Definition 20.

(a) Let =B be the least congruence on Fn such that

xa xb =B xb xa whenever |a − b| > 1. (21)

(b) Let =A be the least congruence on Fn containing =B such that

xa xa−1 xa xa−1 =A xa−1 xa xa−1 whenever 2 ≤ a ≤ n. (22)

(c) Let =M be the least congruence on Fn containing =A such that

xa xa =M xa for all a

xa−1 xa xa−1 xa = xa−1 xa xa−1 whenever 2 ≤ a ≤ n.

An equivalence class with respect to the equivalence relation =B is called a

B-class. If x =B y then we also say that x and y are B-equivalent. The B-class

of x is written [x]B. Likewise for A or M instead of B. We write ma = [xa]M
and pa = [xa]A.

We put

A = An := (Fn/=A), M = Mn := (Fn/=M).

Then A is an AI monoid of diagram (19) and M a CI monoid of the same

diagram.
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7 Mn-actions on X
n+1

Let X be a set and write Xk for the Cartesian k-th power of X. Let f : X2 → X2

be a map. Define maps f1, f2: X3 → X3 by f1 = f × idX and f2 = idX × f .

Assume:

f 2 = f , f1 f2 f1 = f2 f1 f2 f1 = f1 f2 f1 f2.

Then there exists an Mn-action on Xn+1 by making ma = [xa]M act as

(idX)
a−1 × f × (idX)

n−a.

This simple observation (and the fact that Mn has a sink, see proposition 67)

is at the basis of Garside theory. See [D2], [He], [O]. This motivates us to

focus on Mn and An.

8 The diamond lemma

Lemma 23 (Diamond lemma). Let → be a relation on a set S. Let →→ denote

its transitive closure and ∼ the equivalence relation generated by →. Assume:

◦ (24)(Well-founded). There is no infinite sequence x1 → x2 → · · · with

xi ∈ S for all i.

◦ (25)(Confluence). Let u, v, w ∈ S and assume u → v and u → w. Then

there exists x ∈ S such that v →→ x and w →→ x.

An element v ∈ S is called reduced if there is no w with v → w. Then every

equivalence class for ∼ contains a unique reduced element.

Proof. See for example [C, Lemma 1.4.1 and exercise 1.4.2]. �

9 A rewriting system for An

Write (xa, xb] := xa−1 xa−2 · · · xb provided a ≥ b. In particular (xa, xa] = 1.

Note also (xa, xb](xb, xc] = (xa, xc].

Definition 26. Let
A

−→
0

be the least relation on Fn such that

xa xb
A

−→
0

xb xa (27)

whenever a − b ≥ 2 and

x
c(1)
a−1

[

x
c(2)
a−2

· · · x
c(b)
a−b

]

(xa, xa−b]
A

−→
0

[

x
c(2)
a−2

· · · x
c(b)
a−b

]

(xa, xa−b] (28)

whenever c(i) ≥ 1 for all i and b ≥ 2. If u
A

−→
0

v then we call u an A-standard

word. We call the move (27) a commutation move.

10



Note that if u
A

−→
0

v and u
A

−→
0

w then v = w. Also, if u and xuy are

A-standard (u, x, y ∈ Fn) then x = y = 1.

Definition 29.

(a) Let
A

−→ be the least relation on Fn containing
A

−→
0

and such that

(u
A

−→ v) ⇒ (xuy
A

−→ xvy)

for all u, v, x, y ∈ Fn.

(b) We define
A

−→→ to be the least transitive relation on Fn containing
A

−→.

Lemma 30. The congruence on Fn generated by
A

−→ equals =A.

Proof. Let ∼ denote the congruence generated by
A

−→.

In (28) set b = 2, c(1) = c(2) = 1. We get

xa−1 xa−2 xa−1 xa−2 ∼ xa−2 xa−1 xa−2.

Together with (21) these generate precisely =A. This proves that (x =A y)
⇒ (x ∼ y) for all x, y ∈ Fn. It remains to prove the converse.

Let x be the left-hand side in (28) and y the right-hand side. Let P(b)
denote the statement x =A y for all choices of the parameters different from

b. We will be finished if we can prove P(b) for all b ≥ 2.

Let a ∈ {2, . . . , n}. By induction on ℓ we shall prove

xa xℓa−1 xa xa−1 =A xℓa−1 xa xa−1 (31)

for all ℓ ≥ 1. For ℓ = 1 this is (22). In the following, something in curly

brackets is next to be rewritten. Assuming it to be true for ℓ− 1 we find

xa

{

xℓa−1

}

xa xa−1

= xa xℓ−1
a−1

{

xa−1 xa xa−1

}

=
{

xa xℓ−1
a−1

xa xa−1

}

xa xa−1 by (22)

= xℓ−1
a−1

{

xa xa−1 xa xa−1

}

by the induction hypothesis

=
{

xℓ−1
a−1

xa−1

}

xa xa−1 by (22)

= xℓa−1 xa xa−1.

We have proved (31). Using (31) and an obvious induction on k we find

xk
a xℓa−1 xa xa−1 =A xℓa−1 xa xa−1

for all k ≥ 1 and ℓ ≥ 1. This says that P(2) holds.
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We prove P(b) by induction on b. Assume P(b − 1) and a − d = b and

r(i) ≥ 1 for all i ∈ {a − 1, a − 2, . . . , d}. We simplify notation by writing e
instead of xe. We find

(a − 1)r(a−1) · · · dr(d)
{

(a, d]
}

= (a − 1)r(a−1) · · · (d + 1)r(d+1)
{

dr(d)(a, d + 2]
}

(d + 2, d]

=A (a − 1)r(a−1) · · · (d + 1)r(d+1)(a, d + 2]
{

dr(d)(d + 2, d]
}

=A (a − 1)r(a−1) · · · (d + 1)r(d+1)

{

(a, d + 2](d + 1)
}

dr(d)(d + 2, d] by (31)

=
{

(a − 1)r(a−1) · · · (d + 1)r(d+1)(a, d + 1]
}

dr(d)(d + 2, d]

=A (a − 2)r(a−2) · · · (d + 1)r(d+1)

{

(a, d + 1]
}

dr(d)(d + 2, d] by the induction hypothesis

= (a − 2)r(a−2) · · · (d + 1)r(d+1)(a, d + 2]
{

(d + 1) dr(d)(d + 2, d]
}

=A (a − 2)r(a−2) · · · (d + 1)r(d+1)
{

(a, d + 2] dr(d)
}

(d + 2, d] by (31)

=A (a − 2)r(a−2) · · · (d + 1)r(d+1) dr(d)
{

(a, d + 2](d + 2, d]
}

= (a − 2)r(a−2) · · · (d + 1)r(d+1) dr(d)(a, d].

This proves P(b − 1) ⇒ P(b) and the proof is complete. �

Lemma 32. The following is the complete list of triples (q, r, s) of nontrivial

words such that qr and rs are A-standard.

(a) A triple (q, r, s) given by

q = x
r(a−1)
a−1

x
r(a−2)
a−2

· · · x
r(b)
b (xa, xc]

r = (xc, xb]

s = x
s(b−1)
b−1

x
s(b−2)
b−2

· · · x
s(d)
d (xc, xd]

whenever

a ≥ c > b ≥ d, a − b ≥ 2, c − d ≥ 2

and r(i) ≥ 1 for all i ∈ {a − 1, a − 2, . . . , b} and s( j) ≥ 1 for all j ∈
{b − 1, b − 2, . . . , d}.

(b) A triple (q, r, s) given by

q = xc

r = xa−1

s =
[

x
r(1)−1

a−1
x

r(2)
a−2

· · · x
r(b)
a−b

]

(xa, xa−b]

whenever r(i) ≥ 1 for all i and b ≥ 2 and c − a ≥ 1.

12



(c) A triple (q, r, s) given by

q =
[

x
r(1)
a−1

x
r(2)
a−2

· · · x
r(b)
a−b

]

(xa, xa−b+1]

r = xa−b

s = xc

whenever r(i) ≥ 1 for all i and b ≥ 2 and a − b − c ≥ 2.

(d) A triple (q, r, s) = (xa, xb, xc) where a − b ≥ 2 and b − c ≥ 2.

Proof. This is obvious. �

Lemma 33. Let u, v, w ∈ Fn and assume u
A

−→ v and u
A

−→ w. Then there

exists x ∈ Fn such that v
A

−→→ x and w
A

−→→ x.

u v

w x

A

A A

A

Proof. Throughout the proof we remove the index A from the arrows.

First suppose there is no overlap, that is,

◦ (34)there are p, q, r, s, t, q′ , s′ ∈ Fn such that u = pqrst, v = pq′rst,

w = pqrs′t, q−→
0

q′, s −→
0

s′.

Then x := pq′rs′t has the required properties.

pqrst pq′rst

pqrs′t pq′rs′t

We are left to consider the case of overlap, that is, there are words p, q, r, s,
t, v0, w0 such that

u = p q r s t q r −→
0

v0 r s −→
0

w0

r 6= 1 v = p v0 s t w = p q w0 t.

We may assume v 6= w. It follows that q 6= 1 and s 6= 1.

We may also assume p = t = 1.

The possible triples (q, r, s) have been listed in lemma 32. We shall deal

with them one by one.

Suppose first that (q, r, s) is as in lemma 32(b). Then, not only can xc

(which is q) pass its neighbour xa−1 by a commutation move (27), but it can

also go on to pass all remaining letters. This shows

v = v0 s −→→ r s q −→ w0 q.
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Likewise, q can pass all letters in w0 which shows

w = q w0 −→→ w0 q.

We have shown that x := w0 q has the required properties.

Cases (c) and (d) of lemma 32 are similar to case (b).

It remains to consider case (a) in lemma 32.

Write e instead of xe. In the following, anything between curly brackets

is to be rewritten next. On the one hand

{qr}s =
{

(a − 1)r(a−1) · · · br(b)(a, b]
}

(b − 1)s(b−1) · · · ds(d)(c, d]

→ (a − 2)r(a−2) · · · br(b)(a, b](b − 1)s(b−1) · · · ds(d)(c, d]

= (a − 2)r(a−2) · · · br(b)(a, c]
{

(c, b](b − 1)s(b−1) · · · ds(d)(c, d]
}

→ (a − 2)r(a−2) · · · br(b)
{

(a, c](c − 1, b](b − 1)s(b−1) · · · ds(d)
}

(c, d]

→→ (a − 2)r(a−2) · · · br(b)(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, c](c, d]

= (a − 2)r(a−2) · · · (c − 1)r(c−1)
{

(c − 2)r(c−2) · · · br(b)(c − 1, b]
}

· (b − 1)s(b−1) · · · ds(d)(a, d] =: z.

Here the last term is abbreviated z. On the other hand

q{rs} = (a − 1)r(a−1) · · · br(b)(a, c]
{

(c, b](b − 1)s(b−1) · · · ds(d)(c, d]
}

→ (a − 1)r(a−1) · · · br(b)
{

(a, c](c − 1, b](b − 1)s(b−1) · · · ds(d)
}

(c, d]

→→ (a − 1)r(a−1) · · · br(b)(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d] =: y.

If c − b ≥ 3 then

z →
{

(a − 2)r(a−2) · · · (c − 1)r(c−1)(c − 3)r(c−3) · · · br(b)
}

· (c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d] →→ (c − 3)r(c−3) · · · br(b)

· (a − 2)r(a−2) · · · (c − 1)r(c−1)(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d] ;

y = (a − 1)r(a−1) · · · (c − 1)r(c−1)
{

(c − 2)r(c−2) · · · br(b)(c − 1, b]
}

· (b − 1)s(b−1) · · · ds(d)(a, d] →
{

(a − 1)r(a−1) · · · (c − 1)r(c−1)

· (c − 3)r(c−3) · · · br(b)
}

(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d]

→→ (c − 3)r(c−3) · · · br(b)

{

(a − 1)r(a−1) · · · (c − 1)r(c−1)(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d]
}

→ (c − 3)r(c−3) · · · br(b)

(a − 2)r(a−2) · · · (c − 1)r(c−1)(c − 1, b](b − 1)s(b−1) · · · ds(d)(a, d].

If c − b = 2 then

y =
{

(a − 1)r(a−1) · · · (b + 1)r(b+1)br(b)+1(b − 1)s(b−1) · · · ds(d)(a, d]
}

→ (a − 2)r(a−2) · · · (b + 1)r(b+1)br(b)+1(b − 1)s(b−1) · · · ds(d)(a, d] = z.
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If c − b = 1 then

y =
{

(a − 1)r(a−1) · · · br(b)(b − 1)s(b−1) · · · ds(d)(a, d]
}

→ (a − 2)r(a−2) · · · br(b)(b − 1)s(b−1) · · · ds(d)(a, d] = z.

This proves the promised result in case (a) of lemma 32. The proof is com-

plete. �

Definition 35.

(a) A word u ∈ Fn is said to be A-reduced if there is no v satisfying u
A

−→ v.

(b) Let x, y ∈ Fn. We say that x is the A-reduced form of y if x is A-reduced

and x =A y.

Theorem 36. Every =A-class in Fn contains a unique A-reduced word.

Proof. In lemma 23 (the diamond lemma) put S := Fn, (→) := (
A

−→). Then

∼ (as defined in the diamond lemma) equals =A by lemma 30.

Note that u → v implies ℓ(u) > ℓ(v). Therefore there are no infinite

chains u1 → u2 → · · · . Confluence (25) is satisfied by lemma 33. This

shows that the assumptions of the diamond lemma are satisfied. The result

follows by the diamond lemma. �

Corollary 37. Consider the AI monoid A := (Fn/=A).

(a) There is a polynomial algorithm computing the A-reduced form for a

word.

(b) There is a polynomial solution to the word problem in A.

Proof. (a). Let u1 ∈ Fn be the input to our algorithm. The algorithm calcu-

lates words u2, u3, . . . , un such that

ui
A

−→ ui+1

for all i, and un is A-reduced. It is easy to show that each step can be carried

out in polynomial time. For all i we have ℓ(ui) > ℓ(ui+1) so after polynomial

time the process terminates, as promised, at some A-reduced word un. The

result follows.

(b). This follows immediately from (a) and the fact that every element of

A is represented by a unique A-reduced word (theorem 36). �

It would be interesting to know if the methods of this section apply to the

better-known positive braid monoid.

10 An is left-cancellative

Lemma 38. Let x ∈ Fn be such that x is A-standard of length > 2, that is, x
is the left-hand side of (28). Let y ∈ Fn be B-equivalent to x. Then x has the

same first letter as y, that is, x = xa u and y = xa v for some a, u, v.
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Proof. This is clear. �

Let us call a word B-reduced if it is not of the form u xa xb v with u, v ∈ Fn

and a − b ≥ 2. Clearly, every element of Fn is B-equivalent to a unique

B-reduced word called its B-reduced form.

Proposition 39. The AI monoid An is left-cancellative, that is, if x, y, z ∈ Fn

are such that xy =A xz then y =A z.

Proof. Recall that Fn is the free monoid on X = {x1, . . . , xn}. We may

assume x ∈ X.

We may also assume that y, z are A-reduced, because otherwise we re-

place them by their A-reduced forms.

Note that A-reduced words are B-reduced. What does the B-reduced

form of xy look like? A moment’s thought about this question shows that

there are words a, b such that y = ab and the B-reduced form of xab is axb
and such that

◦ (40)ax =B xa.

◦ (41)The letter x doesn’t appear in a.

Likewise there are words c, d such that z = cd and the B-reduced form of xcd
is cxd and such that

◦ (42)cx =B xc.

◦ (43)The letter x doesn’t appear in c.

We shall prove that for all k ≥ 1:

◦ (44)If axb is A-reduced then the A-reduced form of xky is axkb.

◦ (45)If axb is not A-reduced then the A-reduced form of xky is ab.

Indeed (44) is immediate. To prove (45), assume axb is not A-reduced.

Then there are words a1, a2 , b1, b2 ∈ Fn such that a = a1 a2, b = b1 b2 and

a2 x b1 is A-standard. Using lemma 38 and (40) and (41) it follows that

a2 = 1. From (28) it now follows that

xb1
A

−→ b1.

Since
A

−→ generates =A as congruence by lemma 30, we have xb =A b. An

obvious induction shows xkb =A b and hence xky =A axkb =A ab. But ab is

A-reduced, and we have proved (45).

Comparison of (44)–(45) with the analogous statement for (y, c, d) in-

stead of (x, a, b) (in fact the range k ∈ {1, 2} is enough) proves that either

both axb and cxd are A-reduced, or neither is.

Assume now that axb and cxd are both A-reduced. But axb =A xy =A

xz =A cxd and an A-class doesn’t contain more than one A-reduced word

by theorem 36. Therefore axb = cxd. Also the letter x doesn’t appear in a or

c by (41) and (43). It follows that a = c and b = d and y = ab = cd = z.

This proves the result if both axb and cxd are A-reduced.
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Assume finally that axb and cxd are not A-reduced. By (45), y is the A-

reduced form of xy. Likewise z is the A-reduced form of xz. But xy =A xz
so theorem 36 yields y = z. This settles the case where neither axb nor cxd
is A-reduced. The proof is complete. �

11 A Garside element in An

Definition 46. A Garside element in a monoid N is an element ∆ ∈ N such

that:

◦ For all x ∈ N there exist k ≥ 0 and y ∈ N such that xy = ∆k.

◦ There exists an endomorphism φ of N such that x∆ = ∆φ(x) for all

x ∈ N.

In this section we shall prove that the AI monoid An = (Fn/=A) has a

Garside element.

Definition 47. We define the elements

Yn := (x3, x1] · · · (xn+1, x1]

∇n := x1 Yn = (x2, x1](x3, x1] · · · (xn+1, x1]

of Fn and ∆n = [∇n]A ∈ An.

We consider Fi−1 as a submonoid of Fi, for all i. Then ∇a ∈ Fn whenever

1 ≤ a ≤ n. Also ∇n = ∇n−1(xn+1, x1].

Lemma 48. We have xa ∇n =A ∇n for all a ∈ {2, . . . , n}.

Proof. Induction on n. For n = 1 there is nothing to prove. Assume it is true

for n − 1. For 2 ≤ a ≤ n − 1 the induction hypothesis implies

xa ∇n =A xa ∇n−1(xn+1, x1] =A ∇n−1(xn+1, x1] =A ∇n

thus proving the induction step whenever 2 ≤ a ≤ n − 1. It remains to prove

the same for a = n. Well,

xn

{

∇n

}

=A

{

xn∇n−2

}

(xn, x1](xn+1, x1]

=A ∇n−2

{

xn(xn, x1](xn+1, x1]
}

=A

{

∇n−2(xn, x1](xn+1, x1]
}

by (28) and lemma 30

=A ∇n.

This proves the induction step and thereby the lemma. �

Lemma 49. We have xa xr
1
∇n =A xr

1
∇n whenever 2 ≤ a ≤ n and 0 ≤ r.

Proof. If a = 2 then

xa xr
1

{

∇n

}

=A

{

x2 xr
1 x1 x2 x1

}

(x4, x1] · · · (xn+1, x1]
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=A xr
1

{

x1 x2 x1 (x4, x1] · · · (xn+1, x1]
}

by (28) and lemma 30

=A xr
1∇n.

If a ≥ 3 then

{

xa xr
1

}

∇n =A xr
1

{

xa ∇n

}

=A xr
1 ∇n by lemma 48. �

Definition 50. Let π: Fn → F1 be the homomorphism defined by π(x1) = x1

and π(xa) = 1 for all a > 1.

Lemma 51. For all x ∈ Fn we have x∇n =A π(x)∇n.

Proof. For x ∈ Fn, let k(x) := ℓ(x)− ℓ(πx). This is the number of letters in x
different from x1. Let P(n) be the statement that the lemma holds whenever

k(x) ≤ n. Then P(1) holds by lemma 49.

We prove P(n) by induction on n. Assume P(n − 1) and let k(x) = n.

Then we can write x = yz such that k(y) and k(z) are both less than n. Then

also k(y π(z)) = k(y) < n. Using the induction hypothesis we find

x∇n =A y(z∇n) =A (y π(z))∇n

=A π(y π(z))∇n =A π(yz)∇n =A π(x)∇n. �

Lemma 52. Let x ∈ Fn. Then there exist k ≥ 0 and y ∈ Fn with xy =A ∇k
n.

Proof. We may assume n > 0. Then π(∇n) 6= 1. Therefore there are z ∈ Fn

and ℓ such that π(xz) = π(∇ℓ
n). By lemma 51 then

xz∇n =A π(xz)∇n =A π(∇ℓ
n)∇n =A ∇ℓ+1

n . �

Definition 53. We define an endomorphism λn: Fn → Fn by λn(xa) = 1 for

all a ∈ {2, . . . , n} and λn(x1) = (xn+1, xn].

Lemma 54. For all x ∈ Fn we have x∇n =A ∇n λn(x).

Proof. It is clear that we only need to prove this for ℓ(x) = 1. If x = xa with

a > 1 it follows from lemma 48. It remains to prove it for x = x1 in which

case it states

x1 ∇n =A ∇n (xn+1, xn].

We prove this by induction on n. For n = 1 this is clearly true. Assume it to

hold for n − 1. Then

∇n (xn+1, xn] =A ∇n−1 (xn+1, xn]
2

=A ∇n−1 (xn, xn](xn+1, xn] by (28) and lemma 30

=A x1 ∇n−1 (xn+1, xn] by the induction hypothesis

=A x1 ∇n.

This proves the induction step and thereby the lemma. �

18



Lemma 55. If x, y ∈ Fn are such that x =A y then λn(x) =A λn(y).

Proof. It is enough to prove this if (x, y) is a generator of the congruence

=A, that is, x is the left-hand side in (a) or (b) of definition 20 and y the

right-hand side. The result is now a simple observation. �

Lemma 55 implies that there exists a unique endomorphism φn of An =
(Fn/=A) such that φn([x]A) = [λn(x)]A for all x ∈ Fn.

Proposition 56. The element ∆n is a Garside element in An, with φn playing

the role of φ in definition 46.

Proof. This is the content of lemmas 52 and 54. �

We finish with a conjecture.

For x, y ∈ An write x ≤ y if and only y ∈ xAn. This is called the ordering

of left division. Note that it is an ordering because An is left-cancellative by

proposition 39.

Conjecture 57.

(a) The ordered set (An,≤) is a lattice.

(b) Let pa denote the image of xa in An. Let x ∈ An. Then x ≤ ∆n if and only

if there exist za ∈ 〈p2, p3, . . . , pn〉 for all a ∈ {1, . . . , n} such that

x = zn (p1 · · · pn) zn−1 (p1 · · · pn−1) · · · z2 (p1 p2) z1 p1.

A lower semi-lattice is an ordered set such that any two elements have a

meet.

A weak left-Garside monoid is a monoid with a Garside element and

such that the ordering of left-division is a lower semi-lattice. Thus conjec-

ture 57(a) implies that An is a weak left-Garside monoid. The adjective weak

means to remind us that there may be infinitely many left-divisors of ∆, as is

the case for An.

12 A rewriting system for Mn

Recall the MI monoid M = Mn = (Fn/=M) of CI graph (19). We aim to

solve the word problem in this monoid.

Definition 58. Let
M
−→

0
be the least relation on Fn such that the following

hold.

(a) xa xb
M
−→

0
xb xa whenever a − b ≥ 2.

(b) (xa, xb](xa, xb]
M
−→

0
(xa−1, xb](xa, xb] whenever a − b ≥ 1. In particular,

for a = b, we have

xb xb
M
−→

0
xb.
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(c) Let 1 ≤ a ≤ b ≤ n. For i ∈ {a + 1, . . . , b} let yi be an element of the

submonoid 〈xi+1, xi+2, . . . , xn〉 of Fn and zi ∈ 〈x1, . . . , xi−2〉. Then we

have a rewrite rule

xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb)xb

M
−→

0
xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb). (59)

In particular, for a = b, we have (again)

xa xa
M
−→

0
xa.

If u
M
−→

0
v then we call u an M-standard word.

Note that if u
M
−→

0
v and u

M
−→

0
w then v = w. Also, if u and xuy are M-

standard (u, x, y ∈ Fn) then x = y = 1. As in the case of An we define the

following.

Definition 60.

(a) Let
M
−→ be the least relation on Fn containing

M
−→

0
and such that

(u
M
−→ v) ⇒ (xuy

M
−→ xvy)

for all u, v, x, y ∈ Fn.

(b) We define
M

−→→ to be the least transitive relation on Fn containing
M
−→.

Lemma 61. The congruence on Fn generated by
M
−→ equals =M.

Proof. Let ∼ denote the congruence on Fn generated by
M
−→. Let x, y ∈ Fn.

We must prove

(x ∼ y) ⇔ (x =M y).

The implication ⇐ is trivial. In order to prove ⇒ we may assume x
M
−→

0
y.

If (x, y) = (xa xb, xb xa) as in part (a) of definition 58 then x =M y is

clearly true.

Assume next x = (xa, xb](xa, xb], y = (xa−1, xb](xa, xb] as in part (b) of

definition 58. Then x
A

−→
0

y by (28) so x =A y by lemma 30 so x =M y.

Suppose finally that x is the left-hand side in (59) and y the right-hand

side. Note first that the =B-class (commutation class) of x and y doesn’t

change if we move the yi all the way to the left and the z j all the way to the

right. Thus we may assume the yi and z j to be trivial as we now do.

Let ρ denote the anti-automorphism of Fn defined by ρ(xa) = xa for all a.

By lemma 8 ρ preserves =M. Therefore we need only prove ρ(x) =M ρ(y).
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Let u be the B-reduced form of ρ(x) and v the B-reduced form of ρ(y).
Then u = (xb, xa](xb, xa] and v = (xb−1, xa](xb, xa]. This is precisely a case

we’ve already dealt with. It follows that u =M v whence x =M y. The proof

is finished. �

Lemma 62. The following is the complete list of triples (q, r, s) of nontrivial

words such that qr and rs are M-standard.

(a) (xa, xb, xc) whenever a − b ≥ 2, b − c ≥ 2.

(b)
(

xa, xb−1, (xb−1, xc](xb, xc]
)

whenever a − b ≥ 1, b − c ≥ 1.

(c)
(

(xa, xb](xa, xb+1], xb, xc

)

whenever a − b ≥ 1, b − c ≥ 2.

(d)
(

xc, xa, (ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb)xb

)

whenever c − a ≥ 2 and

the notation of (c) holds.

(e)
(

xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb), xb, xc

)

whenever b − c ≥ 2 and the notation of (c) holds.

(f)
(

(xa, xb](xa, xc], (xc, xb], (xb, xd](xc, xd]
)

whenever a ≥ c > b ≥ d.

(g)
(

(xc, xa](xc, xa+1], xa, (ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb)xb

)

whenever c − a ≥ 1 and the notation of (c) holds.

(h)
(

xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb), xb, (xb, xc](xb+1, xc]
)

whenever b − c ≥ 0 and the notation of (c) holds.

(i) Let 1 ≤ a < b < c ≤ n. For i ∈ {a + 1, . . . , c} let yi be an element of the

submonoid 〈xi+1, xi+2, . . . , xn〉 of Fn and zi an element of 〈x1, . . . , xi−2〉.
Then we have a triple (q, r, s) with

q = xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb)

r = xb

s = (yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)xc.

(j) Let 1 ≤ a < b ≤ c ≤ n. For i ∈ {a + 1, . . . , c} let yi be an element of

the submonoid of 〈xi+1, xi+2, . . . , xn〉 and zi an element of 〈x1, . . . , xi−2〉.
Then we have a triple (q, r, s) with

q = xa(ya+1 xa+1 xa za+1) · · · (yb−1 xb−1 xb−2 zb−1)yb xb

r = xb−1 xb

s = xb−1 zb(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)xc.

Proof. This is easy. �

Lemma 63. Let u, v, w ∈ Fn and assume u
M
−→ v and u

M
−→ w. Then there

exists x ∈ Fn such that v
M

−→→ x and w
M

−→→ x.

Proof. Throughout the proof we remove the index M from the arrows.

If there is overlap (34) this is proved the same way as in lemma 33. We

are left to consider the case of overlap, that is, there are words p, q, r, s, t,
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v0, w0 such that

u = p q r s t q r −→
0

v0 r s −→
0

w0

r 6= 1 v = p v0 s t w = p q w0 t.

We may assume v 6= w. It follows that q 6= 1 and s 6= 1.

We may also assume p = t = 1.

The possible triples (q, r, s) have been listed in lemma 62. We shall deal

with them one by one.

Cases (a)–(e). In these cases the lemma is readily seen to hold.

Case (f). In case (f) we write a instead of xa. On the one hand we have

{qr}s =
{

(a, b](a, c](c, b]
}

(b, d](c, d] =
{

(a, b](a, b]
}

(b, d](c, d]

→ (a − 1, b](a, b](b, d](c, d] = (a − 1, b](a, c]
{

(c, d](c, d]
}

→ (a − 1, b]
{

(a, c](c − 1, d]
}

(c, d] →→ (a − 1, b](c − 1, d](a, c](c, d]

= (a − 1, c − 1](c − 1, b](c − 1, b](b, d](a, d] =: y.

On the other hand

q{rs} = (a, b](a, c]
{

(c, b](b, d](c, d]
}

= (a, b](a, c]
{

(c, d](c, d]
}

→ (a, b]
{

(a, c](c − 1, d]
}

(c, d] →→ (a, b](c − 1, d](a, c](c, d]

= (a, b](c − 1, d](a, d] =: z.

If c − b ≥ 2 then

y → (a − 1, c − 1](c − 2, b](c − 1, b](b, d](a, d]

=
{

(a − 1, c − 1](c − 2, b]
}

(c − 1, d](a, d]

→→ (c − 2, b](a − 1, c − 1](c − 1, d](a, d] = (c − 2, b](a − 1, d](a, d] ;

z = (a, c − 1]
{

(c − 1, b](c − 1, b]
}

(b, d](a, d]

→
{

(a, c − 1](c − 2, b]
}

(c − 1, b](b, d](a, d]

→→ (c − 2, b]
{

(a, c − 1](c − 1, b](b, d]
}

(a, d]

= (c − 2, b]
{

(a, d](a, d]
}

→ (c − 2, b](a − 1, d](a, d].

If c − b = 1 then

z = (a, d](a, d] → (a − 1, d](a, d] = y.

Chaining and comparing the above results proves the lemma in case (f).

Case (g). This case the overlap is untouched, that is, there are words

v1, w1 ∈ Fn such that v = v1 r s, w = q r w1. Then x := v1 r w1 has the

required properties.

Case (h). In this case v = w so x := v has the required properties.
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Case (i). On the one hand we have

{qr}s → qs =
{

xa(ya+1 xa+1 xa za+1) · · · (yc xc xc−1 zc)xc

}

→ xa(ya+1 xa+1 xa za+1) · · · (yc xc xc−1 zc).

On the other hand

q{rs} →
{

xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb) xb

}

(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)

→ xa(ya+1 xa+1 xa za+1) · · · (yb xb xb−1 zb)

(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)

= xa(ya+1 xa+1 xa za+1) · · · (yc xc xc−1 zc).

The result follows.

Case (j). On the one hand

{qr}s → q xb−1 s = xa(ya+1 xa+1 xa za+1) · · · (yb−1 xb−1 xb−2 zb−1)

yb xb

{

xb−1 xb−1

}

zb(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc) xc

→ xa(y1 xa+1 xa z1) · · · (yb−1 xb−1 xb−2 zb−1) yb xb xb−1 zb

(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc) xc

=
{

xa(ya+1 xa+1 xa za+1) · · · (yc xc xc−1 zc) xc

}

→ xa(ya+1 xa+1 xa za+1) · · · (yc xc xc−1 zc).

On the other hand

q{rs} →
{

xa(ya+1 xa+1 xa za+1) · · · (yb−1 xb−1 xb−2 zb−1)

yb xb xb−1 xb

}

xb−1 zb(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)

→ xa(ya+1 xa+1 xa za+1) · · · (yb−1 xb−1 xb−2 zb−1) yb xb
{

xb−1 xb−1

}

zb(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)

→ xa(ya+1 xa+1 xa za+1) · · · (yb−1 xb−1 xb−2 zb−1)

yb xb xb−1 zb(yb+1 xb+1 xb zb+1) · · · (yc xc xc−1 zc)

= xa(y1 xa+1 xa z1) · · · (yc xc xc−1 zc).

This settles case (j). The lemma is proved. �

Definition 64.

(a) A word u ∈ Fn is said to be M-reduced if there is no v satisfying u
M
−→ v.

(b) Let x, y ∈ Fn. We say that x is the M-reduced form of y if x is M-reduced

and x =M y.

Theorem 65. Every =M-class in Fn contains a unique M-reduced word.

Proof. The proof is the same as for theorem 36. This time the ingredients

are lemmas 61, 63 and 23. �
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Corollary 66. Consider the CI monoid M := (Fn/=M).

(a) There is a polynomial algorithm computing the M-reduced form for a

word.

(b) There is a polynomial solution to the word problem in M.

Proof. The proof is the same as for corollary 37. �

A sink in a monoid N is an element 0 such that x0y = 0 for all x, y ∈ N.

It is known that a Coxeter monoid is finite if and only if it has a sink. This

is false for CI monoids as our next and last two results show.

Proposition 67. Let w0 ∈ Mn be the image of ∇n. Then x w0 y = w0 for all

x, y ∈ Mn.

Proof. Recall ma = [xa]M ∈ Mn. By lemma 48 we have ma w0 = w0 if a ≥ 2.

Also m2
1
= m1 and w0 ∈ m1 Mn so m1 w0 = w0 as well. Since Mn is generated

by {m1, . . . , mn}, we find

x w0 = w0 for all x ∈ Mn. (68)

By lemma 8 there exists a unique anti-automorphism φ of Mn preserving

ma for all a. Note that φ(w0) = w0. Applying φ to both sides of (68) we find

w0 y = w0 for all y ∈ Mn. The result follows. �

Proposition 67 was earlier proved in [He, proposition 2.3.14] and [D2].

Proposition 69. Mn is infinite if n ≥ 3.

Proof. Note that (x2 x1 x2 x3)
k is M-reduced for all k ≥ 0. By theorem 65(a),

they represent distinct elements of Mn. �

References

[C] P.M. Cohn; Further algebra and applications. Springer–Verlag London, Lon-

don, 2003.

[D1] Patrick Dehornoy; Braids and Self-Distributivity. Birkhäuser Verlag, Basel,
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