
ar
X

iv
:1

30
9.

45
14

v1
 [

m
at

h.
G

R
]

 1
8

Se
p

20
13

ON THE DIMENSION OF MATRIX REPRESENTATIONS

OF FINITELY GENERATED TORSION FREE NILPOTENT

GROUPS

MAGGIE HABEEB AND DELARAM KAHROBAEI

Abstract. It is well known that any polycyclic group, and hence any
finitely generated nilpotent group, can be embedded into GLn(Z) for
an appropriate n ∈ N; that is, each element in the group has a unique
matrix representation. An algorithm to determine this embedding was
presented in [6]. In this paper, we determine the complexity of the crux
of the algorithm and the dimension of the matrices produced as well as
provide a modification of the algorithm presented in [6].

1. Background Information

In this section we will review basic facts about polycyclic and nilpotent
groups. We refer the reader to [3] and [2] for more information on these
groups.

1.1. Polycyclic Groups.

Definition 1. [3] A group is called polycyclic if it admits a finite subnormal

series

G = G1 ⊲ G2 ⊲ G3 ⊲ · · · ⊲ Gn+1 = 1

where each Gi/Gi+1 is cyclic.

The number of infinite factors in the polycyclic series is called the Hirsch
length, and is independent of the polycyclic series chosen. Since each factor
is cyclic there exists an xi ∈ G such that 〈xiGi+1〉 = Gi/Gi+1. We call the
sequence X = [x1, x2, · · · , xn] a polycyclic sequence for G. The sequence
of relative orders of X is the sequence R(X) = (r1, · · · , rn) where ri =
[Gi : Gi+1]. We denote the set of indices in which ri is finite by I(X).

Polycyclic groups have finite presentation
〈

a1, · · · , an; a
aj
i = wij , a

a−1
j

i = vij, a
rk
k = ukk for k ∈ I, 1 ≤ j < i ≤ n

〉

Date: August 16, 2021.
Research of M.H. was supported partially by the NSF-LSAMP fellowship.
Research D.K. was partially supported by the Office of Naval Research grant

N000141210758, PSC-CUNY grant from the CUNY research foundation, as well as the
City Tech foundation.

1

http://arxiv.org/abs/1309.4514v1

2 M. HABEEB AND D. KAHROBAEI

where ri ∈ N ∪ ∞, ri < ∞ if i ∈ I ⊆ {1, 2, · · · , n} and wij, vij , ujj are

words in the generators aj+1, · · · , an. The relations a
aj
i = wij , a

a−1
j

i = vij
are called conjugacy relations, while the relations arkk = ukk are called power
relations. If ri = [Gi : Gi+1] for each i ∈ {1, 2, · · · , n} then this presentation
is called a consistent polycyclic presentation. Every polycyclic group admits
a consistent polycyclic presentation, which results in the following normal
form.

Definition 2. [3] Let X = [x1, · · · , xn] be a polycyclic sequence for G and

R(X) = (r1, · · · , rn) be its sequence of relative orders. Then every g ∈ G can

be written uniquely in the form g = xe11 · · · xenn with ei ∈ Z and 0 ≤ ei < ri.
This expression is called the normal form of G with respect to X.

The normal form for an element in a group given by a consistent poly-
cyclic presentation can be determined via the collection algorithm. Thus,
the collection algorithm gives a solution to the word problem for a group
G given by a consistent polycyclic presentation. The collection algorithm
works by iteratively applying the power and conjugacy relations of the pre-
sentation until the normal form for a word is obtained. The nature of the
power and conjugacy relations ensure that the collection algorithm termi-
nates (see [3]). The collection algorithm is currently the best known way to
obtain the normal form of an element in a polycyclic group, although the
worst case time complexity is unknown.

By using different representations of elements in a polycyclic group one
can solve some group theoretic problems such as the conjugacy search prob-
lem. This can be done by using a different representation of group elements.
For example to find a different representation of group elements one can use
the well known fact, due to L. Auslander (see [4]), that every polycylic group
is linear; that is, every polycyclic group G can be embedded into GLn(Z)
for an appropriate n.

1.2. Nilpotent Groups.

Definition 3. [2] A group, G, is called nilpotent of class c ≥ 1 if

[y1, y2, · · · , yc+1] = 1 for any y1, y2, · · · , yc+1 ∈ G,

where [y1, y2, y3] = [[y1, y2], y3]. Equivalently we may define a nilpotent group

as follows. We define a lower central series of G inductively: let γ1(G) = G,

γ2(G) = [G,G], and γk(G) = [γk−1(G), G]. If γk(G) = {e} for some k, then
G is nilpotent.

Finitely generated nilpotent groups are in fact polycyclic. Let G be a
finitely generated torsion-free nilpotent group. Since G is torsion-free and
finitely generated nilpotent, there exists a central series

G = G1 ⊲ G2 ⊲ G3 · · · ⊲ Gn+1 = {1}

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS 3

such that for each 1 ≤ r ≤ n the factor Gr/Gr+1 is infinite cyclic generated
by xrGr+1 for some xr ∈ Gr. Given such x1, · · · , xn each element x ∈ G has
unique normal form

x = xe11 · · · xenn ,

where ei ∈ Z. The n-tuple (e1, · · · , en) is called the vector of exponents of
x.

As mentioned above all finitely generated nilpotent groups are polycyclic,
and hence admit a polycyclic presentation. In particular every finitely gen-
erated nilpotent group admits a presentation with conjugacy relations of the
form:

x
xj

i = xix
bi,j,i+1

i+1 · · · x
bi,j,n
n for 1 ≤ j < i ≤ n,

x
x−1
j

i = xix
ci,j,i+1

i+1 · · · x
ci,j,n
n for 1 ≤ j < i ≤ n,

where the ci,j,k, bi,j,k ∈ Z. A polycyclic presentation with these conjugacy
relations is called a nilpotent presentation. Since G is torsion free, there
exists a consistent nilpotent presentation with each ri = ∞. Hence, for
any finitely generated torsion-free nilpotent group we may find a consistent
nilpotent presentation of the form:
〈

x1, · · · , xn;x
xj

i = xix
bi,j,i+1

i+1 · · · x
bi,j,n
n , x

x−1
j

i = xix
ci,j,i+1

i+1 · · · x
ci,j,n
n for 1 ≤ j < i ≤ n

〉

.

Let G be a finitely generated torsion free nilpotent group with a presenta-
tion as above. Then each x ∈ G may be written uniquely in the form
x = xe11 · · · xenn . Given two elements x = xe11 · · · xenn , y = xy11 · · · xynn , their
product can be written uniquely as:

xy = xe11 · · · xenn xy11 · · · xynn = xz11 · · · xznn .

Philip Hall [2] showed that there are rational polynomials f1, · · · , fn that
describe the multiplication of elements in G, a finitely generated torsion free
nilpotent group. In particular, if (e1, · · · , en), (y1, · · · , yn), and (z1, · · · , zn)
are the vector of exponents for x, y, and xy, respectively, then for 1 ≤ r ≤ n
we have

zr = fr(e1, · · · , en, y1, · · · , yn).

In [5] Leedham-Green and Soicher show how to compute polynomials in
variables corresponding to the ei, yi, ci,j,k such that they describe the mul-
tiplication of elements in the group G by an algorithm referred to as “Deep
Thought”. In [6] W. Nickel presents an algorithm for computing a presenta-
tion of a finitely generated torsion free nilpotent group given by a polycyclic
presentation by unitriangular matrices over Z. The algorithm by Nickel uses
the polynomials computed by “Deep Thought.” There is another algorithm
due to DeGraaf and Nickel that computes a faithful unitriangular repre-
sentation of finitely generated torsion-free nilpotent groups in [1], but the
algorithm presented by Nickel in [6] is more efficient.

4 M. HABEEB AND D. KAHROBAEI

2. Matrix Representations of Finitely Generated Torsion-free

Nilpotent Groups

W. Nickel introduced an algorithm to compute a matrix representation
for a finitely generated torsion-free nilpotent group given by a nilpotent
presentation in [6]. The crux of the algorithm computes a Q-basis for a finite
dimensional faithful G-module, where G is a finitely generated torsion-free
nilpotent group given by a nilpotent presentation.

In [6], a faithful finite dimensional G-module is constructed as follows.
Let G be a finitely generated torsion-free nilpotent group with nilpotent
generating sequence a1, · · · , an and multiplication polynomials q1, · · · , qn.
Let G act on the dual of the group ring (QG)∗ by defining f g(h) := f(hg−1).
By identifying ax1

1 · · · axn
n with x1, · · · , xn the image of f ∈ (QG)∗ under the

action of G can be described using the multiplication polynomials q1, · · · , qn;
that is, f g = f(q1, · · · , qn). With this action one can construct a finite
dimensional faithful G-submodule of (QG)∗ by using the following lemma.

Lemma 4. [6] The submodule M of (QG)∗ generated by ti : G → Z with

ti(a
x1
1 · · · axn

n) = xi is a finite dimensional faithful G-module.

To construct a basis a method called Insert is used. Insert adds a poly-
nomial to a given basis of polynomials if that polynomial is not in the span
of the basis; that is, if the polynomial cannot be written as a linear combi-
nation of the basis elements. This is done by first placing an ordering on the
monomials. The leading monomial of a polynomial is then the monomial
that is largest with respect to the ordering. Insert takes a basis of polyno-
mials in ascending order and a polynomial f , and determines if f is in the
span of the basis. If f is not in the span of the basis, then it will be added
to the basis. Insert determines if f is in the span of the basis by subtracting
the appropriate multiple of each polynomial in the basis, starting with the
polynomial that is largest with respect to the ordering and continuing in
descending order. If f 6= 0 after this process is completed, then f is not in
the span of the basis and is added to the original basis.

In order to determine a Q-basis for a finite dimensional G-module gen-
erated by f1, · · · , fk, the algorithm uses Insert to build up a basis from
f1, · · · , fk. Then the algorithm works up the central series of G beginning
with Gn. For each j the algorithm will compute a basis for the Gj-module
Mj from a basis of the Gj+1-module Mj+1 generated by f1, · · · , fk. In order
to obtain a generating set for Mj it is enough to close the module Mj+1 un-
der the action of powers of aj (since Gj/Gj+1 is cyclic) and to apply powers
of aj to each basis element of Mj+1. The algorithm for computing a Q-basis
is presented in Figure 1.

The matrix representation for each generator ak of G can be calculated
by decomposing the image of each basis element under ak in terms of the
basis. The ordering utilized in Insert is the reverse lexicographic ordering;
that is, xk11 · · · xknn < xl11 · · · xlnn if there is an i (1 ≤ i ≤ n) such that kj = lj
for i < j ≤ n and ki < li. Suppose that b1, · · · , bm is the basis produced

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS 5

Figure 1. Matrix Representation Algorithm (building a ba-
sis), [6]

Input: A finitely generated torsion- free nilpotent group G with a nilpotent
generating sequence a1, · · · , an and corresponding multiplication polynomials
q1, · · · , qn; a list of polynomials f1, · · · , fk.

Output: A Q-basis B for the G-module generated by f1, · · · , fk.

Algorithm:

B := [];
for j in [1 · · · k] do Insert(B, fj); od;

for j in [n, n− 1 · · · 1] do
#B is a basis for Mj+1

Exponents after multiplication by a−1
i from the right:

q(j) := [q1(x1, · · · , xn, yi = −δij), · · · , qn(x1, · · · , xn, yi = −δij)];
for f in Copy(B) do
Add to B images of f under powers of aj
repeat

Compute faj

faj := f(q
(j)
1 , · · · , q

(j)
n);

r:=Insert(B, faj);
f := faj ;

until r=0;
od;

od;

return B;

using this ordering. Let q
(j)
1 , · · · q

(j)
n be the polynomials that describe the

multiplication of an arbitrary element of the group with a−1
j :

ax1
1 · · · axn

n · a−1
j = a

q
(j)
1
1 · · · aq

(j)
n
n

The polynomials q
(j)
i are obtained from the multiplication polynomials qi by

setting yi = 0 if i 6= j and yi = −1 if i = j. Then for each basis element bk,

one can compute bk(q
(j)
1 , · · · , q

(j)
n) and decompose this element into a linear

combination ck1b1+ · · ·+cknbm of basis vectors. The coefficients ck1 , · · · , ckn
are the kth row of the matrix representing aj . For more information on this
algorithm see [6].

3. Complexity Analysis

The algorithm for finding matrix representations of torsion-free finitely
generated nilpotent groups formulated in [6] was implemented in the GAP

package polycyclic. The algorithm was implemented using the coordinate
functions ti : G → Z given by ax1

1 · · · axn
n 7→ xi for 1 ≤ i ≤ n as the

input polynomials f1, · · · , fk. In order to analyze the complexity of the

6 M. HABEEB AND D. KAHROBAEI

algorithm utilized for building a Q-basis (see Figure 1), we must analyze
how the action of aj ∈ G affects each coordinate function ti. Recall that

t
aj
i := ti(q

(j)
1 , · · · , q

(j)
n) where q

(j)
i = qi(x1, · · · , xn, yi = −δij) and the qi

are the multiplication polynomials computed via “Deep Thought”. From

the nature of the polynomials qi it follows that q
(j)
i = xi for 1 ≤ i < j,

q
(j)
j = xj − 1, and q

(j)
i = xi + qi

(j)(x1, · · · , xi−1) for j < i ≤ n. To see

this, we will follow the exposition of [6]. We may rewrite the product,
ax1
1 · · · axn

n ay11 · · · aynn , of two elements x = ax1
1 · · · axn

n , y = ay11 · · · aynn ∈ G as

(ax1
1 · · · axi

i)(a
xi+1

i+1 · · · axn
n ay11 · · · ayii)(a

yi+1

i+1 · · · aynn),

which is equal to

(ax1
1 · · · axi

i ay11 · · · ayii)(a
x
′

i+1

i+1 · · · ax
′

n
n a

yi+1

i+1 · · · aynn)

since Gi+1 is normal in G. The expression a
x
′

i+1

i+1 · · · a
x
′

n
n a

yi+1

i+1 · · · aynn can
be computed in Gi+1 and does not involve a1 · · · ai. Hence, qi is deter-
mined by ax1

1 · · · axi

i ay11 · · · ayii and qi only depends on x1, · · · , xi, y1 · · · , yi.
Since ai is central in G/Gi+1 we have that qi = xi + yi + qi with qi ∈
Q[x1, · · · , xi−1, y1, · · · , yi−1]. Since multiplying ax1

1 · · · axn
n by a−1

j from the

right does not affect a1, · · · , aj−1 we have that q
(j)
i = xi for 1 ≤ i < j.

Moreover, we have q
(j)
j = xj − 1 and by entering yi = −δij we have

q
(j)
i = xi + qi

(j)(x1, · · · , xi−1) for j < i ≤ n with qi
(j) ∈ Q[x1, · · · , xi−1].

Here we would like to introduce some notation. Since we are required to
close the module under powers of each aj for j = 1, · · · , n, we would like to

describe the multiplication of an arbitrary group element with akj for k ∈ N

:

ax1
1 · · · axn

n · a−k
j = a

q
(j)
1,k

1 · · · a
q
(j)
n,k
n .

The polynomials q
(j)
i,k are obtained from the multiplication polynomials qi

by setting yi = 0 if i 6= j and yi = −k if i = j, which we denote −kδij .

Note that by the same reasoning as above we have q
(j)
i,k = xi for 1 ≤ i < j,

q
(j)
j,k = xj − k, and q

(j)
i,k = xi + qi,k

(j)(x1, · · · , xi−1) for j < i ≤ n with

qi,k
(j) ∈ Q[x1, · · · , xi−1].

In order to understand the action of akj , for k ∈ N, on each ti we look at
three cases: 1 ≤ i < j, i = j, and j < i ≤ n.

(1) 1 ≤ i < j:

t
ak
j

i := ti(q
(j)
1,k, · · · , q

(j)
n,k)

= ti(x1, · · · , xj − k, xj+1 + qj+1,k
(j)(x1, · · · , xj), · · · , xn + qn,k

(j)(x1, · · · , xn−1))

= xi

= ti

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS 7

(2) i = j:

t
ak
j

j := tj(q
(j)
1,k, · · · , q

(j)
n,k)

= ti(x1, · · · , xj − k, xj+1 + qj+1,k
(j)(x1, · · · , xj), · · · , xn + qn,k

(j)(x1, · · · , xn−1))

= xj − k

= tj − k

(3) j < i ≤ n:

t
ak
j

i := ti(q
(j)
1,k, · · · , q

(j)
n,k)

= ti(x1, · · · , xj − k, xj+1 + qj+1,k
(j)(x1, · · · , xj), · · · , xn + qn,k

(j)(x1, · · · , xn−1))

= xi + qi,k
(j)(x1, · · · , xi−1)

= ti + qi,k
(j)(x1, · · · , xi−1)

By utilizing this information on the action of akj on each ti we are able to
determine the complexity of the algorithm presented in Figure 1 when the
coordinate functions are used. We begin by finding an upper bound on the
size of the matrices produced. It is clear from the algorithm presented in
[6] that the size of the matrix representation produced depends on the size
of the Q-basis constructed using the algorithm presented in Figure 1. To
determine a bound, we begin by analyzing the main loop of the algorithm
in Figure 1. The number of iterations the main loop in Figure 1 undergoes
throughout the algorithm is directly related to the size of the basis produced.

Theorem 5. When the algorithm presented in [6] is implemented using the

coordinate functions ti for 1 ≤ i ≤ n the worst case dimension of the matrix

representation produced depends quadratically on the Hirsch length of the

group; that is, the dimension of the matrix representation is O(n2) where n
is the Hirsch length of the group..

Proof. We will prove the cardinality of the basis depends quadratically on
the Hirsch length of the group by using induction on the number of times
the main loop in Figure 1 is repeated.

Recall that t
akj
i := ti(q

(j)
1,k, · · · q

(j)
n,k) where q

(j)
i,k = xi for 1 ≤ i < j, q

(j)
j,k =

xj − k, and q
(j)
i,k = xi + qi,k

(j)(x1, · · · , xi−1) for j < i ≤ n.

First note that we may write qi,k
(j) = r

(j)
i,k+

i−1
∑

m=1

cmtm for appropriate cm ∈ Q,

r
(j)
i,k ∈ Q[x1, · · · , xi−1], where r

(j)
i,k = 0 or cannot be written as a linear com-

bination of the coordinate functions tl for 1 ≤ l ≤ n.

The algorithm presented in [6] (see Figure 1) begins by building a ba-
sis from the coordinate functions t1, · · · , tn using Insert. By definition
ti(x1, · · · , xn) = xi; hence, Insert will form the basis B = {t1, · · · , tn}.

8 M. HABEEB AND D. KAHROBAEI

Since we are considering the worst case scenario, we will assume that each

polynomial r
(j)
i,k is not a linear combination of t1, · · · , tn, r

(j)
m,k for m 6= i.

Claim: The basis produced in the worst case scenario is
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(1)
n,kn,1

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(1)
n−1,kn−1,1

, · · · , r
(2)
3,k3,2

, r
(1)
3,k3,1

, r
(1)
2,k2,1

, r1

}

for ki,j = 1, · · · ,mi,j where mi,j denotes the number of terms in the poly-

nomial qi
(j).

We must first consider when the main loop in Figure 1 is iterated one time.

The loop begins by adding images of each ti under the action of an. We
may assume that the algorithm begins by adding images of tn under the
action of an to the basis. We know that tann = tn − 1, which clearly is not
in the span of the basis. Insert(B, tann) will begin by subtracting tn from
tn − 1, leaving r = −1 which will be added to the basis. As it is necessary
to close the G-module under the action of powers of an, we must repeat

the process for tann . Hence, the algorithm computes (tann)an = t
a2n
n = tn − 2,

which is the span of the basis; that is r = 0 and the process terminates. For
1 ≤ i ≤ n − 1, we have that tani = ti. Hence, for ti with 1 ≤ i ≤ n − 1 no
new polynomials will be added to the basis. After this process is completed
for an the resulting basis will be B = {t1, · · · , tn, r1 = −1}.

Base case: The main loop in Figure 1 is repeated twice.
The second repetition of the loop repeats the process for an−1.
We begin by noting that for 1 ≤ i ≤ n − 2 we have t

an−1

i = ti and t
an−1

n−1 =
xn−1 − 1 = tn−1 + r1, which are in the span of the basis. Hence, we need
only to consider the case in which images of tn under the action of akn−1 for
k ∈ N are added to the basis. By the nature of the coordinate functions
and since the polynomials qn,k

(n−1) and qn,j
(n−1) differ only by coefficients

to close under the action of powers of an−1 the inner most loop will be
repeated at most mn,n−1 times, where mn,n−1 denotes the number of terms

in the polynomial qn
(n−1); that is, we need to add images of tn under the

action of akn−1 for k = 1, · · · ,mn,n−1.
From above we know that

t
akn−1
n =tn(x1, · · · , xn−1 − k, xn + qn,k

(n−1)(x1, · · · , xn−1))

=xn + qn,k
(n−1)(x1, · · · , xn−1)

=tn + qn,k
(n−1)

=tn + r
(n−1)
n,k +

n−1
∑

m=1

cmtm.

Insert(B, t
an−1
n) will subtract appropriate multiples of t1, · · · , tn from t

akn−1
n

leaving r = r
(n−1)
n,k to be added to the basis for k = 1, · · · ,mn,n−1. Hence,

after two iterations of the loop the resulting basis is

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS 9

B =
{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, r1

}

for kn,n−1 = 1, · · · ,mn,n−1.

Inductive assumption: Note that the jth iteration of the loop will add
images of t1, · · · , tn under the action of powers of an−j+1. Suppose for
2 < j < n iterations of the loop the resulting basis is
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(n−j+1)
n,kn,n−j+1

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(n−j+1)
n−1,kn−1,n−j+1

, · · · , r
(n−j+1)
n−j+2,kn−j+2,n−j+1

, r1,
}

for kh,i = 1, · · · ,mh,i where each mh,i represents the number of terms in the

polynomial qh
(i).

(j+1)st iteration of the loop: The main loop in Figure 1 will be performed
for an−j.
We begin by noting that

t
ak
n−j

i
: = ti(q

(n−j)
1,k

, · · · , q
(n−j)
n,k

)

=ti(x1, · · · , xn−j − k, xn−j+1 + r
(n−j)
n−j+1,k

+

n−j∑

m=1

cmtm, · · · , xn + r
(n−j)
n,k

+

n−1∑

m=1

dmtm)

We would like to see which polynomials will be added to the basis in this
step. We will look at three cases:

• 1 ≤ i ≤ n− j − 1:

t
akn−j

i = xi = ti. This is in the span of the basis, and so the algorithm
will have r = 0 and the process terminates.

• i = n− k:

t
akn−j

n−j = xn−j − k = tn−j + kr1. This is in the span of the basis, and
so the algorithm will have r = 0 and the loop terminates.

• n− j + 1 ≤ i ≤ n:

t
akn−j

i = xi + r
(n−j)
i,k +

i−1
∑

m=1

cmtm. By assumption r
(n−j)
i,k is not in the

span of the basis for each n−j+1 ≤ i ≤ n and k ∈ N. The algorithm

will then add r
(n−j)
i,ki,n−j

for ki,n−j = 1, · · · ,mi,n−j to the basis for each

i, resulting in the basis
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(n−j)
n,kn,n−j

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(n−j)
n−1,kn−1,n−j

, · · · , r
(n−j)
n−j+2,kn−j+2,n−j

, r
(n−j)
n−j+1,kn−j+1,n−j

, r1

}

for kh,i = 1, · · · ,mh,i.

Hence, for any 1 ≤ j < n we know after j+1 iterations the resulting basis
will be
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(n−j)
n,kn,n−j

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(n−j)
n−1,kn−1,n−j

, · · · , r
(n−j)
n−j+2,kn−j+2,n−j

, r
(n−j)
n−j+1,kn−j+1,n−j

, r1

}

for kh,i = 1, · · · ,mh,i where each mh,i represents the number of terms in the

polynomial qh
(i). The main loop in Figure 1 will be repeated n times (one

for each element in the nilpotent generating sequence), and the resulting
basis will be
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(1)
n,kn,1

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(1)
n−1,kn−1,1

, · · · , r
(2)
3,k3,2

, r
(1)
3,k3,1

, r
(1)
2,k2,1

, r1

}

for ki,j = 1, · · · ,mi,j as desired.

10 M. HABEEB AND D. KAHROBAEI

The cardinality of this basis is at most

n+

n−1
∑

i=1

mn,i +

n−2
∑

i=1

mn−1,i + · · ·+

2
∑

i=1

m3,i +m2,1 + 1.

Let m denote the largest of the mi,j. Then the cardinality of the basis is
bounded above by

n+ (n− 1)m+ (n− 2)m+ · · ·+ 2m+m+ 1 ≤m
n
∑

i=1

i+ 1

≤
m

2
n(n+ 1) + 1.

Thus, the dimension of the matrix representation is O(n2).
�

Theorem 6. The running time of the algorithm presented in Figure 1 using

the coordinate functions ti for 1 ≤ i ≤ n is O(nl+2), where n is the Hirsch

length of the group and l is the highest degree of the polynomials t
aj
i .

Proof. Before determining the worst case complexity of the algorithm pre-
sented in Figure 1, we must determine the number of steps needed by the
method Insert. Insert takes a basis of polynomials in ascending order and a
polynomial f , and determines if f is in the span of the basis by subtracting
the appropriate multiple of each polynomial in the basis, starting with the
polynomial that is largest with respect to the ordering and continuing in
descending order. If f 6= 0 after this process is completed, then f is not in
the span of the basis and is added to the original basis. It is clear that the
number of subtractions used on a given polynomial f by Insert is at most
the number of terms in f . Each polynomial t

aj
i is a polynomial in n vari-

ables since t
aj
i = ti(q

(j)
1 , · · · , q

(j)
n). An lth degree polynomial with n variables

has at most

l
∑

k=1

(

k+n−1
k

)

terms, which is bounded above by
c

l!
(n + l − 1)l

for an appropriate c ∈ N. We will denote the number of terms in a given
polynomial f by mf .

Recall the algorithm to form a Q-basis of the G-module generated by the
coordinate functions ti for 1 ≤ i ≤ n begins by building a basis from the
coordinate functions t1, · · · , tn by implementing Insert(B, ti) for 1 ≤ i ≤ n.
It is clear from the above remarks that this process will take a total of
n
∑

i=1

mti steps.

The next step to determine the complexity of the algorithm for building a
Q-basis is to determine how many iterations of the innermost loop in Figure
1 occur for each aj . In the proof of Theorem 5 one can see how many
iterations of Insert need to be performed for each aj , where 1 ≤ j ≤ n. It is
clear from the proof of Theorem 5 that when the first iteration of the loop

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS11

is performed (closing under the action of an) Insert is repeated n+1 times.
For the k+1st iteration the algorithm will close the module under the action
of an−k. For ti, with 1 ≤ i ≤ n − k, t

an−k

i is already in the basis and hence

n−k iterations of Insert are performed. For ti with n−k+1 ≤ i ≤ n, t
an−k

i

is not in the span of the basis and Insert is performed mi,n−k times, where

mi,n−k denotes the number of terms in the polynomial qi
(n−k), for each i (see

proof of Theorem 5). Hence, here Insert will be performed

n
∑

i=n−k+1

mi,n−k

times. Thus, the total number of times Insert will be performed in the k+1st

iteration of the loop is (n− k) +

n
∑

i=n−k+1

mi,n−k. As above let m denote the

maximum of the mi,j.
The total number of iterations of Insert performed in the main loop of

Figure 1 is then

(n+ 1) +

n−1
∑

k=1

(n− k) +

n−1
∑

k=1

n
∑

i=n−k+1

mi,n−k = 1 +

n
∑

k=1

k +

n−1
∑

k=1

n
∑

i=n−k+1

mi,n−k

=1 +
1

2
n(n+ 1) +

n−1
∑

k=1

n
∑

i=n−k+1

mi,n−k

≤1 +
1

2
n(n+ 1) +

n−1
∑

k=1

km

=1 +
1

2
n(n+ 1) +

m

2
n(n− 1)

=1 +
m+ 1

2
n2 +

1−m

2
n

Let l be the highest degree of the polynomials utilized in the algorithm.
Then we know the maximum number of steps that Insert requires at any

step is bounded above by
c

l!
(n+ l− 1)l. Then the number of steps required

by the main loop in Figure 1 is bounded above by

c

l!
(n+ l − 1)l(1 +

m+ 1

2
n2 +

1−m

2
n)

and the total number of steps required by the algorithm is bounded above by
n
∑

i=1

mti +
c

l!
(n+ l − 1)l(1 +

m+ 1

2
n2 +

1−m

2
n) ≤

c

l!
(n+ l − 1)l(1 +

m+ 1

2
n2 +

3−m

2
n).

Thus, the total running time of the algorithm is O(nl+2).
�

12 M. HABEEB AND D. KAHROBAEI

4. Modified Algorithm

From Theorem 5, we see that the Q-basis of the G-module generated by
the coordinate functions t1, · · · , tn is a subset of
B =

{

t1, · · · , tn, r
(n−1)
n,kn,n−1

, · · · , r
(1)
n,kn,1

, r
(n−2)
n−1,kn−1,n−2

, · · · , r
(1)
n−1,kn−1,1

, · · · , r
(2)
3,k3,2

, r
(1)
3,k3,1

, r
(1)
2,k2,1

, r1

}

for ki,j = 1, · · · ,mi,j where mi,j denotes the number of terms in the polyno-

mial qi
(j). Using this fact we may modify the algorithm presented by Nickel

in [6].

In order to find a Q-basis of the G-module generated by the coordinate
functions t1, · · · , tn we must begin by building a basis up from the coordinate
functions using Insert as is done in [6]. By the nature of the coordinate
functions, it is clear that the action of each aj for 1 ≤ j ≤ n will only add
new polynomials to the basis at certain steps in the algorithm. Recall that
in the first time the main loop in Figure 1 is repeated the only polynomial
that could be added to the basis is when Insert(B, tann) is applied. Then in
the k+ 1st, where 1 ≤ k ≤ n− 1, iteration of the loop the only polynomials
that could be added to the basis arise from closing under powers of an−k

for n − k + 1 ≤ i ≤ n; that is, we need only perform Insert(B, tann) and

Insert(B, t
a
p
j

i) for i > j, 1 ≤ j ≤ n − 1 and for p ∈ N. This is clear in
the proof of Theorem 5. Hence, in order to determine the Q-basis of the
G-module generated by t1, · · · , tn it is enough to implement Insert for only
these polynomials. The pseudo-code for the algorithm is displayed in Figure
2.

Theorem 7. The algorithm presented in Figure 2 has running time O(nl+2),
where n is the Hirsch length of the group and l is the highest degree of the

polynomials t
aj
i .

Proof. We denote the number of terms in a polynomial f by mf . Then the
number of steps required for Insert(B, ti) for 1 ≤ i ≤ n is at most mti and
the number of steps of Insert(B, tann) is at most mtn .

Next, we must determine the number of times Insert is performed for the
k+1st iteration of the innermost for loop in Figure 3; that is, we must deter-
mine the number of times Insert is performed to close the module under the
action of an−k. As the only difference between the modified algorithm and
the algorithm presented in [6] when implemented with the coordinate func-
tions is the while loop, the number of times Insert is performed for each
an−k only differs by n− k (see proof of 6). Thus, the total number of times

Insert will be performed in the k+1st iteration of the loop is

n
∑

i=n−k+1

mi,n−k.

Let m denote the maximum of the mi,j.

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS13

Figure 2. Building a Basis for a G-module using Coordinate Functions

Input: A finitely generated torsion-free nilpotent group G with nilpotent
generating sequence a1, · · · , an and multiplication polynomials q1, · · · , qn;
coordinate functions t1, · · · , tn.
Output: A Q-basis B for the G-module generated by t1, · · · , tn.
Algorithm:

B := [];

for j in [1, · · · n] do Insert(B, tj); od;

do Insert(B, tann); od;
for j in [n− 1 · · · 1] do
for i in [1, · · · n] do

while i > j do

repeat

Compute t
aj
i

t
aj
i := ti(q

(j)
1 , · · · , q

(j)
n);

r:=Insert(B, t
aj
i);

ti := taj ;
until r=0;
od;

od;
od;

return B;

The total number of iterations of Insert performed is then

n−1
∑

k=1

n
∑

i=n−k+1

mi,n−k ≤
n−1
∑

k=1

km

=
m

2
n(n− 1)

=
m

2
n2 −

m

2
n

Let l be the highest degree of the polynomials utilized in the algorithm.
Then we know the maximum number of steps that Insert requires at any

step is bounded above by
c

l!
(n + l − 1)l for some c ∈ N. Then the number

of steps required by the main loop in Figure 2 is bounded above by

c

l!
(n+ l − 1)l(

m

2
n2 −

m

2
n)

14 M. HABEEB AND D. KAHROBAEI

and the total number of steps required by the algorithm is bounded above
by

n
∑

i=1

mti +mtn +
c

l!
(n+ l − 1)l(

m

2
n2 −

m

2
n) ≤

c

l!
(n+ l − 1)l(1 +

m

2
n2 +

2−m

2
n).

Thus, the total running time of the algorithm is O(nl+2). �

5. Closing Remarks

We have shown that the algorithm in [6] has polynomial time complexity
with respect to the Hirsch length if the coordinate functions are utilized, and
that the dimension of the matrix representation produced depends quadrat-
ically on the Hirsch length of the group. It is possible to improve the bound
on the dimension and time complexity by using a different set of functions
rather than the coordinate functions. Unfortunately, there is no known way
to choose these functions.

The modified algorithm is only for generating a Q-basis for the G-module
generated by the coordinate functions unlike the algorithm presented in [6],
which works for a general set of functions f1, · · · , fk. We would like to note
that the running time of the modified algorithm can have better running
times than the algorithm presented in [6] since the running time is dependent
on the polynomials t

aj
i . While this algorithm potentially decreases running

time, it does not affect the dimension of the matrices produced.

Acknowledgement

The authors would like to thank the anonymous referee for his helpful
comments. Delaram Kahrobaei is grateful to Professor Derek Holt for pro-
viding the opportunity for her to visit Warwick University in summer 2010
and very stimulating conversations regarding this problem.

References

[1] W. A. De Graaf and W. Nickel. Constructing faithful representations of finitely-
generated torsion-free nilpotent groups. J. Symbolic Computation, 33:31–41, 2002.

[2] Philip Hall. Nilpotent groups. Notes of lectures given at the Canadian Mathematical

Congress, University of Alberta, pages 1–42, 1957.
[3] D. Holt, B. Eick, and E. O’Brien. Handbook of computational group theory. Discrete

Mathematics and its Applications (Boca Raton), Chapman and Hall/CRC, Boca Ra-
ton, FL, 2005.

[4] A.I. Kostrikin and I.R. Shafarevich. Encyclopedia of Mathematical Sciences, Volume

37, Algebra IV: Infinite Groups, Linear Groups. Springer-Verlag, 1991.
[5] C.R. Leedham-Green and L.H. Soicher. Symbolic collection using deep thought. LMS

J. Comput. Math., 1:9–24, 1998.
[6] W. Nickel. Matrix representations for torsion-free nilpotent groups by deep thought.

Journal of Algebra, 300:376–383, 2006.

ON THE DIMENSION OF MATRIX REPRESENTATIONS OF NILPOTENT GROUPS15

California University of Pennsylvania

E-mail address: Habeeb@CalU.edu

CUNY Graduate Center and City Tech, City University of New York

E-mail address: DKahrobaei@GC.Cuny.edu

	1. Background Information
	1.1. Polycyclic Groups
	1.2. Nilpotent Groups

	2. Matrix Representations of Finitely Generated Torsion-free Nilpotent Groups
	3. Complexity Analysis
	4. Modified Algorithm
	5. Closing Remarks
	Acknowledgement
	References

