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A FAST SEARCH ALGORITHM FOR 〈m,m,m〉 TRIPLE PRODUCT

PROPERTY TRIPLES AND AN APPLICATION FOR 5× 5 MATRIX

MULTIPLICATION
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Abstract. We present a new fast search algorithm for 〈m,m,m〉 Triple Product Property
(TPP) triples as defined by Cohn and Umans in 2003. The new algorithm achieves a speed-up
factor of 40 up to 194 in comparison to the best known search algorithm. With a parallelized
version of the new algorithm we are able to search for TPP triples in groups up to order 55.

As an application we identify a list of groups that would realize 5× 5 matrix multiplication
with under 100 resp. 125 scalar multiplications (the best known upper bound by Makarov 1987
resp. the trivial upper bound) if they contain a 〈5, 5, 5〉 TPP triple. With our new algorithm we
show that no group can realize 5× 5 matrix multiplication better than Makarov’s algorithm.
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1. Introduction

1.1. A Very Short History of Fast Matrix Multiplication. The naive algorithm for matrix
multiplication is an O(n3) algorithm. From Strassen [15] we know that there is an O(n2.81)
algorithm for this problem. One of the most famous results is an O(n2.3755) algorithm from
Coppersmith and Winograd [4]. Recently, Williams [16] found an algorithm with O(n2.3727)
run-time based on the work of Stothers [14]. Let M(n) denote the number of field operations
in characteristic 0 required to multiply two (n × n) matrices. Then we call ω := inf{r ∈ R :
M(n) = O(nr)} the exponent of matrix multiplication. Details about the complexity of matrix
multiplication and the exponent ω can be found in [1].

1.2. A Very Short History of Small Matrix Multiplication. The naive algorithm uses n3

multiplications and n3−n2 additions to compute the product of two n×n matrices. The famous
result O(n2.81) is based on an algorithm that can compute the product of two 2 × 2 matrices
with only 7 multiplications. Winograd [17] proved that the minimum number of multiplications
required in this case is 7. The exact number R(n) of required multiplications to compute the
product of two n × n matrices is not known for n > 2. There are known upper bounds for
some cases. Table 1 lists the known upper bounds for R(n) up to n = 5. Tables for up to
n = 30 can be found in [5, Section 4]. Hedtke and Murthy proved in [9, Theorem 7.3] that the
group-theoretic framework (discussed in Subsection 1.4) is not able to produce better bounds
for R(3) and R(4).
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n× n upper bound for R(n) algorithm

2× 2 7 Strassen [15]
3× 3 23 Laderman [10]
4× 4 49 Strassen [15]
5× 5 100 Makarov [11]

Table 1. Upper bounds for R(2), R(3), R(4) and R(5).

1.3. Bilinear Complexity. Later we will use the concept of bilinear complexity to connect
group-theoretic arguments with the complexity of matrix multiplication.

Definition 1.1 (Rank). [1, Chapter 14 and Definition 14.7] Let k be a field and U, V,W finite
dimensional k-vector spaces. Let η : U × V → W be a k-bilinear map. For i ∈ {1, . . . , r} let
fi ∈ U∗, gi ∈ V ∗ (dual spaces of U and V resp. over k) and wi ∈ W such that

η(u, v) =
r∑

i=1

fi(u)gi(v)wi

for all u ∈ U and v ∈ V . Then (f1, g1, w1; . . . ; fr, gr, wr) is called a k-bilinear algorithm of
length r for η, or simply a bilinear algorithm when k is fixed. The minimal length of all bilinear
algorithms for η is called the rank R(η) of η. Let A be a k-algebra. The rank R(A) of A is
defined as the rank of its bilinear multiplication map.

Definition 1.2 (Restriction of a bilinear map). [1, Definition 14.27] Let φ : U × V → W and
φ′ : U ′ × V ′ → W ′ be k-bilinear maps. A k-restriction, or simply a restriction (when k is fixed),
of φ′ to φ is a triple (σ, τ, ζ ′) of linear maps σ : U → U ′, τ : V → V ′ and ζ ′ : W ′ → W such that
φ = ζ ′ ◦ φ′ ◦ (σ × τ):

U × V

σ×τ
��

c©

φ // W

U ′ × V ′

φ′
// W ′

ζ′

OO

We write φ ≤ φ′ if there exists a restriction of φ′ to φ.

1.4. The Group-Theoretic Approach of Cohn and Umans. In 2003 Cohn and Umans
introduced in [3] a group-theoretic approach to fast matrix multiplication. The main idea of
their framework is to embed the matrix multiplication over a ring R into the group ring R[G] of
a group G. A group G admits such an embedding if there are subsets S, T and U of G which
satisfy the so-called Triple Product Property.

Definition 1.3 (right quotient). Let G be a group and X be a nonempty subset of G. The
right quotient Q(X) of X is defined by Q(X) := {xy−1 : x, y ∈ X}.

Definition 1.4 (Triple Product Property). We say that the nonempty subsets S, T and U of
a group G satisfy the Triple Product Property (TPP) if for s ∈ Q(S), t ∈ Q(T ) and u ∈ Q(U),
stu = 1 holds if and only if s = t = u = 1.

Let k be a field. By 〈n, p,m〉k we denote the bilinear map kn×p×kp×m → kn×m, (A,B) 7→ AB
describing the multiplication of n × p by p × m matrices over k. When k is fixed, we simply
write 〈n, p,m〉. Unless otherwise stated we will only work over k = C in the entire paper. We
say that a group G realizes 〈n, p,m〉 if there are subsets S, T, U ⊆ G of sizes |S| = n, |T | = p
and |U | = m, which satisfy the TPP. In this case we call (S, T, U) a TPP triple of G, and we
define its size to be npm.
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Definition 1.5 (TPP capacity). We define the TPP capacity β(G) of a group G as β(G) :=
max{npm : G realizes 〈n, p,m〉}.

Let us now focus on the embedding of the matrix multiplication into C[G]. Let G realize
〈n, p,m〉 through the subsets S, T and U . Let A be an n × p and B be a p × m matrix. We
index the entries of A and B with the elements of S, T and U instead of numbers. Now we have

(AB)s,u =
∑

t∈T

As,tBt,u.

Cohn and Umans showed that this is the same as the coefficient of s−1u in the product
(∑

s∈S,t∈T
As,ts

−1t
)(∑

t̂∈T,u∈U
Bt̂,ut̂

−1u
)

. (1)

So we can read off the matrix product from the group ring product by looking at the coefficients
of s−1u with s ∈ S and u ∈ U .

Definition 1.6 (r-character capacity). Let G be a group with the character degrees {di}. We
define the r-character capacity of G as Dr(G) :=

∑

i d
r
i .

We write R(n, p,m) for the rank of the bilinear map 〈n, p,m〉, and R(n) for R(n, n, n). If
G realizes 〈n, p,m〉 then 〈n, p,m〉 ≤ C[G] (see [3, Theorem 2.3]) by the construction above and
therefore R(n, p,m) ≤ R(C[G]) =: R(G):

C
n×p

embedding
(1) into C[G] ��

× C
p×m

��
c©

matrix multiplication // Cn×m

C[G] × C[G]
multiplication in C[G]

// C[G]

(AB)s,u = coeffi-
cient of s−1u in (1)

OO

From Wedderburn’s structure theorem it follows that R(G) ≤
∑

iR(di). The exact value of R(G)
is known only in a few cases. So, usually we will work with the upper bound D3(G) ≥

∑

i R(di),
which follows from the rank d3 of the naive matrix multiplication algorithm for 〈d, d, d〉. We can
now use β(G) and Dr(G) to get new bounds for ω:

Theorem 1.7. [3, Theorem 4.1] If G 6= 1 is a finite group, then β(G)
ω
3 ≤ Dω(G).

Finally we collect some results to improve the performance of our algorithms in the next
sections.

Lemma 1.8. [3, Lemma 2.1] Let (S, T, U) be a TPP triple. Then for every permutation π ∈
Sym({S, T, U}) the triple (π(S), π(T ), π(U)) satisfies the TPP.

Lemma 1.9. [12, Observation 2.1] Let G be a group. If (S, T, U) is a TPP triple of G, then
(dSa, dTb, dUc) is a TPP triple for all a, b, c, d ∈ G, too.

Lemma 1.9 is one of the most useful results about TPP triples. It allows us to restrict the
search for TPP triples to sets that satisfy 1 ∈ S ∩ T ∩ U .

Definition 1.10 (Basic TPP triple). Following Neumann [12], we shall call a TPP triple
(S, T, U) with 1 ∈ S ∩ T ∩ U a basic TPP triple.

For that reason, we will assume throughout that every TPP triple is a basic TPP triple.

Lemma 1.11. [12, Observation 3.1] If (S, T, U) is a TPP triple, then |S|(|T | + |U | − 1) ≤ |G|,
|T |(|S|+ |U | − 1) ≤ |G| and |U |(|S|+ |T | − 1) ≤ |G|.

Theorem 1.12. [9, Theorem 3.1] Three sets S1, S2 and S3 form a TPP triple (S1, S2, S3) if
and only if for all π ∈ Sym(3)

1 ∈ S1 ∩ S2 ∩ S3, Q(Sπ2
) ∩Q(Sπ3

) = 1, and Q(Sπ1
) ∩Q(Sπ2

)Q(Sπ3
) = 1.



4 APPL. COMPUT. MATH., V.XX, N.XX, 20XX

1.5. The Aim of this Paper. The second and fourth authors of this paper created what we
believe are currently the most efficient search algorithms for TPP triples [9]. They also showed
that the presented group-theoretic framework is not able to give us new and better algorithms
for the multiplication of 3× 3 and 4× 4 matrices over the complex numbers.

To attack the 5×5 matrix multiplication problem we develop a new efficient search algorithm
for 〈m,m,m〉 (especially 〈5, 5, 5〉) TPP triples. For this special case of TPP triples it is faster
than any other search algorithm and it can easily be parallelized to run on a supercomputer.

Even with the new algorithm, it is not feasible simply to test all groups of order less than
100 (best known upper bound for R(5)) for 〈5, 5, 5〉 triples. Therefore we develop theoretical
methods to reduce the list of candidates that must be checked. We show that the group-theoretic
framework cannot give us a new upper bound for R(5).

We will also produce a list of groups that could in theory realize a nontrivial (with less than
125 scalar multiplications) multiplication algorithm for 5 × 5 matrices. Additionally we show
how it could be possible to construct a matrix multiplication algorithm from a given TPP triple.

2. The Search Algorithm for 〈m,m,m〉 TPP Triples

In this section we describe the basic idea and important implementation details for our new fast
search algorithm for 〈m,m,m〉 triples. The goal of the algorithm is to find possible candidates
for TPP triples (S, T, U) using the following necessary and sufficient conditions:

1 ∈ S ∩ T ∩ U and Q(S) ∩Q(T ) = Q(S) ∩ U = Q(T ) ∩ U = 1. (2)

The second condition is a weaker formulation of the known result using Q(U) (in Theorem 1.12),
but it is more useful in our algorithm. For each TPP candidate that comes from the algorithm
we test if it satisfies the TPP or not (e.g. with a TPP test from [9, Section 4]).

Let G be a finite group. Let n := |G| − 1. Let (g0 := 1G, g1, . . . , gn) be an arbitrary but fixed
order of the elements of G. We want to find an 〈m,m,m〉 TPP triple (S, T, U) (or possible TPP
triple candidates) of subsets of G. For this, we will represent S, T and U via their basic binary
representation:

Definition 2.1 (binary representation). If X is an arbitrary subset of G we write the binary
representation bX of X as an element of {0, 1}|G|, where (bX)ℓ = 1 if and only if gℓ ∈ X and
(bX)ℓ = 0 otherwise (0 ≤ ℓ ≤ n).

Because we only consider basic TPP triples, (bS)0 = (bT )0 = (bU )0 = 1, so we only need to
consider the binary representations for 1 ≤ ℓ ≤ n. We call this the basic binary representation
b∗S , b

∗
T and b∗U . We define supp(b∗X) := {i : (b∗X)i = 1} = {i : i > 0, gi ∈ X} as the support of a

basic binary representation b∗X . For example, if |G| = 8 and S = {1, g2, g4, g7}, then

bS = (1, 0, 1, 0, 1, 0, 0, 1)
b∗S = (0, 1, 0, 1, 0, 0, 1)
supp(b∗S) = {2, 4, 7}.

We want to sketch the basic idea behind the algorithms with a matrix representation of the pos-
sible TPP candidates. This representation is not efficient and will not be used in the algorithms
itself. It is only used in this subsection to describe the method. Let C ∈ {0, 1}3×n denote a
matrix representation of a possible TPP candidate. Each row of

C =





b∗S
b∗T
b∗U





is the basic binary representation of S, T , resp. U . We can describe the fundamental idea with
three steps

(S1) The “moving 1” principle to find the next possible TPP triple candidate after a TPP
test for the previous candidates fails.
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(S2) The “marking the quotient” routine to realize Equation (2).
(S3) An efficient way to store the matrix C and access its entries.

2.1. The “moving 1” principle. The “moving 1” principle is based on two observations and
an idea:

Observations. (1) The column sums of C are at most 1.
(2) We can restrict the search space for TPP triples with the condition min

(
supp(b∗S)

)
<

min
(
supp(b∗T )

)
< min

(
supp(b∗U )

)
.

Proof. (1) If M is a set with 1G ∈ M it follows that M ⊆ Q(M). Using Equation (2), we
get that X ∩ Y = {1} for all X 6= Y ∈ {S, T, U}. Thus, supp(b∗X) ∩ supp(b∗Y ) = ∅ for all
X 6= Y ∈ {S, T, U}. This proves the statement.

(2) Follows immediately from Lemma 1.8 and the fact that we are looking for TPP triples
(S, T, U) with |S| = |T | = |U |. �

The idea of the “moving 1” is as follows: After a TPP test fails we get the next candidate by
moving the rightmost 1 in b∗U one step to the right. If this is not possible, delete the rightmost
1 in b∗U and move the new rightmost 1. Finally we add the missing 1 to a free spot (remember
that the column sums of C are at most 1).

If it is not possible (all 1’s are at the right of b∗U ) to move a 1 in b∗U , we delete the whole
line b∗U and move a 1 in b∗T . After this we rebuild a new line b∗U line from scratch using the two
observations above. We do the same with line b∗S if no more moves in line b∗T are possible.

Example. Let G be group of order 9. We are looking for 〈3, 3, 3〉 TPP triples. The initial
configuration of C ∈ {0, 1}3×8 would be

C =
1 1

1 1
1 1

b∗S = (1, 1, 0, 0, 0, 0, 0, 0)
b∗T = (0, 0, 1, 1, 0, 0, 0, 0)
b∗U = (0, 0, 0, 0, 1, 1, 0, 0)

which means, that S = {1G, g1, g2}, T = {1G, g3, g4} and U = {1G, g5, g6}. Now we check, if
(S, T, U) satisfies the TPP. If so, we are finished. If not, we generate the next candidate by
moving a 1 in C:

C =
1 1

1 1
1 →1

Now U = {1G, g5, g7} and we check the TPP again. The procedure of the “moving 1” continues
if the TPP check fails:

1 1
1 1

1 1
→

1 1
1 1

1 →1
→

1 1
1 1

→1 1

→
1 1

1 1
1 →1

→
1 1

1 1
→1 1

→
1 1

1 →1
1 1

→
1 1

1 1
1 →1

→ · · ·

In contrast to the example above, the next subsection takes care of Q(S) and Q(T ) in Eq. (2).
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2.2. The “marking the quotient” routine. To take care of the quotient sets in Eq. (2) we
mark the quotient of each row in C in the row itself. This ensures that rows below this row
don’t use elements of the quotient sets.

Example. We use the same example as above. We start with b∗S = (1, 1, 0, 0, 0, 0, 0, 0), which
means that

C =
1 1

.

We mark the quotient set Q(S) in line b∗S with a “q”:

C =
1 1 q

.

So the first possible b∗T line is

C =
1 1 q

1 1 .

Note that X ⊆ Q(X) for all X ∈ {S, T, U}. Thus, we only have to mark the elements in
Q(X) \X =: Q̄(X). Before we can move a 1 in a row b∗X we have to delete all marks Q̄(X).

We have to deal with the case, that we found a b∗T with the “moving 1” principle, but
Q(S) ∩ Q(T ) 6= {1}: In this situation we have to undo all steps in the process of “marking all
elements in Q̄(T )” and we have to find a new b∗T by moving a 1.

2.3. Efficient Storage of the Basic Binary Representation Matrix. If we use the matrix
C to store all necessary information we have to store 3n elements and we need exactly 3 tests
to check if we can move a 1 to a position p: we have to check if (b∗S)p = (b∗T )p = (b∗U )p = 0.

We can omit the unnecessary space of 2n elements and the unnecessary 2 tests by projecting
C3×n to a vector marked ∈ {−2,−1, 0, 1, 2, 3}n :

C 7→ 1 · b∗S + (−1) · b∗
Q̄(S) + 2 · b∗T + (−2) · b∗

Q̄(T ) + 3 · b∗U

Example. Consider the basic binary representation matrix

C =
1 1 q q

1 1 q q q
1 1

.

The corresponding marked vector is

marked = ( 1, 1, 2, -1, 2, -1, -2, 3, -2, -2, 3, 0, 0 )

The check (b∗S)p = (b∗T )p = (b∗U )p = 0 can now be done with marked [p] = 0.

2.4. The Search Algorithm. The listing “SearchTPPTripleOfGivenType(G, m)” shows the
pseudo-code for the main function of the search algorithm. The interested reader can get a more
detailed version of this pseudo-code, all other pseudo-codes and an implementation in GAP
online [8] or via e-mail from the second author.

To test if a given candidate satisfies the TPP, we can use the test algorithms from Hedtke
and Murthy [9]. It would also be possible to use a specialized TPP test, because Q(S) and Q(T )
are already known and they satisfy Eq. (2).
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SearchTPPTripleOfGivenType(G, m)

for i = 1, . . . ,m− 1 do // start with S = {1G, g1, g2, . . . , gm−1}
marked [i] := 1;

repeat
mark quotient set Q̄(S) of row b∗

S
;

if it is possible to generate a feasible row b∗
T
from scratch then

repeat
if it is possible to mark the quotient set Q̄(T ) of b∗

T
without a conflict with Q(S) then

if it is possible to generate a feasible row b∗
U
from scratch then

repeat
if (S, T, U) is a TPP triple then // use a test from [9]

return (S, T, U);

until it is not possible to use the “moving 1” principle for b∗
U
anymore;

unmark the quotient set Q̄(T ) of b∗
T
;

until it is not possible to use the “moving 1” principle for b∗
T
anymore;

unmark the quotient set Q̄(S) of b∗
S
;

until it is not possible to use the “moving 1” principle for b∗
S
anymore;

3. An Application for 5× 5 Matrix Multiplication

In this section, we describe an application of the new algorithm. We will show that if a finite
group G admits a 〈5, 5, 5〉 triple, then R(G) ≥ 100. That is, we cannot improve the current
best bound for R(5) using this particular TPP approach – of course there may be other group-
theoretic methods that do yield better bounds. Even with the new algorithm, it is not feasible
simply to test all groups of order less than 100 for 〈5, 5, 5〉 triples. Therefore we must use
theoretical methods to reduce the list of candidates that must be checked. We will also produce
a list of groups that could in theory contain a 〈5, 5, 5〉 triple for which R(G) < 125 (as defined
below).

For a finite group G, let T (G) be the number of irreducible complex characters of G and b(G)
the largest degree of an irreducible character of G.

We start with two known results.

Theorem 3.1. [13, Theorem 6 and Remark 2] Let G be a group.

(1) If b(G) = 1, then R(G) = |G|.
(2) If b(G) = 2, then R(G) = 2|G| − T (G).
(3) If b(G) ≥ 3, then R(G) ≥ 2|G| + b(G)− T (G)− 1.

We write R(G) :=
∑

i R(di) for the best known upper bound (follows from Wedderburn’s
structure theorem) and R(G) for the best known lower bound (the theorem above) for R(G).

Definition 3.2 (C1 and C2 candidates). A group G that realizes 〈5, 5, 5〉 and satisfies R(G) <
100 will be called C1 candidate. A group G that realizes 〈5, 5, 5〉 and satisfies R(G) < 125 will
be called C2 candidate.

The following is well known, but we include a short proof for ease of reference.

Lemma 3.3. If G is non-abelian, then T (G) ≤ 5
8 |G|. Equality implies that |G : Z(G)| = 4.

Proof. If the quotient G/Z(G) is cyclic, then G is abelian. Therefore if G is non-abelian, then
|G : Z(G)| ≥ 4. Hence |Z(G)| ≤ 1

4 |G|. Now T (G) is known to equal the number of conjugacy

classes of G. For any x ∈ G, either x is central or |xG| ≥ 2. The number of conjugacy classes
of length at least 2 is T (G)− |Z(G)|. Therefore |G| ≥ |Z(G)|+ 2(T (G)− |Z(G)|). This implies
T (G) ≤ 1

2(|G| + |Z(G)|) ≤ 5
8 |G|. Equality is only possible when |Z(G)| = 1

4 |G|. �
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Obviously, it is necessary to keep the list of all C1 and C2 candidates as short as possible.
To achieve this goal we will develop some common properties of C1 and C2 candidates in this
section. We will use them to eliminate as many candidates as possible from the list.

It will be helpful to establish some notation in the particular case where a group has a TPP
triple and a subgroup of index 2.

Definition 3.4. Let G be a group with a TPP triple (S, T, U), and suppose H is a subgroup
of index 2 in G. We define S0 = S ∩H, T0 = T ∩H, U0 = U ∩H, S1 = S \H, T1 = T \H and
U1 = U \H.

Lemma 3.5. Suppose G realizes 〈5, 5, 5〉. If G has a subgroup H of index 2, then H realizes
〈3, 3, 3〉.

Proof. Suppose G realizes 〈5, 5, 5〉 via the TPP triple (S, T, U). If |S0| < |S1|, then for any
a ∈ S1, replace S by Sa−1. This will have the effect of interchanging S0 and S1. Hence we may
assume that |S0| ≥ |S1|, |T0| ≥ |T1| and |U0| ≥ |U1|. Now (S0, T0, U0) is a TPP triple of H, and
since each of S0, T0 and U0 has at least 3 elements, clearly H realizes 〈3, 3, 3〉. �

Lemma 3.6. Suppose G has a TPP triple (S, T, U). Let H be an abelian subgroup of index 2
in G. Then the following hold.

a) |S−1
0 T0U0| = |S0||T0||U0|;

b) |S−1
1 T1U0| ≥ |S1||T1|;

c) |S−1
1 U1| = |S1||U1|;

d) S−1
0 T0U0 ∩ S−1

1 T1U0 = ∅;
e) S−1

0 T0U0 ∩ S−1
1 U1T0 = ∅;

f) S−1
1 T1U0 ∩ S−1

1 U1T0 = ∅.

Proof. The proof relies almost entirely on the definition of a TPP triple (S, T, U); that if s ∈
Q(S), t ∈ Q(T ) and u ∈ Q(U) with stu = 1, then s = t = u = 1.

a) The map (s, t, u) 7→ s−1tu from S0 × T0 × U0 to S−1
0 T0U0 is clearly surjective. It is also

injective: suppose s−1tu = ŝ−1t̂û for some s, ŝ ∈ S0, t, t̂ ∈ T0 and u, û ∈ U0. Then,
remembering that H is abelian, we may rearrange to get (ŝs−1)(tt̂−1)(uû−1) = 1, forcing
(by definition of TPP triple), s = ŝ, t = t̂, u = û. Therefore the map is bijective and
|S−1

0 T0U0| = |S0||T0||U0|.
b) The map (s1, t1) 7→ s−1

1 t11 from S1 × T1 to S−1
1 T1U0 is injective as s−1

1 t11 = ŝ−1
1 t̂11, for

some s1, ŝ1 ∈ S1 and t1, t̂1 ∈ T1, implies (ŝ1s
−1
1 )(t1t̂

−1
1 )(11−1) = 1, which implies s1 = ŝ1

and t1 = t̂1. Thus |S
−1
1 T1U0| ≥ |S1||T1|.

c) The map (s1, u1) 7→ s−1
1 u1 from S1 × U1 to S−1

1 U1 is clearly surjective; it is injective

as s−1
1 u1 = ŝ−1

1 û1 implies (ŝ1s
−1
1 )(11−1)(u1û

−1
1 ) = 1 and hence s1 = ŝ1 and u1 = û1.

Therefore |S−1
1 U1| = |S1||U1|.

d) A nonempty intersection S−1
0 T0U0 ∩ S−1

1 T1U0 6= ∅ implies there exist s0 ∈ S0, t0 ∈ T0,

u0, û0 ∈ U0, s1 ∈ S1 and t1 ∈ T1 such that s−1
0 t0u0 = s−1

1 t1û0. But then t−1
1 s1s

−1
0 t0u0û

−1
0 =

1. Now t−1
1 s1, s0 and t0 are all elements of the abelian group H. Therefore we can

rearrange to get (t0t
−1
1 )(s1s

−1
0 )(u0û

−1
0 ) = 1. Since (T, S, U) is a TPP triple, this im-

plies s0 = s1, contradicting the fact that s0 and s1 lie in different H-cosets. Therefore
S−1
0 T0U0 ∩ S−1

1 T1U0 = ∅.
e) Suppose for some s0 ∈ S0, t0, t̂0 ∈ T0, u0 ∈ U0, s1 ∈ S1 and u1 ∈ U1 we have s−1

0 t0u0 =

s−1
1 u1t̂0. Then (s0s

−1
1 )(u1u

−1
0 )(t̂0t

−1
0 ) = 1, which implies (by the TPP for (S,U, T )) that

s0 = s1, a contradiction. Therefore S−1
0 T0U0 ∩ S−1

1 U1T0 = ∅.
f) Suppose for some s1, ŝ1 ∈ S1, t0 ∈ T0, t1 ∈ T1, u0 ∈ U0 and u1 ∈ U1, we have

s−1
1 t1u0 = ŝ−1

1 u1t0. Then (ŝ1s
−1
1 )(t1t

−1
0 )(u0u

−1
1 ) = 1, which implies u0 = u1, a con-

tradiction. Therefore S−1
1 T1U0 ∩ S−1

1 U1T0 = ∅. �
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Theorem 3.7. If G realizes 〈5, 5, 5〉 and |G| ≤ 72, then G has no abelian subgroups of index 2.

Proof. Suppose G has an abelian subgroup H of index 2 and realizes 〈5, 5, 5〉 via the TPP triple
(S, T, U). Define S0, T0, U0, S1, T1 and U1 as in Definition 3.4. Then, as in the proof of
Lemma 3.5, we may assume |S0| ≥ 3, |T0| ≥ 3 and |U0| ≥ 3. Without loss of generality we
may assume that |S0| ≥ |T0| and |S0| ≥ |U0|. Now since |G| ≤ 72, we have |H| ≤ 36. So, from
Lemma 3.6 we have

36 ≥ |H| ≥ |S−1
0 T0U0 ∪ S−1

1 U1T0 ∪ S−1
1 T1U0|

= |S0||T0||U0|+ |S−1
1 U1T0|+ |S−1

1 T1U0| (3)

≥ |S0||T0||U0|+ |S1||U1|+ |S1||T1|. (4)

Using Equation (4) if either T0 ≥ 4 or U0 ≥ 4, we have S0 ≥ 4, which forces |H| ≥ 48, a
contradiction. Thus |T0| = |U0| = 3. If S0 ≥ 4 then we get |H| ≥ 40, another contradiction.
Therefore |S0| = |T0| = |U0| = 3, which gives that |H| ≥ 27 + 4 + 4 = 35, and so |H| ∈ {35, 36}.
If two of Q(S0), Q(T0) and Q(U0) were groups of order 4, then they would generate a subgroup
of order 16 in H, which is impossible. Therefore, permuting S, T and U if necessary, we may
assume that Q(T0) and Q(U0) are not subgroups of order 4.

Now consider S−1
1 U1T0. Write X = S−1

1 U1. Then |X| = 4. If |XT0| = 4, then XT0 = X,
and thus X〈T0〉 = X, which implies that X is a union of 〈T0〉-cosets. In particular, 4 = |X|
divides the order of 〈T0〉. But T0 alone contains 3 elements. Hence 〈T0〉 has order 4. A quick
check shows that Q(T0) = 〈T0〉, contradicting the fact that Q(T0) is not a subgroup of order 4.
We have therefore shown that |S−1

1 U1T0| > 4. A similar argument with S−1
1 T1U0 and Q(U0)

shows that |S−1
1 T1U0| > 4. Substituting back into Equation (3) gives |H| ≥ 27 + 5 + 5 = 37,

a contradiction. Therefore no group of order at most 72 can have both a 〈5, 5, 5〉 triple and an
abelian subgroup of index 2. �

We are grateful to Peter M. Neumann for pointing out an argument which considerably
shortened our proof for the case |H| = 36 in the above result.

3.1. C1 Candidates.

Proposition 3.8. If G is a C1 candidate, then G is non-abelian and 45 ≤ |G| ≤ 72.

Proof. If G is abelian then R(G) = |G|. The maximal size of a TPP triple that G can realize
is |G|. Therefore G cannot be a C1 candidate. Assume then that G is non-abelian. The fact
that |G| ≥ 45 follows immediately from Lemma 1.11. For the upper bounds, the fact that
T (G) ≤ 5

8 |G| implies 2|G| − T (G) ≥ 11
8 |G| and hence, by Theorem 3.1, R(G) ≥ 11

8 |G|. So if

|G| > 72, then R(G) > 11×72
8 = 99. Hence G is not a C1 candidate. Therefore, if G is a C1

candidate, then 45 ≤ |G| ≤ 72. �

Theorem 3.9. No group of order 64 is a C1 candidate.

Proof. A GAP calculation of Pospelov’s lower bound on R(G), followed by elimination of any
group with an abelian subgroup of index 2, leaves a possible list of seven groups of order 64
that could be C1 candidates. If any of these groups G were to realize a 〈5, 5, 5〉 triple, then any
subgroup of order 32 in G would realize a 〈3, 3, 3〉 triple. But a brute-force computer search,
similar to that performed by two of the current authors in [9], shows that each of these groups
of order 64 has at least one subgroup of order 32 which does not realize 〈3, 3, 3〉. Therefore, no
group of order 64 is a C1 candidate. �

Theorem 3.10. Table 2 contains all possible C1 candidates.

Proof. By Proposition 3.8 we need only look at groups of order between 45 and 72. A simple
GAP program can calculate Pospelov’s lower bound on R(G). Any group for which this bound is
greater than 99 can be eliminated. Next, we can eliminate any group with an abelian subgroup
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GAP ID structure character degree pattern R(G) R(G)

[48,3] C2
4 ⋊ C3 (13, 35) 90 118

[48,28] C2.S4 = SL(2, 3).C2 (12, 23, 32, 41) 91 118
[48,29] GL(2, 3) (12, 23, 32, 41) 91 118
[48,30] A4 ⋊ C4 (14, 22, 34) 88 110
[48,31] C4 ×A4 (112, 34) 82 104
[48,32] C2 × SL(2, 3) (16, 26, 32) 84 94
[48,33] SL(2, 3) ⋊C2 (16, 26, 32) 84 94
[48,48] C2 × S4 (14, 22, 34) 88 110
[48,49] C2

2 ×A4 (112, 34) 82 104
[48,50] C4

2 ⋊ C3 (13, 35) 90 118
[54,10] C2 × (C2

3 ⋊ C3) (118, 34) 88 110
[54,11] C2 × (C9 ⋊ C3) (118, 34) 88 110

Table 2. All possible C1 candidates.

of index 2 by Theorem 3.7, and any group of order 64 by Theorem 3.9. This reduces the list
to 20 groups. Finally, we observe that if any group of order 48 is a candidate, then any of its
subgroups of order 24 must realize a 〈3, 3, 3〉 triple. Another brute-force search on groups of
order 24 eliminates ten groups of order 48 from the list. The final list contains ten groups of
order 48 and two of order 54. �

3.2. C2 Candidates.

Proposition 3.11. If G is a C2 candidate, then G is non-abelian and 45 ≤ |G| ≤ 90.

Proof. We use the same arguments as in the proof of Proposition 3.8: If |G| ≥ 91, then R(G) ≥
11×91

8 > 125. Hence G is not a C2 candidate. Therefore if G is a C2 candidate, then 45 ≤ |G| ≤
90. �

Theorem 3.12. Table 3 contains all possible C2 candidates that are not C1 candidates.

Proof. By Proposition 3.11, we can restrict our attention to groups of order between 45 and 90.
We can use Pospelov’s bound for R(G) and (for groups of order at most 72) the existence of
abelian subgroups of index 2 to eliminate many candidates. After these observations, we look
to see if any of the remaining candidates have subgroups of index 2 that do not realize 〈3, 3, 3〉.
If so, then by Lemma 3.5, the group cannot be a C2 candidate. After this process, 37 groups
remain as candidates. Twelve are the existing C1 candidates we already know about. So there
are 25 ‘new’ groups here. �

We note that one of the C2 candidates, A5, is already known ([12, Section 3]) to have a
〈5, 5, 5〉 triple so we would not need to check it again computationally.

4. Computations, Tests and Results

4.1. Runtime. We tested our new search algorithm against a specialized version (that only
looks for 〈m,m,m〉 triples) of the currently best known search algorithm with the test routine
TPPTestMurthy (see [9]). Note that we only consider groups that do not realize 〈3, 3, 3〉 to
show the worst-case runtimes of the searches. Table 4 lists the runtimes1 of the search for
〈3, 3, 3〉 TPP triples in non-abelian groups of order up to 26 that satisfy Neumann’s inequality
3(3 + 3 − 1) ≤ |G|. Our algorithm achieves a speed-up of 40 in the worst-case and 194 in the

1The test were made with GAP 4.6.3 64-bit (compiled with GCC 4.2.1 on OS X 10.8.3 using the included
Makefile) on a IntelR© CoreTM i7-2820QM CPU @ 2.30GHz machine with 8 GB DDR3 RAM @ 1333MHz.
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GAP ID structure character degree pattern R(G) R(G)

[52,3] C13 ⋊ C4 (14, 43) 100 151
[54,5] (C2

3 ⋊ C3)⋊ C2 (16, 23, 61) 103 188
[54,6] (C9 ⋊ C3)⋊ C2 (16, 23, 61) 103 188
[54,8] (C2

3 ⋊ C3)⋊ C2 (12, 24, 34) 100 122
[55,1] C11 ⋊ C5 (15, 52) 107 205
[56,11] C3

2 ⋊ C7 (17, 71) 110 265
[57,1] C19 ⋊ C3 (13, 36) 107 141
[60,5] A5 (11, 32, 41, 51) 119 196
[60,6] C3 × (C5 ⋊ C4) (112, 43) 108 159
[60,7] C15 ⋊ C4 (14, 22, 43) 114 165
[60,8] S3 ×D10 (14, 26, 42) 111 144
[60,9] C5 ×A4 (115, 35) 102 130
[63,1] C7 ⋊ C9 (19, 36) 113 147
[63,3] C3 × (C7 ⋊ C3) (19, 36) 113 147
[72,16] C2 × (C2

2 ⋊ C9) (118, 36) 122 156
[72,47] C6 ×A4 (118, 36) 122 156
[78,3] C13 × S3 (126, 213) 117 117
[80,21] C5 × ((C4 × C2)⋊ C2) (140, 210) 110 110
[80,22] C5 × (C4 ⋊ C4) (140, 210) 110 110
[80,24] C5 × (C8 ⋊ C2) (140, 210) 110 110
[80,46] C10 ×D8 (140, 210) 110 110
[80,47] C10 ×Q8 (140, 210) 110 110
[80,48] C5 × ((C4 × C2)⋊ C2) (140, 210) 110 110
[88,9] C11 ×D8 (144, 211) 121 121
[88,10] C11 ×Q8 (144, 211) 121 121

Table 3. All possible C2 candidates that are not C1 candidates.

best-case in comparison to the specialized version of Hedtke and Murthy [9]. We are able to
shrink the number of candidates that we have to test for the TPP by a factor of 14 in the
worst-case and 59 in the best-case. We remark that there are cases where the old algorithm
tests 450,450 candidates and the new algorithm requires no TPP tests at all.

We only did tests in the 〈3, 3, 3〉 case, because the old algorithm is too slow to do a comparison
like Table 4 for the 〈4, 4, 4〉 case (or higher). The search need only be run in groups that satisfy
Neumann’s inequality: a group G can only realize 〈m,m,m〉 if it satisfies m(2m− 1) ≤ |G|.

We remark that the speed-up becomes slower when the group becomes larger. However this is
not of particular concern in the context of our problem: the old search algorithm works on S, T
and U and the new algorithm works on Q(S), Q(T ) and U . So in the best-case the old algorithm
uses |S|+|T |+|U | = 3m elements and the new algorithm uses |Q(S)|+|Q(T )|+|U | ≤ m2+m2+m
elements to filter TPP triple candidates. The speed-up will be problematically small when
m2 ≪ |G|, but you will only look for groups that are near Neumann’s lower bound to get a good
matrix multiplication algorithm.

It is not easy to get results about the asymptotic runtime, because that highly depends on
the structure of the groups. But as a worst-case result we get

O

(
|G|!

m!3(|G| − 3m)!

)

︸ ︷︷ ︸

bound for the number of
triples that satisfy Eq. (2)

× O
(
m4 logm

)

︸ ︷︷ ︸

worst-case runtime
for a TPP test with

Thm. 1.12

= O

(
|G|!m4 logm

m!3(|G| − 3m)!

)
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GAP average∗ runtime in ms speed- number of TPP tests search space re-
ID structure new algo. old algo. up new algo. old algo. duction factor∗∗

[16,3] (C4 × C2)⋊ C2 192 20,133 104 11,595 450,450 38
[16,4] C4 ⋊ C4 140 19,481 139 0 450,450 ∞
[16,6] C8 ⋊ C2 116 19,631 169 0 450,450 ∞
[16,7] D16 241 20,416 84 14,336 450,450 31
[16,8] QD16 162 20,060 123 9,005 450,450 50
[16,9] Q16 99 19,250 194 0 450,450 ∞
[16,11] C2 ×D8 311 20,079 64 19,314 450,450 23
[16,12] C2 ×Q8 135 18,667 138 7,628 450,450 59
[16,13] (C4 × C2)⋊ C2 201 19,538 97 12,107 450,450 37

[18,1] D18 658 51,899 78 39,499 1,113,840 28
[18,3] C3 × S3 341 50,360 147 20,134 1,113,840 55
[18,4] C2

3
⋊ C2 646 51,131 79 39,999 1,113,840 27

[20,1] C5 ⋊ C4 1,028 119,588 116 54,233 2,441,880 45
[20,3] C5 ⋊ C4 1,388 121,702 87 73,971 2,441,880 33
[20,4] D20 2,033 118,599 58 114,979 2,441,880 21

[22,1] D22 4,539 241,524 53 248,950 4,883,760 19

[24,1] C3 ⋊ C8 5,610 501,854 89 292,340 9,085,230 31
[24,4] C3 ⋊Q8 6,056 498,571 82 303,162 9,085,230 29
[24,5] C4 × S3 7,912 483,640 61 419,556 9,085,230 21
[24,6] D24 10,711 479,688 44 568,672 9,085,230 15
[24,7] C2 × (C3 ⋊ C4) 6,623 486,323 73 339,829 9,085,230 26
[24,8] (C6 × C2)⋊ C2 8,804 479,182 54 463,453 9,085,230 19
[24,10] C3 ×D8 6,540 481,217 73 359,830 9,085,230 25
[24,11] C3 ×Q8 5,250 490,716 93 284,001 9,085,230 31
[24,14] C2 × C2 × S3 11,555 475,916 41 622,455 9,085,230 14

[26,1] D26 20,658 832,722 40 1,024,317 15,939,000 15

∗ The average is taken over 10 runs in which the highest and lowest runtimes are omitted.
∗∗ A factor X means that (# TPP test of the new algo.) ≤ 1

X
(# TPP test of the old algo.).

Table 4. Comparison of the average runtime and number of TPP tests in the
search of 〈3, 3, 3〉 TPP triples for the old and the new search algorithm.

as a bound for the runtime of our new algorithm. This is exactly the same bound as for the
algorithm in [9]. But as the results in Table 4 show, the real runtime of our new algorithm highly
depends on m and the structure of the group, whereas the real runtime of the old algorithms
seems only to depend on m and the size of the group.

4.2. Managing the (Parallel) Computation on a (Super-) Computer. To compute the
results (next section) for the search of 〈5, 5, 5〉 TPP triple we used a supercomputer (a cluster
with Sun Grid Engine) at the Martin-Luther-University Halle-Wittenberg. The computations
(and their management) took several months. The number of b∗S ’s can be computed with

# of b∗S ’s = |{(x1, x2, x3, x4) ∈ N
4 : 1 ≤ x1 < x2 < x3 < x4 ≤ |G|}|

=

|G|−3
∑

x1=1

|G|−2
∑

x2=x1+1

|G|−1
∑

x3=x2+1

|G|
∑

x4=x3+1

1 =
1

24
(|G|4 − 6|G|3 + 11|G|2 − 6|G|).

The number of b∗S ’s for all groups in the Tables 2 and 3 can be found in Table 5. We imple-
mented the search algorithm with the optional arguments startrow and numberOfRowOneTests
to realize a rudimentary parallelization: With an easy script we construct the set of all possible
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|G| 48 52 54 55 56 57
# of b∗S ’s 178,365 249,900 292,825 316,251 341,055 367,290

|G| 60 63 72 78 80 88
# of b∗S ’s 455,126 557,845 971,635 1,353,275 1,502,501 2,225,895

Table 5. Number of b∗S ’s for all groups in the Tables 2 and 3.

b∗S ’s and divide it into subsets of size 1,000 resp. 10,000. Now we start (# of b∗S ’s)/1,000 resp.
(# of b∗S ’s)/10,000 independent jobs on a cluster, each with a different startrow that has to check
numberOfRowOneTests = 1,000 resp. numberOfRowOneTests = 10,000 of the b∗S ’s. It is clear
that even with an optimized search algorithm this is an immense amount of work. It follows
right from that fact, that we dealt with tricks like going from the matrix representation C to
the vector representation marked to get a sufficient speed-up to solve the 〈5, 5, 5〉 problem.

4.3. Results. Our search for 〈5, 5, 5〉 TPP triples in all groups of the C1 list showed, that no
group can realize 5× 5 matrix multiplication with less than 100 scalar multiplications with the
group-theoretic framework by Cohn and Umans. This continues the results [9, Theorem 7.3] of
two of the authors who showed the same statement for 3× 3 and 4× 4 matrix multiplication.

5. How to Construct a Matrix Multiplication Algorithm from a TPP Triple?

As the results show, we were not able to find a group G that realizes 〈5, 5, 5〉 with R(G) < 100.
But the groups in the C2 list could realize 〈5, 5, 5〉 with less than 125 scalar multiplication,
because R(G) < 124. This section shows a strategy to search for a nontrivial 5 × 5 matrix
multiplication algorithm in the C2 list.

Consider the case, that we found a 〈5, 5, 5〉 TPP triple (S, T, U) in a group G of the C2
list. We only know that R(G) < 125, so we don’t know if this leads to a nontrivial matrix
multiplication algorithm. It could require 125 scalar multiplications or more. To construct the
algorithm induced by the given TPP triple we have to construct the embeddings A 7→ eA and
B 7→ eB of the matrices A = [as,t] and B = [bt,u] in C[G]:

as,t 7→ as,ts
−1t, bt,u 7→ bt,ut

−1u for all s ∈ S, t ∈ T, u ∈ U. (5)

The next step is to apply Wedderburn’s structure theorem:

C[G] ∼= C
d1×d1 × C

d2×d2 × · · · × C
dℓ×dℓ , (6)

where d1, . . . , dℓ are the character degrees of G. The given matrices A andB are now represented
by ℓ-tuples of matrices eA 7→ (A1, . . . ,Aℓ) and eB 7→ (B1, . . . ,Bℓ). The last step is easy: just
use the best known algorithms to compute the productsAiBi or try to make use of the structures
(e.g., symmetries, zero entries, . . . ) in Ai and Bi to find even better algorithms for the small
products AiBi. The back transformation works as in Equation (5) but in the other direction.

Note that it could be possible to use the structure of the zero entries in Ai and Bi: There is
space for d2i entries in each small matrix. Over all small matrices together we have enough space
for d21 + · · ·+ d2ℓ = |G| elements. But we only need space for |S| · |T | resp. |T | · |U | elements.

The key questions for future research are:

(Q1) Are there different embeddings (6), in the sense that they lead to different structures
(pattern of zeros or other types) in the small matrices?

(Q2) Does the number M(e) of multiplications needed to compute the product in (6) depend
on the embedding e?

(Q3) If so, we can bound R(G) by mineM(e). How many embeddings e are there and how
easy is it to compute mineM(e)?
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Example. Consider the alternating group A5 on five elements. The character degree pattern is
(11, 32, 41, 51) and so

C[A5] ∼= C× C
3×3 × C

3×3 × C
4×4 × C

5×5.

We know that A5 realizes 〈5, 5, 5〉. There is place for 60 elements in the embedding eA ∈ C[A5]
of a 5 × 5 matrix A with 25 elements. The same for eB. So we have to embed at most
|S−1T ∪ T−1U | ≤ |S−1T | + |T−1U | − 1 ≤ 25 + 25 − 1 = 49 elements into a space of |A5| = 60
elements. Assume that we can fill the lower dimensional parts of the right hand side of (6)
completely. Thus, only 49−12−32−32−42 = 14 elements of the small matrices in C5×5 are non-
zero. Therefore it could be possible, that A5 induces a nontrivial matrix multiplication algorithm:
For the first “complete” parts we need R(1)+2R(3)+R(4) = 96 scalar multiplications. We have
28 scalar multiplications left to compute the product of A5B5 to beat 125 scalar multiplications.

Example. The symmetric group G := S3 on three objects realizes 〈2, 2, 2〉 via the TPP triple
S = {s1 = 1G, s2 = (1, 2)}, T = {t1 = 1G, t2 = (1, 3)}, U = {u1 = 1G, u2 = (2, 3)}. We identify
Aij with Asi,tj and Bjk with Btj ,uk

. The transformation into C[G] results in

c1 := a111G + a12(1, 3) + a21(1, 2) + a22(1, 3, 2),

c2 := b111G + b12(2, 3) + b21(1, 3) + b22(1, 3, 2).

The character degree pattern of S3 is (12, 21), so C[G] ∼= C × C × C
2×2. To construct the map

f : C[G] → C × C × C
2×2, we follow [1, Example 13.37]. The irreducible representations of S3

are

(1) The trivial representation τ : S3 → C, g 7→ 1.
(2) The alternating representation α : S3 → C, g 7→ sgn(g).
(3) The representation ρ : S3 → C

2×2, (2, 3) 7→
[
1 −1
0 −1

]
, (1, 2, 3) 7→

[
0 −1
1 −1

]
.

Thus, we conclude

f
(∑

g∈S3

λgg
)

=
(∑

g∈S3

λgτ(g),
∑

g∈S3

λgα(g),
∑

g∈S3

λgρ(g)
)

.

It follows that

f(c1) =

(

a11+a12+a21+a22, a11+a22−a12−a21,

[
a11−a22−a12 a21+a22
a21−a22−a12 a11+a12

])

,

f(c2) =

(

b11+b12+b21+b22, b11+b22−b12−b21,

[
b11+b12−b21−b22 b22−b12

−b21−b22 b11−b12+b21

])

.

In C we compute the product with 1 multiplication. In C
2×2 we can use Strassen’s algorithm

with 7 multiplications. Therefore, we need 9 multiplications to calculate f(c1)f(c2).

This method provides a way to construct the multiplication algorithm induced by a given TPP
triple. If it works (that means if one can answers questions (Q1), (Q2) and (Q3)), we find new best
or at least nontrivial matrix multiplication algorithms for matrices of small dimension. Another
approach to multiply matrices with a given TPP triple can be found in Gonzalez-Sanchez et al.
[7]. But as far as we know, this approach doesn’t construct the matrix multiplication algorithm
itself.

6. Conclusions

From our point of view there are five open key questions or ideas one could use for future work.
The first two are obviously the 〈5, 5, 5〉 search in the C2 list, together with a practicable

method to construct a matrix multiplication algorithm out of a given TPP triple. And C1-like
searches for 〈6, 6, 6〉 matrix multiplication algorithms and higher.

Is it easy and efficient to implement a search algorithm that does use products of quotients
sets like in Theorem 1.12?

Is there a constructive algorithm for TPP triples of a given type 〈n, p,m〉?
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As far as we know, the smallest example for a non-trivial matrix multiplication realized by the
group-theoretic framework by Cohn and Umans is 〈40, 40, 40〉. The group G = C3

n ≀ C2 realizes
〈2n(n − 1), 2n(n − 1), 2n(n − 1)〉 with the rank R(G) = 2|G| − T (G) = 4n6 − 1

2(n
6 + 3n3) =

1
2n

3(7n3−3), see [2, Section 2] for details. Thus, for n = 5 it realizes 40×40 matrix multiplication
with 54,500 scalar multiplications. This is way better than the naive matrix multiplication
algorithm with 403 = 64,000 scalar multiplications. On the other hand this is not a good result
at all: Using R(40) = R(23 ·5) ≤ R(2)3R(5) ≤ 73 ·100 = 34,300 we get an even better algorithm.
The best known upper bound for the number of scalar multiplications in this case is

n3 + 12n2 + 11n

3
=

403 + 12 · 402 + 11 · 40

3
= 27,880

by [5, Proposition 2]. Maybe our new algorithm can help to find a minimal working example
for a non-trivial matrix multiplication algorithm realized with the group-theoretic framework by
Cohn and Umans.
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