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Abstract

Given a group G and a G-module A, we show how to determine up to isomorphism
the extensions E ofA by G so that A embeds as smallest non-trivial term of the derived
series or of the lower central series into E.

1 Introduction

Given a group G and a G-module A an extension of A by G is a group E that satisfies
a short exact sequence A →֒ E →→ G. The determination of extensions facilitates the
construction of new groups from given ones and is an important tool in group theory.
The isomorphism problem for group extensions asks to determine extensions up to iso-

morphism: given G and A, the aim is to determine a complete and irredundant set of
isomorphism type representatives of extensions of A by G.
We consider two particular types of extensions. Let E be an extension of A by G and
denote by A the image of the embedding A →֒ E. We call E a lower central series

extension if E is nilpotent and A coincides with the smallest non-trivial term of the lower
central series of E. We call E a derived series extension if A coincides with the smallest
non-trivial term of the derived series of E.
As central part of this paper we present criteria which allow us to identify those elements
in the cohomology group H2(G,A) that correspond to the desired extensions. For this
purpose we use the Schur multiplier of a pair of groups and a map that can be considered
as generalisation of the projection map in the universal coefficients theorem. Based on
this, we then describe practical methods to determine up to isomorphism all lower central
series extensions respectively all derived series extensions of A by G.
We apply our algorithms in the construction of groups with large derived length and small
composition length. In particular, we construct two new examples of groups of derived
length 10 and composition length 24. It is conjectured that 24 is the minimal possible
composition length for a group of derived length 10, see [8].

2 Extensions

In this section we briefly recall some notation. For a more detailed introduction into the
theory of group extensions we refer to [11, Chapter 11]. Throughout this section, let G be
an arbitrary group and let A be an abelian group equipped with a G-module structure.
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We write G as multiplicative group and A as additive group. We denote the action of G
on A by ag for a ∈ A and g ∈ G and we write g : A → A : a 7→ ag.
Let E = {(g, a) | g ∈ G, a ∈ A}. Then δ ∈ Z2(G,A) defines a group structure on E via

(g, a)(g′, a′) = (gg′, ag
′

+ a′ + δ(g, g′)).

The module A embeds into E via A →֒ E : a 7→ (1, a) and E projects onto G via
E →→ G : (g, a) 7→ g. Thus E is an extension of A by G. It is well-known that each
extension of A by G is isomorphic to an extension obtained by some δ ∈ Z2(G,A). We
usually identify A with its image A = {(1, a) | a ∈ A}.
Let E1 and E2 be two extensions of A by G. We say that E1 is strongly isomorphic to E2

if there exists an isomorphism ι : E1 → E2 with Aι = A. Further, E1 is equivalent to E2

if there exists an isomorphism ι : E1 → E2 with Aι = A so that ι induces the identity on
A and on E1/A ∼= G ∼= E2/A.
The group of compatible pairs Comp(G,A) is defined as subgroup of the direct product
Aut(G) ×Aut(A) via

Comp(G,A) =
{

(η, ν) ∈ Aut(G) ×Aut(A) | gη = ν−1gν for all g ∈ G
}

.

If the action of G on A is trivial then Comp(G,A) equals Aut(G)×Aut(A). An action of
Comp(G,A) on Z2(G,A) is given via

δ(η,ν) : G×G → A : (g, h) 7→
(

δ(gη
−1

, hη
−1

)
)ν

.

For δ ∈ Z2(G,A) we denote [δ] = δ + B2(G,A) ∈ H2(G,A). The subgroup B2(G,A) of
Z2(G,A) is setwise invariant under the action of Comp(G,A) and hence Comp(G,A) acts
on H2(G,A) via [δ](η,ν) = [δ(η,ν)].

1 Theorem: (Robinson [10])
Let δ, δ1, δ2 ∈ Z2(G,A) and denote their corresponding extensions by E,E1 and E2. Write

AutA(E) = {α ∈ Aut(E) | Aα = A}.

(1) Then E1 is strongly isomorphic to E2 if and only if there exists (η, ν) ∈ Comp(G,A)
with [δ1]

(η,ν) = [δ2].

(2) The homomorphism ϕ : AutA(E) → Aut(G) × Aut(A) : α 7→ αE/A × αA satisfies

ker(ϕ) ∼= Z1(G,A) and im(ϕ) = StabComp(G,A)([δ]).

3 Cohomology and Schur multipliers

Let G be an arbitrary group and let A be a trivial G-module. In this section we introduce
a map that links H2(G,A) to the Schur multiplier of a pair of groups. This map will play
a central role in our later applications.
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3.1 Twisted cocycles

For δ ∈ Z2(G,A) we define

δ̂ : G×G → A : (g, h) 7→ δ(g, h) − δ(h, g) − δ((hg)−1, hg) + δ((hg)−1, gh). (1)

For later use we note that h ∈ Z(G) implies

δ̂(g, h) = δ(g, h) − δ(h, g). (2)

The following lemma gives an alternative description for δ̂. Its proof is a direct computa-
tion which we omit here. For any two group elements g and h let [g, h] = g−1h−1gh the
commutator of g and h.

2 Lemma: Let G be a group, A a trivial G-module and δ ∈ Z2(G,A). Then in the

extension of A by G via δ the equation [(g, a), (h, b)] = ([g, h], δ̂(g, h)) holds for all g, h ∈ G
and a, b ∈ A.

3.2 The Schur multiplier of a pair of groups

We briefly recall the construction of the non-abelian exterior product and the non-abelian
tensor product as introduced by Brown and Loday [3], see also [2] for details.
Let H ≤ G and let F be the free group on the symbols {g ∧ h | g ∈ G,h ∈ H}. For
g, h ∈ G denote hg := hgh−1 = gh

−1

. Let R be the normal subgroup of F generated by
the relations

gg′ ∧ h = (gg′ ∧ gh)(g ∧ h) for g, g′ ∈ G,h ∈ H

g ∧ hh′ = (g ∧ h)(hg ∧ hh′) for g ∈ G,h, h′ ∈ H

h ∧ h = 1 for h ∈ H.

Then G ∧ H := F/R is the non-abelian exterior product of G and H. If the relations
h ∧ h = 1 are omitted, then the resulting quotient is the non-abelian tensor product of G
and H.
By construction, there is a natural homomorphism

ϕ : G ∧H → [G,H] : g ∧ h 7→ ghg−1h−1 = [g−1, h−1].

The kernel of ϕ is denoted with M(G,H) and is called the Schur multiplier of the pair of
groups (G,H), see [6] for background. It is known that M(G,H) is an abelian group and
the (ordinary) Schur multiplier M(G) of the group G can be obtained as M(G) = M(G,G)
by Hopf’s formula. Further, if H ≤ Z(G), then M(G,H) = G ∧H holds.

3.3 The linking map

The following lemma provides the first step for the definition of the linking map.

3



3 Lemma: Let G be a group, A a trivial G-module, δ ∈ Z2(G,A) and H ≤ Z(G). Then

the following map is a group homomorphism

δ : M(G,H) → A : g ∧ h 7→ δ̂(g, h).

Proof: Let E be the extension of A by G defined by δ and define α : F → E as the
group homomorphism extending g ∧ h 7→ ([g, h], δ̂(g, h)). We note that [(g, 0), (h, 0)] =
([g, h], δ̂(g, h)) = (1, δ̂(g, h)) for each g ∈ G and h ∈ H by Lemma 2 and the fact that H
is central in G.
We show that R is contained in the kernel of α. First, consider the relation h ∧ h for
h ∈ H. As δ̂(g, g) = 0 for all g ∈ G it follows that α(h ∧ h) = ([h, h], δ̂(h, h)) = (1, 0) in
E. Next, consider the relation g ∧hh′ = (g ∧h)(hg ∧ hh′) = (g ∧h)(g ∧h′), as H is central
in G. Then

(1, δ̂(g, hh′)) = [(g, 0), (hh′ , 0)]

= [(g, 0), (h,−δ(h, h′))(h′, 0)]

= [(g, 0), (h′ , 0)][(g, 0), (h,−δ(h, h′ ))](h
′,0)

= ([g, h′], δ̂(g, h′))([g, h], δ̂(g, h))(h
′ ,0)

= (1, δ̂(g, h′))(1, δ̂(g, h))(h
′ ,0)

= (1, δ̂(g, h′))(1, δ̂(g, h))

= (1, δ̂(g, h) + δ̂(g, h′)).

Thus α(g ∧ hh′) = α((g ∧ h)(g ∧ h′)) as desired. Finally consider the relation gg′ ∧ h =
(gg′∧ gh)(g∧h) = (gg′∧h)(g∧h), as H is central in G. Then using a similar computation
as above we obtain

(1, δ̂(gg′, h)) = [(gg′, 0), (h, 0)]

= [((gg′) · g, 0), (h, 0)]

= (1, δ̂(gg′, h) + δ̂(g, h))

as desired. In summary, R ≤ ker(α) and thus α induces a group homomorphism G∧H →
E whose image is contained in A. As G∧H = M(G,H) for the central subgroup H of G,
the result now follows. •

Lemma 3 leads to the following definition for the linking map between H2(G,A) and the
Schur multiplier of a pair of groups.

4 Theorem: Let G be a group, A a trivial G-module and H ≤ Z(G). Then

κH : Z2(G,A) → Hom(M(G,H), A) : δ 7→ δ (3)

is a homomorphism of abelian groups with B2(G,A) ≤ ker(κH). Thus it induces

κH : H2(G,A) → Hom(M(G,H), A) : [δ] 7→ δ. (4)
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Proof: From Lemma 3 it follows that κH is well-defined. The definition of δ̂ yields that
κH is compatible with the addition and inversion in Z2(G,A) and hence is a group homo-
morphism. It remains to show that B2(G,A) ≤ ker(κH). Let δ ∈ B2(G,A). Then there
exists ǫ ∈ C1(G,A) with δ(g, h) = ǫ(g) + ǫ(h)− ǫ(gh) for all g, h ∈ G. Using (2) it follows
for all g ∈ G,h ∈ H that δ̂(g, h) = ǫ(hg) − ǫ(gh) = 0. Thus δ ∈ ker(κH). •

We note that the universal coefficients theorem for cohomology asserts the existence of a
short exact sequence

Ext(H1(G,Z), A) →֒ H2(G,A) →→ Hom(M(G), A).

If G is abelian, then κG coincides with the projection in the universal coefficients sequence.

5 Remark: Let H ≤ Z(G) be a characteristic subgroup of G. Then the action of

Comp(G,A) on Z2(G,A) is compatible with κH and thus defines an action of Comp(G,A)
on Hom(M(G,H), A).

For a non-trivial nilpotent group G let λ(G) denote its smallest non-trivial subgroup of
the lower central series of G. To shorten notation in our later section we then also denote

κ = κλ(G) and κ = κλ(G).

4 Lower central series extensions

In this section we describe a construction for a set of isomorphism type representatives
of lower central series extensions of A by G. If any such extension exists, then G is a
nilpotent group and A is a non-trivial abelian group with a trivial G-module structure.
We assume this throughout the section and we also assume that G is non-trivial to obtain
proper extensions of A. The following theorem provides a characterisation of the cocycles
defining lower central series extensions.

6 Theorem: Let G be a non-trivial nilpotent group, A a non-trivial group with trivial

G-module structure and δ ∈ Z2(G,A). Then the extension of A by G via δ is a lower

central series extension if and only if κ(δ) is surjective.

Proof: Let E denote the extension of A by G via δ and let E = λ1(E) > λ2(E) > . . . be
the lower central series of E. Further let c be the class of G.
Suppose that E is a lower central series extension. Then E is nilpotent of class c + 1
and the image A of A in E satisfies that A = λc+1(E) = [E,λc(E)]. This implies that
A = 〈[(g, a), (h, b)] | a, b ∈ A, g ∈ G,h ∈ λ(G)〉. As [(g, a), (h, b)] = (1, δ̂(g, h)) by Lemma 2
and δ̂(g, h) = δ(g ∧ h) by definition of δ, it follows that δ = κ(δ) is surjective.
Now suppose that κ(δ) is surjective. Using the same calculation as in the first part of the
proof, it follows that A = λc+1(E). As A is a trivial G-module, this implies that λc+2(E)
is trivial and thus E is nilpotent. Hence E is a lower central series extension of A by G. •

The following theorem exhibits an explicit construction for the isomorphism types of lower
central series extensions of A by G. Recall that Comp(G,A) = Aut(G) × Aut(A), as G
acts trivially on A.
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7 Theorem: Let G be a non-trivial nilpotent group and A a non-trivial group with trivial

G-module structure. Define

∆ =
{

γ ∈ H2(G,A) | κ(γ) is surjective
}

. (5)

(a) Then ∆ is invariant under the action of Comp(G,A); denote by Ω a set of orbit

representatives of the action of Comp(G,A) on ∆.

(b) The extensions of A by G defined by the elements in Ω form a complete and irredundant

set of isomorphism type representatives of lower central series extensions of A by G.

(c) For δ with [δ] ∈ ∆ denote the corresponding extension by E. Then Aut(E) = AutA(E)
and there exists a short exact sequence

Z1(G,A) →֒ Aut(E) →→ StabComp(G,A)([δ]).

Proof: Part (a) follows from Theorem 6. Parts (b) and (c) follow from Theorem 1, as
lower central series extensions are isomorphic if and only if they are strongly isomorphic.
•

The following remark recalls the structure of M(G,λ(G)) and thus gives further insight
into the range Hom(M(G,λ(G)), A) of κ.

8 Remark: (See Prop. 3.2 of [6]) Let G be a non-trivial nilpotent group.

(a) If G has class 1, then λ(G) = G and M(G,λ(G)) = M(G) ∼= G ∧ G, the abelian

exterior product.

(b) If G has class at least 2, then λ(G) ≤ G′ and M(G,λ(G)) ∼= G/G′ ⊗λ(G), the abelian

tensor product.

5 Derived series extensions

In this section we describe a construction for a set of isomorphism type representatives
of derived series extensions of A by G. Any such extension is solvable and if one exists,
then G is solvable and A is a non-trivial abelian group and a G-module. We assume
this throughout the section and further suppose that G is non-trivial to obtain proper
extensions of A. Let γ(G) denote the smallest non-trivial subgroup of the derived series
of G and set U = [A, γ(G)]. We consider the sequence

Z2(G,A)
σ
→ Z2(γ(G), A/U)

κ
→ Hom(M(γ(G)), A/U), (6)

where σ(δ) : γ(G)×γ(G) → A/U : (g, h) 7→ δ(g, h)+U . Regarding κ note that λ(γ(G)) =
γ(G) and thus M(γ(G), λ(γ(G))) = M(γ(G)). As σ maps B2(G,A) into B2(γ(G), A/U)
equation (6) induces the sequence of maps

H2(G,A)
σ
→ H2(γ(G), A/U)

κ
→ Hom(M(γ(G)), A/U), (7)

The following theorem characterises the derived series extensions of G by A.
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9 Theorem: Let G be a non-trivial solvable group, A a non-trivial abelian group with a

G-module structure and δ ∈ Z2(G,A). Then the extension of A by G via δ is a derived

series extension if and only if κ(σ(δ)) is surjective.

Proof: Let E denote the extension of A by G via δ. Consider E → G : (g, a) 7→ g, the
natural epimorphism from E onto G and denote by M the full preimage of γ(G) in E.
By definition E is a derived series extension if M ′ = A. As U = [A,M ] ≤ M ′, this is
equivalent to the condition (M/U)′ = A/U . The induced action of γ(G) on A/U is trivial.
Thus M/U has class at most 2 and λ(M/U) = (M/U)′. Hence E is a derived series
extension if and only if M/U is a lower central series extension of γ(G) by A/U via the
cocycle σ(δ). The result now follows from Theorem 6. •

This allows the following explicit construction for the isomorphism types of derived series
extensions of A by G.

10 Theorem: Let G be a non-trivial solvable group and A a non-trivial group with an

arbitrary G-module structure. Define

∆ =
{

γ ∈ H2(G,A) | κ(σ(γ)) is surjective
}

. (8)

(a) Then ∆ is invariant under the action of Comp(G,A); let Ω denote a set of orbit

representatives of the action of Comp(G,A) on ∆.

(b) The extensions of A by G defined by the elements in Ω form a complete and irredundant

set of isomorphism type representatives of derived series extensions of A by G.

(c) For δ with [δ] ∈ ∆ denote the corresponding extension by E. Then Aut(E) = AutA(E)
and there exists a short exact sequence

Z1(G,A) →֒ Aut(E) →→ StabComp(G,A)([δ]).

Proof: The proof is similar to that of Theorem 7. •

6 Computational methods

In the previous sections we established criteria to decide whether an extension is either a
lower central series extension or a derived series extension. Here we exploit these descrip-
tions to obtain effective algorithms to construct those extensions. We have implemented
the algorithms in GAP [7] for the special case that the module is elementary abelian. The
implementation is available in the GAP package SpecialExt [4].

6.1 Computing H2(G,A) and the action of Comp(G,A)

If G is a polycyclic group defined by a consistent polycyclic presentation and A is a finitely
generated abelian group and a G-module, then H2(G,A) can be computed effectively. We
recall the basic ideas of the underlying algorithm here briefly for the case that G is finite;
see also [9, Section 8.7.2].
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Let g = {g1, . . . , gn} be a polycyclic generating sequence of G and let {a1, . . . , as} be a
generating set of A. Then there exists a (unique) consistent polycyclic presentation of G
on the generators g. This has relations of the form

grii = g
ei,i+1

i+1 · · · g
ei,n
n for 1 ≤ i ≤ n, and

g
gj
i = g

ei,j,j+1

j+1 · · · g
ei,j,n
n for 1 ≤ j < i ≤ n

for certain ri ∈ N and ei,j, ei,j,k ∈ Z.
Let l = (n + 1)n/2. For an extension E of A by G via δ ∈ Z2(G,A) we define the tuple
tδ = (ti,j | 1 ≤ j ≤ i ≤ n) ∈ Al via

(1, ti,i) = (gn, 0)
−ei,n · · · (gi+1, 0)

−ei,i+1(gi, 0)
ri for 1 ≤ i ≤ n, and

(1, ti,j) = (gn, 0)
−ei,j,n · · · (gj+1, 0)

−ei,j,j+1(gi, 0)
(gj ,0) for 1 ≤ j < i ≤ n.

By [9, Lemma 8.47] the map

ϕ : Z2(G,A) → Al : δ 7→ tδ

is a group homomorphism with ker(ϕ) ≤ B2(G,A). Denote Z = im(ϕ) ≤ Al and B =
B2(G,A)ϕ ≤ Z. Then we obtain an isomorphism

ϕ : H2(G,A) → Z/B.

For t ∈ Al we define a presentation P (t) with generators g1, . . . , gn, a1, . . . , as and two
types of relations: firstly relations defining A as group and G-module and secondly

grii = g
ei,i+1

i+1 · · · g
ei,n
n · ti,i for 1 ≤ i ≤ n,

g
gj
i = g

ei,j,j+1

j+1 · · · g
ei,j,n
n · ti,j for 1 ≤ j < i ≤ n.

If t ∈ Z, then the presentation P (t) defines a group that is an extension of A by G via a
cocycle δ in the preimage of t under ϕ.
The subgroups Z andB of Al can be computed effectively if A is elementary-abelian (see [9,
Section 8.7.2]) and we use Z/B to represent H2(G,A) in our applications. The group
Comp(G,A) can be computed via its definition The action of Comp(G,A) on H2(G,A)
translates to an action of Comp(G,A) on Z/B. A pair (η, ν) ∈ Comp(G,A) ≤ Aut(G) ×
Aut(A) acts on t ∈ Z via

(1, ti,i)
(η,ν) =

(

(gη
−1

n , 0)−ei,n · · · (gη
−1

i+1 , 0)
−ei,i+1(gη

−1

i , 0)ri
)ν

for 1 ≤ i ≤ n, and

(1, ti,j)
(η,ν) =

(

(gη
−1

n , 0)−ei,j,n · · · (gη
−1

j+1, 0)
−ei,j,j+1(gη

−1

i , 0)(g
η−1

j ,0)

)ν

for 1 ≤ j < i ≤ n.

8



6.2 Lower central series extensions

Let G be a finite non-trivial nilpotent group and A a finite non-trivial abelian group with
a trivial G-module structure. Our aim is to compute a complete and irredundant set of
isomorphism type representatives of lower central series extensions of A by G.
We choose a polycyclic generating sequence g = {g1, . . . , gn} such that it refines the lower
central series of G. As G′ = [G,G] and λ(G) are subgroups in the lower central series of
G, it then follows that there exist indices d and m in {1, . . . , n} with G′ = 〈gd+1, . . . , gn〉
and λ(G) = 〈gm, . . . , gn〉. Let J = {(i, j) | 1 ≤ j ≤ i ≤ n} and I = {(i, j) | 1 ≤ j ≤ d,m ≤
i ≤ n, j < i} ⊆ J . Then |J | = l and we denote |I| = h. We further denote the natural
projection corresponding to I and J by

π : Al → Ah : (ti,j | (i, j) ∈ J) 7→ (ti,j | (i, j) ∈ I).

By Theorem 7 we have achieved our aim if we find ϕ(Ω) for a set Ω as defined in Theorem 7.
Recall that Ω is a set of orbit representatives in the set ∆ from (5). The following lemma
provides a criterion to check whether a given δ ∈ Z2(G,A) satisfies [δ] ∈ ∆. We say that
a tuple t ∈ Ak for k ∈ N is full if the entries in t generate A.

11 Lemma: Let G be a non-trivial nilpotent group, A a non-trivial abelian group with

trivial G-module structure and δ ∈ Z2(G,A). Then κ(δ) is surjective if and only if π(tδ)
is full.

Proof: Recall that κ(δ) : M(G,λ(G)) → A with κ(δ)(g ∧ h) = δ̂(g, h) = δ(g, h) − δ(h, g).
Thus κ(δ) is surjective if and only if {δ̂(g, h) | g ∈ G,h ∈ λ(G)} = A. As λ(G) is central in
G, the definition of M(G,λ(G)) and Lemma 3 yield that δ̂(g, hh′) = δ̂(g, h) + δ̂(g, h′) and
δ̂(gg′, h) = δ̂(gg′, h) + δ̂(g, h). By Remark 8 we note that the first argument of δ̂ depends
on G/G′ only. This also yields that δ̂ is multiplicative in both components. In summary,
it follows that κ(δ) is surjective if and only if 〈δ̂(gj , gi) | (i, j) ∈ I〉 = A and thus if and
only if π(tδ) is full. •

Following the approach described in Section 6.1 we first compute Z/B and then its orbits
under the action of Comp(G,A). We next choose orbit representatives r1, . . . , rm ∈ Z/B
and then a representative ti in Al for each ri, 1 ≤ i ≤ m. According to Theorem 7(a) and
Lemma 11 we then have ϕ(Ω) = {ti | π(ti) is full} for some Ω as desired and {P (t) | t ∈
ϕ(Ω)} is a set of presentations for a complete and irredundant list of lower central series
extensions of A by G.
To avoid redundant computations it is useful to know a priori when there are no lower cen-
tral series extensions of A by G. The following remark collects some elementary conditions
for this purpose.

12 Remark: There are no lower central series extensions of A by G if either h < d(A),
where d(A) is the minimal generator number of A, or π(im(ϕ)) ≤ Mh for some proper

subgroup M of A.
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A computationally more involved criterium enables us to always detect when no lower
central series extension exists. Denote the maximal subgroups of A by M1, . . . ,Ms and
let Zi := {t ∈ Z | π(t) ∈ Mh

i }. Then

ϕ(∆) = Z \ ∪s
i=1Zi.

We use the Inclusion-Exclusion Principle to determine the cardinality of ϕ(∆) via

|ϕ(∆)| = |Z| − | ∪s
i=1 Zi|

= |Z| −





s
∑

k=1

(−1)k+1(
∑

1≤i1<...<ik≤s

|Zi1 ∩ . . . ∩ Zik |)





Each intersection Zi1 ∩ . . . ∩ Zik can be computed readily from Mi1 , . . . ,Mik and Z by
solving a system of linear equations. In the special case that A is elementary abelian
this approach simplifies as the automorphism group acts as full symmetric group on the
maximal subgroups and only one intersection of every type has to be determined.

6.3 Derived series extensions

Let G be a finite non-trivial solvable group and A a finite non-trivial abelian group with a
G-module structure. Our aim is to compute a complete and irredundant set of isomorphism
type representatives of derived series extensions of A by G.
We choose a polycyclic generating sequence g = {g1, . . . , gn} such that it refines the
derived series of G. As γ(G) is a subgroup of this series, it follows that there exists
m ∈ {1, . . . , n} with γ(G) = 〈gm, . . . , gn〉. Let J = {(i, j) | 1 ≤ j ≤ i ≤ n} and
I = {(i, j) | m ≤ j < i ≤ n}. Then |J | = l and we denote |I| = k. We denote the natural
projection corresponding to I, J and A/[A, γ(G)] by

µ : Al → (A/[A, γ(G)])k : (ti,j | (i, j) ∈ J) 7→ (ti,j + [A, γ(G)] | (i, j) ∈ I).

By Theorem 10 we have achieved our aim if we find ϕ(Ω) for a set Ω as defined in
Theorem 10. Recall that Ω is a set of orbit representatives in the set ∆ from (8). The
following lemma provides a criterion to check whether a given δ ∈ Z2(G,A) satisfies
[δ] ∈ ∆.

13 Lemma: Let G be a non-trivial solvable group, A a non-trivial abelian group with a

G-module structure and δ ∈ Z2(G,A). Then κ(σ(δ)) is surjective if and only if µ(tδ) is

full.

Proof: The induced cocycle σ(δ) defines an extension of A/[A, γ(G)] by γ(G). Applying
Lemma 11 yields that κ(σ(δ)) is surjective if and only if π(tσ(δ)) is full. The latter equals
µ(tδ) which completes the proof. •

Following the approach described in Section 6.1 we first compute Z/B and then its orbits
under the action of Comp(G,A). We next choose orbit representatives r1, . . . , rm ∈ Z/B
and then a representative ti in Al for each ri, 1 ≤ i ≤ m. According to Theorem 10(a)
and Lemma 13 we then have ϕ(Ω) = {ti | µ(ti) is full} for some Ω as desired and {P (t) |
t ∈ ϕ(Ω)} is a set of presentations for a complete and irredundant list of derived series
extensions of A by G.

10



7 Application

Groups of given derived length and minimal composition length are known up to derived
length 8, see [8]. Here we use the method from Section 6.3 to obtain new information
on groups of derived length 10. For our computations we utilised the GAP package Spe-
cialExt [4] which implements the methods from Section 6 for elementary abelian groups.
The sporadic simple group Fi23 has a maximal solvable subgroup M of order 211313. This
group has the form M = GL(2, 3) ⋉ 32+1

⋉ 26+1
⋉ 38+1, where pr+s is used to denote

an r-generator group of order pr+s and class 2. The group M has derived length 10 and
composition length 24. It is conjectured that 24 is the minimal possible composition length
for a group of derived length 10, see [8]. Previously the group M has been the only group
known to achieve this bound.
Let M = M (1) ≥ M (2) ≥ . . . ≥ M (11) = {1} denote the derived series of M . We have used
the method from Section 6.3 to determine a complete and irredundant set of isomorphism
type representatives of derived series extensions of A := M (i)/M (i+1) by G := M/M (i) for
2 ≤ i ≤ 10 using the G-module structure of A inside M . The following four values of i
yield more than one isomorphism type representative.

i = 4 : Here G ∼= S4 and A ∼= C2 is a trivial G-module. We obtain two non-isomorphic
derived series extensions: the groups with the numbers 28 and 29 in the SmallGroups
Library described in [1].

i = 6 : Here G ∼= GL2(3)⋉32 and A ∼= C2
3 . We obtain three non-isomorphic derived series

extensions: the groups with the numbers 2889, 2890 and 2891 in the SmallGroups
Library.

i = 8 : Here G ∼= GL2(3) ⋉ 32+1
⋉ 26 and A ∼= C2 is a trivial G-module. We obtain two

non-isomorphic derived series extensions.

i = 10 : Here G ∼= GL2(3)⋉32+1
⋉26+1

⋉38 and A ∼= C3. We obtain three non-isomorphic
derived series extensions.

In particular, the computation for i equal to 10 yields two new examples of groups of
derived length 10 and composition length 24. We describe all three groups arising from
this case via a parametrised polycyclic presentation. This has 24 generators g1, . . . , g24 and
the relations exhibited in Figures 1 and 2 where conjugation relations of the form g

gj
i = gi

are omitted in the latter. The relations with left hand sides g32 and gg12 contain a parameter
k and the three different groups are obtained for k ∈ {0, 1, 2}. The presentations are also
available as examples in the GAP package SpecialExt. Using GAP it is straightforward
to determine the orders of conjugacy class representatives of each of these three groups,
which yields an independent check for the non-isomorphism of the groups.

Acknowledgements
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3 = g5, g
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4 = g5, g
2
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11 = g15,

g2
12

= g15, g
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14
= g15, g
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= 1, g3
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= 1, g3

17
= 1, g3
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= 1, g3
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= 1, g3

20
= 1, g3

21
= 1,
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22

= 1, g3
23

= 1, g3
24

= 1

Figure 1: Power relations
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Figure 2: Conjugation relations
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