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Abstract: We introduce the class of linear groups that do not contain unipotent elements of infinite order,
which includes all linear groups in positive characteristic.We show that groups in this class have good closure
properties, in addition to having properties akin to non-positive curvature, which were proved in [6]. We give
examples of abstract groups lying in this class, but also show that Gersten’s free by cyclic group does not. This
implies that it has no faithful linear representation of any dimension over any field of positive characteristic,
nor can it be embedded in any complex unitary group.
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1 Introduction
A common question to ask about an abstract group G is whether it is linear, meaning that it is isomorphic
to a subgroup of GL(d,F) for some dimension d and some field F. If so, then we can conclude that various
further properties hold for G, for instance, if G is also finitely generated, then it will be residually finite and
satisfy the Tits alternative. However, if conversely G is an abstract group known to satisfy all such properties,
then how do we determine whether G is actually linear? Some results are known but still many questions
remain. For instance linearity of the Braid groups was a longstanding open question which was eventually
resolved in the positive by [3] and [14]. On the other hand, [9] showed that for the free group Fm of rank m,
the automorphism group Aut(Fm) and the outer automorphism group Out(Fn) fail to be linear for m ≥ 3 and
n ≥ 4, respectively (though linearity of Out(F3) is still open). But linearity of the mapping class groups Mg
for genus g ≥ 3 is a notorious unsolved problem, and also it is not known if all free by cyclic groups Fn ⋊ℤ
or all closed 3-manifold groups π1(M3) are linear.

Now although the definition of linearity only refers to some field, in practise we tend to think of linearity
over ℂ. In fact, if a group is finitely generated, then it embeds in GL(d,F) for F some field of characteristic
zero if and only if it embeds in ℂ, thus as our main focus here is indeed on finitely generated groups, we can
therefore take F = ℂ without loss of generality when in characteristic zero. However, we will also want to
examine linearity in positive characteristic and we will be arguing that such groups are much better behaved
in general than those that are linear over fields of characteristic zero. This is because often the problems
in characteristic zero are due to unipotent elements (those with all eigenvalues equal to 1), but in positive
characteristic, such matrices always have finite order.

Consequently, in this paper and its companion [6], we introduce the class of linear groups where ev-
ery unipotent matrix has finite order (which we call NIU-linear groups for “no infinite order unipotents”).
This means that in characteristic zero, the only unipotent element is the identity, however, it includes all
linear groups in positive characteristic. We show that this class of groups has very good properties which
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are certainly not shared by linear groups in general. In [6] the focus was on what we called properties of
non-positive curvature and we proved the following theorem.

Theorem 1.1. If G is a finitely generated group, which is linear in positive characteristic, or which is linear in
characteristic zero and contains no unipotent elements except the identity, then the following hold:
(i) Every polycyclic subgroup of G is virtually abelian.
(ii) All finitely generated abelian subgroups of G are undistorted in G.
(iii) G does not contain subgroups of the form ⟨a, t | t−1ap t = aq⟩ for non-zero p, q, with |p| ̸= |q|.
(iv) If A ≅ ℤn is central in G, then there exists a subgroup of finite index in G that contains A as a direct factor.

This means that we can use any of these four properties in Theorem 1.1 (each of which fails to hold when
considered over all linear groups) as obstructions for a group being NIU-linear. Moreover, we can use NIU-
linearity as a test case for linearity in general, in that we can regard it as a stronger version of linearity which
is equivalent in positive characteristic. In [6] we showed that the mapping class groupsMg with genus g ≥ 3
are not NIU-linear by utilising the fact that they fail a property which is similar to Theorem 1.1 (iv). But in this
paper we will be considering groups which pass all four of these properties, such as free by cyclic groups,
and will determine whether or not they are NIU-linear.

The paper is organised as follows. In Section 2 we provide the basic facts we will need and introduce
this class of NIU-linear groups, as well as a stricter class of groups called VUF-linear groups (for “virtually
unipotent free”), though in characteristic zero, these two classes are the same. One reason for introducing
this stricter class is that for these groups, we showed in [6] that Theorem 1.1 (i) can be strengthened to: any
solvable subgroup is both finitely generated and virtually abelian. We also show in Section 2 that both of
these two classes of groups have the good closure properties possessed by linear groups in general, namely,
they are preserved by taking subgroups, commensurability classes, and by free and direct products.

In Section 3we concentrate on giving examples of whichwell-known linear groups are in fact NIU-linear.
Section 3.1 shows that this holds for all limit groups, whereas Section 3.2 looks at the fundamental groups
of compact 3-manifolds. As graph manifolds cause problems here because linearity is still open for some
of these fundamental groups, we concentrate on 3-manifolds with a geometric structure. First we assume
that M3 is closed, whereupon Theorem 3.3 shows that if M3 has one of the eight Thurston geometries, then
π1(M3) is NIU-linear (and indeed VUF-linear) if and only if it is not modelled on Nil, Sol or ̃PSL(2,ℝ). This is
straightforward because we can eliminate these geometries using the various obstructions in Theorem 1.1.

For compact 3-manifolds with boundary where the interior has a geometric structure, we show in Theo-
rem 3.4 that their fundamental groups are all NIU-linear. The interesting thing here is that whilst this fact for
closed hyperbolic 3-manifolds follows immediately, we require the machinery of Agol and Wise in the finite
volume case in order to alter the linear representation of the fundamental group so that it has no unipotent
elements. We also look at RAAGs in Section 3.3.

In Section 4 we take a look at free by cyclic groups. As mentioned above, it is not known if they are all
linear but this does hold for all groups of the form F2 ⋊ℤ, so we first show that these are all NIU-linear and
VUF-linear. However, Gersten’s famous group of the form F3 ⋊ℤ, introduced in [10], is not known to be linear
and provides a good test case for linearity of free by cyclic groups in general.

We finish with Theorem 4.5 which shows that Gersten’s group, despite satisfying all the conditions for
NIU-linearity in Theorem 1.1, is in fact not NIU-linear. In particular, it is not linear over any field of positive
characteristic, and in characteristic zero it cannot embed in anyorthogonal or unitary group. This resultmight
be seen as evidence that not all free by cyclic groups are linear, and it certainly suggests that if these groups
are all linear, then the resulting faithful matrix representations will be rather nasty and will have to contain
many unipotent elements, just as would be the case for the mapping class groups.

2 Preliminaries
We begin this section with the definitions and basic facts that we will need. If F is any field and d ∈ ℕ is
any positive integer, then we say that an element g of the general linear group GL(d,F) is unipotent if all its
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eigenvalues (considered over the algebraic closureF ofF) are equal to 1, or equivalently some positive power
of g − I is the zero matrix.

Proposition 2.1. (i) If F is a field of characteristic p > 0 andM ∈ GL(d,F) is unipotent, thenM has finite order
equal to some power of p. Conversely, if M is any element of GL(d,F) with order n which is a multiple of p,
then Mn/p is a non-identity unipotent element.

(ii) If F has zero characteristic, then the only unipotent element M having finite order in GL(d,F) is I.

Proof. For (i), there exists r > 0with N l = 0 for l ≥ r, where N = M − I. If we take k to be any power of pwhich
is at least r, then

Mk = (I + N)k = Ik + (k1)I
k−1N + ⋅ ⋅ ⋅ + ( k

k − 1)IN
k−1 + Nk .

But Nk = 0 because k ≥ r and (ki) ≡ 0modulo p for 0 < i < k, as k is a power of p, thusM has order dividing k.
We now assume for the rest of the proof thatF is algebraically closed. As 1 ≤ n/p < n, we know thatMn/p

has order exactly p and hence has minimum polynomial p(x) dividing xp − 1 = (x − 1)p. But any eigenvalue
of a matrix must be a root of its minimum polynomial, so Mn/p is unipotent.

For (ii), ifM has finite order, then the minimum polynomial ofM is xn − 1 for some n ∈ ℕ and in charac-
teristic zero this has no repeated roots, so M is diagonalisable over F but has all eigenvalues equal to 1, and
so is the identity.

We now come to the two key definitions of this work.

Definition 2.2. If F is any field and d ∈ ℕ any dimension, then we say that a subgroup G of GL(d,F) is NIU-
linear (standing for linear with no infinite order unipotents) if every unipotent element of G has finite order.

Note. By Proposition 2.1, if F has positive characteristic, then G is automatically NIU-linear. If F has charac-
teristic zero, then the definition says that the only unipotent element of G is the identity.

Example. If G is any subgroup of the real orthogonal group O(d) or of the complex unitary group U(d) in any
dimension d, then G is NIU-linear because all orthogonal or unitary matrices are diagonalisable over ℂ.

Definition 2.3. If F is any field and d ∈ ℕ any dimension, then we say that a subgroup G of GL(d,F) is VUF-
linear (standing for linear and virtually unipotent free) if G has a finite index subgroup H, where the only
unipotent element of H is the identity.

Note. ClearlyVUF-linear impliesNIU-linear, and they are the same in characteristic zero. As for the casewhen
G is linear in positive characteristic, clearly if G is also virtually torsion free, then it is VUF-linear. Although
this need not be true the other way round, it does hold if G is finitely generated, say by [22, Corollary 4.8].
This states that any finitely generated linear group has a finite index subgroup whose elements of finite order
are all unipotent (which might be thought of as “Selberg’s theorem in arbitrary characteristic”).

When we have a group G which is only given in abstract form, then to say G is NIU-linear or VUF-linear will
mean that there exists some field F and dimension d such that G has a faithful representation in GL(d,F),
and the image of this representation has the respective property.

2.1 Closure properties

Let us first examine the closure properties of arbitrary linear groups. Clearly subgroups of linear groups are
also linear, aswell as supergroups of finite index by induced representations, so that linearity is a commensu-
rability invariant. Indeed, as here we do not have to vary the field, commensurability holds more specifically
for linearity over a particular field, and certainly in a particular characteristic.

If we have two groups which are linear over different fields of the same characteristic, say A ≤ GL(d1,F1)
and B ≤ GL(d2,F2), then not only can we take d1 = d2 without loss of generality, but we can also assume
that F1 = F2 = F as well. (As they have the same prime subfield ℙ, we can adjoin enough transcendental
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elements to ℙ which are all algebraically independent, resulting in a field F� where all elements of F1 and
F2 are algebraic over F�, so that F1 and F2 both embed in the algebraic closure F of F�.) We then see that the
direct product of A × B is linear over F in the usual way by combining the two blocks representing A and B.

As for free products, it was shown by Nisnevic̆ [18] that the free product of linear groups is linear. In
particular, if A and B are subgroups of GL(d,F) for F a field of characteristic p (zero or prime), then A ∗ B
embeds inGL(d + 1,E), whereE is some extension field ofF (and so has the same characteristic).Moreover, if
neitherA nor B contain any scalarmatrices except the identity, thenA ∗ B embeds inGL(d,E). Further results
are in [21] and [20], with the latter giving a useful general result to establish the linearity of free productswith
an abelian amalgamated subgroup, which we state here as follows.

Proposition 2.4 ([20, Proposition 1.3]). Suppose G1 ∗H G2 is a free product with abelian amalgamated sub-
group H and suppose we have faithful representations ρi : Gi í→ GL(d,F) for d ≥ 2 and i = 1, 2 over any field
F such that:
(a) ρ1 and ρ2 agree on H,
(b) ρ1(h) is diagonal for all h ∈ H,
(c) for all g ∈ G1 \ H, we have that the bottom left-hand entry of ρ1(g) is non-zero, and similarly for the top

right-hand entry of ρ2(g) for all g ∈ G2 \ H.
Then G1 ∗H G2 embeds in GL(d,F(t)), where t is a transcendental element over F. Moreover, any g ∈ G1 ∗H G2
either has transcendental trace in the resulting faithful representation or g is conjugate into G1 or G2.

Proof. In [20] the result was stated just for ℂ (and for SL(d,ℂ) rather than GL(d,ℂ)), but the proof goes
through in general, so here we just give a summary.

Define the representation ρ : G1 ∗H G2 → GL(d,F(t)) as equal to ρ2 on G2, but on G1 we replace ρ1 by the
conjugate representation Tρ1T−1, where T is the diagonal matrix diag(t, t2, . . . , tn), and then extend to all
of G1 ∗H G2. Now it can be shown straightforwardly that any element not conjugate into G1 ∪ G2 is conjugate
in G1 ∗H G2 to something with normal form

g = γ1δ1 ⋅ ⋅ ⋅ γlδl ,

where l ≥ 1, γi ∈ G1 \ H and δi ∈ G2 \ H for i = 1, . . . , l. Induction on l then yields that the entries of g
are Laurent polynomials in t±1 with coefficients in F and with the bottom right-hand entry of g equal to
αtl(d−1) + ⋅ ⋅ ⋅ , where all other terms are of strictly lower degree in t. But it can be checked that α is actually
just a product of these respective bottom-left and top-right entries, thus it is a non-zero element of F, so this
bottom right-hand entry is transcendental over F and thus g is not the identity matrix. Furthermore, every
other diagonal element of g is also a Laurent polynomial but with leading term having degree in t strictly less
than l(d − 1), thus the trace of g is transcendental too.

We now examine the closure properties of our two classes of linear groups defined above, which happily turn
out to be the same as for arbitrary linear groups.

Proposition 2.5. If G1 and G2 are groups which are both NIU-linear over fields F1,F2 having the same charac-
teristic, then the following hold:
(i) Any subgroup S of G1 (or G2) is NIU-linear.
(ii) Any group G commensurable with G1 (or G2) is NIU-linear.
(iii) The direct product G1 × G2 is NIU-linear.
(iv) The free product G1 ∗ G2 is NIU-linear.
The same holds with NIU-linear replaced throughout by VUF-linear.

Proof. We will proceed in the following order. First, NIU-linear groups in a given positive characteristic just
mean arbitrary linear groups in this characteristic, in which case the closure properties have beenmentioned
above. We next argue for NIU-linear groups in characteristic zero, which here are the same as VUF-linear
groups. We then finish with the necessary adjustments in our proof for VUF-linear groups in positive charac-
teristic.
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Part (i) is immediate for NIU-linear groups and follows straight away for VUF-linear groups, because if S
is a subgroup of G andH is the given finite index subgroupwhich is unipotent free, then S ∩ H has finite index
in S. This now reduces (ii) to saying that if G1 is NIU-linear and has index i in the group G, then G is NIU-linear
too (and the same holds for VUF-linearity but this is immediate). We certainly know that G is linear overF too
by taking the induced representation, whereupon for elements g1 ∈ G1 the induced representation is a direct
sum of i blocks consisting of conjugates of the original representation of g1, with the first block equal to the
original matrix for g1. Thus, if g1 is not given by a unipotent matrix in the original representation of G1, then
it is still not unipotent in the induced representation of G. But if g ∈ G is a unipotent element of infinite order
in this induced representation, then so are all its positive powers gn and some of these will lie in G1, thus G
is also NIU-linear.

For (iii) and (iv), we can again assume as above that G1 and G2 are both subgroups of the same linear
group GL(d,F) say. On forming G1 × G2 ≤ GL(2d,F) in the usual way by combining the two blocks represent-
ing G1 and G2, we note that the eigenvalues of an element g ∈ G1 × G2 are just the union of the eigenvalues
in each of the two blocks. Thus, a unipotent element of G1 × G2 is unipotent in both the G1 and G2 blocks,
hence in characteristic zero it is the identity in G1 × G2 if G1 and G2 are both NIU-linear. If instead they are
VUF-linear with finite index subgroups H1 and H2, respectively, that are unipotent free, then so is H1 × H2,
which has finite index in G1 × G2.

As we know free products of linear groups over the same characteristic are also linear, we have shown
NIU-linearity in the case of positive characteristic. For F of characteristic zero, we first assume, by increasing
the size of thematrices and adding ones on the diagonal if needed, that the NIU-linear groups G1 and G2 both
embed in GL(d,F), with neither subgroup containing any scalar matrices apart from the identity. Moreover,
these embeddings will still be NIU-linear. Then [20, Lemma 2.2] says that there is a conjugate of G1 (which
will henceforth be called G1) in GL(d,F) such that no non-identity element of this conjugate has zero in its
top right-hand entry. Similarly, by taking a conjugate of G2, we can assume that no non-identity element
of G2 has zero in its bottom left-hand entry. Thus, Proposition 2.4 applies to show that G1 ∗ G2 embeds in
GL(d,F(t)) for t any element which is transcendental over F. It further shows that any element g ∈ G1 ∗ G2
which is not conjugate into G1 or G2 has trace which is also transcendental over F, thus cannot equal d, and
so g is not unipotent. Now being unipotent is a conjugacy invariant and as there are no unipotents in G1 or
G2 either, the resulting faithful linear representation of G1 ∗ G2 is NIU-linear.

Thus, we are done in characteristic zero for both our classes of linear groups. As for preservation of VUF-
linearity under free products in characteristic p > 0, we canuse a trick: bydroppingdown further if necessary,
we can assume that both the unipotent free finite index subgroups H1 of G1 and H2 of G2 are normal. This
then gives us two homomorphisms (for i = 1, 2) qi : Gi → Gi/Hi onto finite groups and these can be both be
extended from G1 ∗ G2 to Gi/Hi with kernels which we will call K1 and K2. Now note that K1 ∩ K2 is also
normal and has finite index in G1 ∗ G2, and that both maps from G1 ∗ G2 to Gi are retractions, so we have
Gi ∩ Ki = Hi.

So suppose that there is a non-identity unipotent element k ∈ K1 ∩ K2. By Proposition 2.1 (i), we can
assume that k has order p. Thus, in the free product G1 ∗ G2 we must have that k is conjugate into G1 or G2.
This conjugate also lies in K1 ∩ K2 and is unipotent, so if it is in G1, then it is also in H1, and the same holds
for G2 and H2. But both H1 and H2 are unipotent free, so either way we are done.

Note. To see thatwe cannotmix andmatchdifferent characteristics in (iii) and (iv), even for finitely generated
groups, the lamplighter group C2 ≀ ℤ is linear in characteristic 2 but only in this characteristic, whereas the
“trilamplighter” group C3 ≀ ℤ is linear only in characteristic 3. Thus, any group containing them both (such
as their direct or free product) is not NIU-linear, or even linear over any field.

In the 1-dimensional case where GL(1,F) = F∗, we have ℤ ≅ ⟨t⟩ ≤ Fp(t)∗ is clearly VUF-linear in any char-
acteristic, thus so is ℤm and the free group Fr, as well as direct and free products formed from these groups
and other groups commensurable with these ones. In the next section we will provide many more examples.
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3 A range of linear groups with restricted unipotent elements

3.1 Limit groups

Here we merely define a limit group to be a finitely generated group G which is fully residually free, that is,
given any finite list of elements g1, . . . , gk ∈ G, there exists a homomorphism θ from G to a free group with
θ(gi) ̸= 1 unless gi = 1. A result that essentially dates back to Malce’ev is the following.

Proposition 3.1. Given any characteristic p (zero or prime) and any limit group G, there is a field F of charac-
teristic p such that G embeds in GL(2,F). Consequently, any limit group is VUF-linear by taking any p > 0.

Proof. The free group Fr is well known to embed in GL(2,ℂ), and indeed it embeds in GL(2,E) for E some
field of arbitrary characteristic p > 0 as well. For instance, [22, Exercise 2.2] is to show that

(
t 0
s t−1

) and (
t s
0 t−1

)

generate F2 over the fieldE = Fp(s, t), with s, t algebraically independent elements which are both transcen-
dental overFp. NowMalce’ev’s argument, as given in [15,Window8, Theorem1], is that a group G embeds in
GL(d,F) for somefieldF of characteristic p if and only if there exists a fieldE of characteristic pwith the prop-
erty that for every finite subset T ⊆ G, there exists a linear representation ⟨T⟩→ GL(d,E) such that θ(t) ̸= 1
for all t ∈ T \ {1}. Thus, we can set E = Fp(s, t) as above and on being given a limit group G and any finite
subset T ⊆ G, we have our homomorphism θ from G to this embedding of Fr in GL(2,E), which is injective
on T. On restricting this homomorphism to ⟨T⟩, Malce’ev’s argument applies.

Consequently, by combining this with Theorem 1.1 (ii), we immediately obtain the following corollary.

Corollary 3.2. Any finitely generated abelian subgroup is undistorted in any limit group.

Whilst this is certainly already known, we emphasise that we have shown this directly from the “fully resid-
ually free” definition of limit groups. We remark that [7] and [8] show how to construct explicit faithful rep-
resentations of limit groups in PSL(2,ℂ) and in SL(2,ℂ).

3.2 Three-manifold groups

Here a 3-manifold group will mean the fundamental group of a compact 3-manifold, so the group will be
finitely presented. Linearity of such groups has been studied over the years but a surprising consequence
obtained from applications of the recent Agol–Wise results is that most 3-manifold groups are linear even
overℤ. Indeed, on taking compact orientable irreducible 3-manifoldsM3, we have that ifM3 admits a metric
of non-positive curvature, then π1(M3) is linear over ℤ. (It should be said though that these representations
overℤ are likely to be of vast dimension and very hard to construct explicitly.) Linearity of some other special
cases such as Seifert fibred spaces is also known, meaning that amongst the fundamental groups of these
3-manifolds, linearity is only open for closed graph manifolds which do not admit a metric of non-positive
curvature. In [4]wegave anexample of oneof these closedgraphmanifoldswhere linearity of its fundamental
group is unknown, and showed that this group did not embed in GL(4,F) for any field F, thus answering a
question of Thurston. We note that the resulting 3-manifold was already known to be virtually fibred, so that
it is even unknown whether all semidirect products of the form π1(Sg) ⋊ℤ (where Sg is the closed orientable
surface of genus g) are linear.

Thus, here we might ask which 3-manifolds M3 have a fundamental group which is NIU-linear or VUF-
linear and how this relates to the non-positive curvature of M3. Whilst we cannot answer this in full here
because of the open cases of graph manifolds, we can at least do this quickly for 3-manifolds admitting a
geometric structure. Note that for very small fundamental groups, namely, those which are virtually cyclic
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and so have geometry modelled on S3 or S2 ×ℝ, we have a dichotomy because the manifolds fail to be non-
positively curved, but the fundamental groups are (elementary) word hyperbolic. However, apart from these
examples the correspondence works. We first consider the case of closed 3-manifolds.

Theorem 3.3. LetM3 be a closed orientable irreducible 3-manifold which admits one of Thurston’s eight model
geometries and where π1(M3) is not virtually cyclic. Then π1(M3) is NIU-linear if and only if it is VUF-linear if
and only if M3 is non-positively curved.

Proof. We will work in characteristic zero, so that the difference between NIU and VUF-linearity disappears
(the arguments do all work in positive characteristic except for the hyperbolic case, where it is not clear if we
have faithful linear representations). As π1(M3) is not virtually cyclic, we have six geometries to check. First if
M3 is hyperbolic, then it has a faithful (and indeed discrete) representation in PSL(2,ℂ), and also in SL(2,ℂ),
where every element is loxodromic, thus without unipotents. Also if M3 is Euclidean, then its fundamental
group is virtuallyℤ3 and all such groups are NIU-linear (by commensurability and taking direct products).

IfM3 hasNil or Sol geometry, then it cannot admit ametric of non-positive curvature and its fundamental
group is virtually polycyclic, but not virtually abelian, so π1(M3) is not NIU-linear by Theorem 1.1 (i).

We are now left with the ̃PSL(2,ℝ) and ℍ2 ×ℝ geometries, leading us to Seifert fibred spaces, which
here can be defined as closed 3-manifolds M3, that are finitely covered by circle bundles over surfaces B3,
and where π1(M3) is not virtually cyclic. By say [1, Sections C.10 and C.11], we have two possibilities for B3.
The first is that it has a finite cover which is of the form S1 × F for F a closed orientable surface, whereupon
M3 is non-positively curved. Thus, again by commensurability and direct products, the fundamental group
of this finite cover, and hence of M3 itself, is NIU-linear.

The other case, where π1(M3) will fail to be non-positively curved, is when B3 has non-zero Euler class,
in which case the infinite order central element of π1(B3) has finite order in the abelianisation of π1(B3). This
means that Theorem 1.1 (iv) immediately applies to tell us that π1(B3) and π1(M3) cannot be NIU-linear.

For compact 3-manifoldsM3 with non-empty boundary, there are fewer possibilities for a geometric structure
onM3. Indeed, Thurston’swork showsus that eitherwe are in the Seifert fibred case,whereuponM3 is finitely
covered by a manifold with fundamental group Fr ×ℤ and so π1(M3) is NIU-linear and VUF-linear, or the
interior of M3 has a hyperbolic structure. We can deal with the second case here too but, unlike the closed
hyperbolic case, this proof will depend on the work of Agol and Wise.

Theorem 3.4. If M3 is a compact orientable 3-manifold with non-empty boundary (whose components could
be tori or higher genus surfaces) and where the interior of M3 has a complete hyperbolic structure, then the
fundamental group π1(M3) is NIU-linear and VUF-linear.

Proof. We will require two facts: the first is that G = π1(M3) has the property that it virtually retracts onto
all infinite cyclic subgroups. This can be thought of as saying that for any infinite order element g ∈ G, there
exists a finite index subgroup H of G with g ∈ H, and where g has infinite order in the abelianisation of H.
This does hold for our groups G, for instance, see [1, Corollary 5.31], though we emphasise that the proof is
highly non-trivial.

However, we also need to know about the unipotent elements, which here will manifest themselves as
parabolic elements in π1(M3). We have (say by [1, Theorem 5.28]) that there exists an embedding of G in
SL(2,ℂ) such that the virtually unipotent elements of G are exactly the elements conjugate in G to the torus
boundary components ℤ2. In particular, as there are finitely many boundary components, we can take a
complete list of peripheral elements a1, b1, . . . , am , bm ∈ G under this embedding, where ⟨ai , bi⟩ ≅ ℤ2 is
the fundamental group of one of these boundary components and such that any unipotent element in G is
conjugate into one of these peripheral subgroups Pi = ⟨ai , bi⟩.

We now explain how to combine these two facts to obtain a faithful linear representation of G in GL(d,ℂ)
for some d which is unipotent free. First take a finite index subgroup H of G, where a1 has infinite order in
the abelianisation H/H� of H. By dropping down further if necessary, we can assume that H is normal in G.
Now the subgroup P1 ∩ H of H has finite index in P1, so it is also isomorphic to ℤ2. If P1 ∩ H injects under
the abelianisation of H, then set N1 = H and move on to the next peripheral subgroup P2 in G. Otherwise,
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there exists some infinite cyclic subgroup ⟨p1⟩ of P1 ∩ H which does not inject when abelianising H. In this
case, we now drop down further to obtain a subgroup N1 ≤ H, which is also normal and of finite index in G,
but where ⟨p1⟩ injects under the abelianisation of N1. As theℤ-rank of N1/N�

1 is more than that of H/H�, we
see that the rank 2 free abelian group P1 ∩ N1 injects in N1/N�

1. Now we run through this process for each
peripheral subgroup Pi to obtain subgroups Ni, all of finite index and normal in G, and where Pi ∩ Ni injects
in the abelianisation of Ni.

Let us first describe what to do next when there is only one peripheral subgroup P1. Here we form a faith-
ful representation of N1 in GL(3,ℂ) by taking the direct sum of the original representation in SL(2,ℂ), but
restricted to N1, along with a 1-dimensional representation of N1 to its free abelianisation ℤr for some r ≥ 2
(namely, take the abelianisation N1/N�

1 and then quotient out by the torsion), where this will be thought of as
a subgroup of GL(1,ℂ) ≅ ℂ∗ which contains a copy ofℤr for any r. The idea now is that in this new represen-
tation, any element of P1 ∩ N1, which was a unipotent element under the original representation of G, will
now have a non-unit entry in the bottom right-hand corner, since P1 ∩ N1 injects in the free abelianisation
of N1. In particular, this element (or any power of this element) is no longer unipotent in our new represen-
tation of N1. However, a typical unipotent element of G need not lie in P1 but will be conjugate in G to an
element of P1, so we will need to finish the argument as below for these more general unipotent elements.
Now suppose we have m peripheral subgroups Pi, whereupon we obtain Ni as above for each i and form the
intersection N = ∩Ni, which is still of finite index and normal in G. We then create a faithful representation of
N in GL(2 + m,ℂ) by taking the original representation of N in SL(2,ℂ) along with the direct sum of each of
the 1-dimensional abelianisations of Ni, but also restricted to N. This will have the property, as above, that a
non-identity element x of Pi ∩ N will no longer be unipotent, because x has infinite order when evaluated at
the restriction of the abelianisationmap of Ni to N, and this is recorded as the diagonal entry coming from the
ith 1-dimensional representation, thus it is an eigenvalue. Finally, we induce up to a faithful representation
of G in GL(i(2 + m),ℂ), where i is the index of N in G.

To show that G is VUF-linear, we can show this for the finite index subgroup N. Thus, suppose we have
n ∈ N which is unipotent under our final representation of N. When we induce from N to G, for any element
n ∈ N, the first2 + m by2 + m block in the representation ofG is just thematrix of n in the representation ofN,
and thus the first 2 by 2 subblock is the original representation of N into SL(2,ℂ). This implies that n was
unipotent in that representation too, thus there exists g ∈ Gwith gng−1 lying in some peripheral subgroup Pi.
Since N is normal in G, we have gng−1 ∈ Pi ∩ N. Now as n and gng−1 are conjugate in G, we see that these
elements will have the same eigenvalues in the final linear representation of G, thus if gng−1 is not unipotent
in this representation, then nor is n. But as gng−1 lies in Pi, as well as in N, one of the 1-dimensional repre-
sentations above will be non-trivial and this is seen on the diagonal in the first block of the representation
for G. Thus, gng−1 and hence n are not unipotent in this representation, and so N and G are VUF-linear.

3.3 Right angled Artin groups

Right angled Artin groups (RAAGs) have been much studied, especially in recent years. Here we will assume
throughout that the underlying graph Γ is finite with n vertices, in which case we can say something strong
about the linearity of the corresponding RAAG R(Γ). As R(Γ) embeds in a right angled Coxeter group with 2n
vertices by [12], we see that R(Γ) is a subgroup of GL(2n,ℂ), using the standard faithful linear representation
of Coxeter groups. In fact, because these Coxeter groups are right angled, all entries in the resulting reflection
matrix obtained from each Coxeter generator are equal to 0, ±1 or 2. As these matrices have order 2 and
thus determinant ±1, we further see that the RAAG R(Γ) actually embeds in GL(2n,ℤ). This immediately
implies that any virtually special group G is also linear over ℤ, where our definition of virtually special is
that G has a finite index subgroup H which embeds in a RAAG. Thus, the work of Agol and Wise has had
profound consequences for linearity (as well as for other group theoretic properties), though we emphasise
that generally the hard step is in showing that a given group is virtually special, rather than establishing its
linearity directly. This raises the obvious question.
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Question 3.5. Is every RAAG NIU-linear?

(This is equivalent to being VUF-linear as these groups are torsion free). We think the answer is very likely to
be yes. If so, thenwewould be able to useNIU-linearity as a first step in showing a group is virtually special, or
alternatively the failure of NIU-linearity would be an obstruction to being virtually special. For instance, limit
groups are known to be virtually special, but whereas the short argument in Proposition 3.1 suffices to show
NIU-linearity, the full weight of Sela’s splitting hierarchy and Wise’s results (both for hyperbolic groups and
groups hyperbolic relative to abelian subgroups) are required to show that they are virtually special groups.
We note that some NIU-linear groups are not virtually special, for instance, higher rank lattices are not as
they have property (T), but in positive characteristic, these will be NIU-linear groups.

We do have one partial positive result which encompasses a range of examples. For the RAAG R(Γ) given
by the graph Γ = ∙ − ∙ − ∙ − ∙ , we showed in [5], by a direct application of Proposition 2.4, that R(Γ) embeds
in GL(3,F) for some field Fwhich can be taken to have arbitrary characteristic. Thus, this RAAG R(Γ) is NIU-
linear and VUF-linear. However, there has been particular interest recently in trying to determine when one
RAAG is a subgroup of another RAAG. In particular, [13, Theorem1.8] states that any RAAGdefined by a finite
forest is a subgroup of our RAAG above, and so this immediately gives us the following proposition.

Proposition 3.6. If Γ is a finite forest, namely, a graph with finitely many connected components, each of which
is a finite tree, then the resulting RAAG R(Γ) is NIU-linear and (as it is torsion free) VUF-linear.

4 NIU-linearity of free by cyclic groups
In this section a free by cyclic group will mean the semidirect product Fn ⋊α ℤ formed by taking an auto-
morphism α of the free group Fn of rank n ≥ 2. (Thus, “free” here means non-abelian free of finite rank and
“cyclic” means infinite cyclic.) Given α ∈ Aut(Fn) (or rather in Out(Fn) as automorphisms that are equal in
Out(Fn) give rise to isomorphic groups), we are interested in when Fn ⋊α ℤ is a linear group, and in partic-
ular when is it NIU-linear (equivalently, VUF-linear as again these groups are all torsion free). Free by cyclic
groups are good test cases for these sorts of questions, as they have a restricted subgroup structure and good
group theoretic properties (for instance, all the properties in Theorem 1.1 hold for free by cyclic groups), but
there can be considerable variation in their behaviour.

As for the linearity question for free by cyclic groups, this has been looked at by various authors. A big
step forward recently was the result of [11], which proved that any word hyperbolic free by cyclic group acts
properly and cocompactly on a CAT(0) cube complex. By the Agol–Wise results, this implies that such groups
will be virtually special and so have faithful linear representations overℤ. However, for non-word hyperbolic
free by cyclic groups (which here is equivalent to containingℤ ×ℤ), linearity is still open in general. We first
look at the case where the free part has rank 2, where linearity does hold. One way of seeing this is to embed
such a group in Aut(F2), where linearity of the Braid groups implies that this is linear too. However, we will
now show quickly that NIU-linearity also holds for these groups.

Proposition 4.1. Any free by cyclic group F2 ⋊α ℤ with free part having rank 2 is NIU-linear and VUF-linear.

Here we will work over ℂ. In order to describe the element α when regarded as an outer automorphism, we
have that Out(F2) is GL(2,ℤ), and we first consider the case when α is orientation preserving, which means
that it is represented by a matrix M ∈ SL(2,ℤ). Then we have that M is hyperbolic, elliptic or parabolic. In
the first case the automorphism α is a pseudo-Anosov homeomorphism of the once punctured torus, and
Thurston showed that the corresponding mapping torus has a hyperbolic structure of finite volume on its
interior, so we are covered by Theorem 3.4. For the orientation reversing elements α whose square is hyper-
bolic, we know that these groups have an index 2 subgroupwhich is the fundamental group of a finite volume
hyperbolic 3-manifold, and so we again obtain NIU-linearity in characteristic zero.

If α has finite order in Out(F2), then (whether or not it is orientation preserving) F2 ⋊α ℤ contains F2 ×ℤ
with finite index, and thus we again have NIU-linearity.
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However, this still leaves the parabolic case (which will be orientation preserving), where M = ±( 1 n0 1 )
for n ∈ ℤ \ {0}. These groups are all commensurable and in fact the question of their linearity has received a
lot of attention. Indeed, whether F2 ⋊α ℤ is linear for M = ( 1 1

0 1 ), which is α(x) = x and α(y) = yx, was Ques-
tion 18.86 in the Kourovka notebook [16]. However, [2] and [19] pointed out that linearity of the Braid
group B4 provides a positive answer for this group (and thus for the others too). Here we can use a result of
Niblo andWise to provide a quick proof that does not require linearity of B4, andwhich gives us NIU-linearity
as well.

Proposition 4.2. For the group G = F2 ⋊α ℤ, where α(x) = x and α(y) = yx, we have that G embeds in GL(6,F)
for F some field of arbitrary characteristic. Consequently, G is NIU-linear and VUF-linear.

Proof. Let the stable letter ofG be t, so thatG = ⟨x, y, t⟩ = ⟨y, t⟩because y−1tyt−1 = x. Itwas shown in [17] that
the index 2 subgroup H = ⟨y2, t, y−1ty⟩ of G embeds into the RAAG R(Γ) immediately before Proposition 3.6.
Therewementioned that R(Γ) embeds inGL(3,F), so taking the induced representation shows that G embeds
in GL(6,F).

Combining the results above, we have the following corollary.

Corollary 4.3. If G = F2 ⋊α ℤ is any free by cyclic group where the free part has rank 2, then G is NIU-linear and
VUF-linear.

We will now see that things are very different when the rank of the free group is greater than 2. We have
already mentioned that the following question is open.

Question 4.4. If Fn ⋊α ℤ is a free by cyclic group for n ≥ 3 which contains ℤ ×ℤ, then is it linear over some
field?

In Gersten’s paper [10] the free by cyclic group F3 ⋊α ℤ = ⟨a, b, c, t⟩ with tat−1 = a, tbt−1 = ba, tct−1 = ca2
is introduced and shown to have very strange properties. In particular, an argument using translation length
proves that it cannot act properly and cocompactly by isometries on a CAT(0) space. Now for this linearity
question, Gersten’s group Gwould seem like an important test case. In this sectionwe prove that G is not NIU-
linear, and hence not linear over any field of positive characteristic. This will be a consequence of showing
that themost tractable linear representations of this group, namely, the oneswhere the elements t, a are both
diagonalisable, and thus simultaneously diagonalisable as ta = at are never faithful over any field.

Theorem 4.5. Supposewe have commuting elements T, A ∈ GL(d,F), for d any dimension andF any field, such
that the matrix T is conjugate to TA and also to TA2. Then all eigenvalues of A must be roots of unity.

Proof. We replace F by its algebraic closure, which we will also call F, and first suppose that both A and T
are diagonalisable, so that we can choose a basis e1, . . . , ed in which both

T = diag(t1, . . . , td) and A = diag(a1, . . . , ad)

are simultaneously diagonal. As TA and TA2 are also then diagonal, each has entrieswhich are a permutation
of the diagonal entries of T. Although these permutations, which we will name π and σ, respectively, will not
in general be well defined because of repeated eigenvalues, we choose appropriate π and σ defined in some
suitable way. We now permute our basis so that π is a product of disjoint consecutive cycles, that is,

π = (12 ⋅ ⋅ ⋅ k1)(k1 + 1 k1 + 2 ⋅ ⋅ ⋅ k2) ⋅ ⋅ ⋅ (kr−1 + 1 ⋅ ⋅ ⋅ kr)

for kr = d.
First suppose that the number of cycles r in π is 1. Then we have

T = diag(t1, . . . , td) and TA = diag(t2, . . . , td , t1),

so that
A = diag(t2/t1, t3/t2, . . . , t1/td),
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and thus
TA2 = diag(t22/t1, t23/t2, . . . , t21/td) = diag(tσ(1), tσ(2), . . . , tσ(d))

for the permutation σ above.
Now all ti are in the abelian group F∗ written multiplicatively, but on changing to additive notation, we

can regard the two expressions for TA2 as providing a system of linear equations. Thus, let us work in an
arbitrary abelian groupAwritten additively, so that we are replacing (F∗, ×) above with (A, +). We are hence
trying to solve the homogeneous system of equations

2x2 = x1 + xσ(1), 2x3 = x2 + xσ(2), . . . , 2x1 = xd + xσ(d)

in the unknownvariables x1, . . . , xd ∈ A.Wenote that there exist solutionswhere x1 = ⋅ ⋅ ⋅ = xd (whichwould
result in A being the identity) and we are trying to rule out other solutions.

Let us first set A = ℝ, so that we can use the usual order on ℝ as well as linear algebra. Given a non-
zero solution (r1, . . . , rd) ∈ ℝd, let M be max1≤i≤d|ri| and let |rk| attain M, so that rk = M > 0 without loss of
generality by multiplying the solution by −1 if necessary. Now one equation is 2rk = rk−1 + rσ(k−1) (where all
subscripts are takenmodulo d), so 2M = rk−1 + rσ(k−1) ≤ |rk−1| + |rσ(k−1)| ≤ 2M, thus for equality we need rk−1
and rσ(k−1) both to have modulus M and be positive. Thus, now we can replace the equation with left-hand
side 2rk by the equation having left-hand side 2rk−1 and continue until we have the constant solution.

However, this assumed that the initial permutation π was just the cycle (12 ⋅ ⋅ ⋅ d). Let us consider the
general case

π = (12 ⋅ ⋅ ⋅ k1)(k1 + 1 k1 + 2 ⋅ ⋅ ⋅ k2) ⋅ ⋅ ⋅ (kr−1 + 1 ⋅ ⋅ ⋅ kr),

so that the two expressions for TA2 now read

diag(t22/t1, . . . , t21/tk1 , t2k1+2/tk1+1, . . . , t
2
k1+1/tk2 , . . . , t

2
kr−1+1/td)

= diag(tσ(1), . . . , tσ(k1), tσ(k1+1), . . . , tσ(k2), . . . , tσ(d)).

Then if S is the subgroup of Sym(d) generated by π, σ, we have that the orbits of S are unions of the disjoint cy-
cles for π as above.However, if S is not transitive, then it shouldbe clear thatwehave solutions x1, . . . , xd ∈ A
which are constant on orbits of S but which are not constant overall, because the equations in separate orbits
involve disjoint sets of variables (however, these solutions still give rise to the matrix A being the identity).
Therefore, let us consider the orbit O under S of some point x ∈ {1, . . . , d} which will be a union of the cy-
cles for π. Let us assume without loss of generality that j ∈ O is such that xj = M > 0maximises |xi| over all
i ∈ O. Then j sits in some cycle (kl−1 + 1 ⋅ ⋅ ⋅ kl) and, as before, on considering the equation 2rj = rj−1 + rσ(j−1),
then 2rj−1 = rj−2 + rσ(j−2) and so on, where our subscripts are taken from numbers in this cycle, and where by
subtracting 1 we mean shifting backwards round the cycle. This implies not only that

rkl−1+1 = rkl−1+2 = ⋅ ⋅ ⋅ = rkl = M
but also that any subscript s which is an image under σ of a point in this cycle will satisfy rs = M too. Thus,
we now move to another cycle until we see that our solution is constant on the whole of O.

We now deduce the same conclusion for solutions of these equations over any torsion free abelian
group A. If we have a solution (x1, . . . , xd) ∈ Ad, then we replace A with the finitely generated subgroup
⟨x1, . . . , xd⟩ = A0 and work inA0 which, being a finitely generated torsion free abelian group, is just a copy
of ℤm for some m. If we now take a particular ℤ-basis forA0, we can express x1, . . . , xd as elements of ℤm,
and then our d equations become m lots of d equations, with one set of d equations for each coefficient
ofℤm. But as each system of equations overℤ can be thought of as also overℚ and indeed overℝ, our above
argument tells us that our solutionmust be constant over each orbit coordinate-wise, so indeed our elements
x1, . . . , xd are equal amongst subscripts in the same orbit.

However, this assumed that A is torsion free, whereas in the multiplicative group F∗ of a field we will
have roots of unity. To deal with this case, note that if the element X ∈ G is such that XTX−1 = TA, then
XTnX−1 = TnAn for any n ∈ ℤ and similarly we have YTnY−1 = TnA2n if YTY−1 = TA2. Thus, on initially be-
ing given our diagonal elements t1, . . . , td ∈ F∗ of T, where now we finally return to multiplicative notation,
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we have that ⟨t1, . . . , td⟩, considered as an abstract finitely generated abelian group, must be isomorphic
to ℤr ⊕ R for some r ≤ d and R a finite subgroup consisting of the torsion elements. Hence, there exists an
exponent e > 0 such that te1, . . . , t

e
d all lie in the ℤr part and so these elements generate a torsion free abel-

ian subgroup. Now we can run through the whole proof above with T and A replaced by Te and Ae (but the
conjugating elements X and Y remain the same), whereupon we conclude that Ae must be the identity and
so the eigenvalues of A are all roots of unity.

If our elements are not diagonalisable, then, as they commute, we can still find a basis in which both
T and A are upper triangular. We can then work through the above proof using the diagonal elements of T
and of A, which will multiply in the same way to give the diagonal entries of TA and of TA2, whereupon we
will conclude that some power Ae of A is upper triangular with all ones down the diagonal, thus again the
eigenvalues of A are all roots of unity.

Corollary 4.6. If a group G has commuting elements T, A, with A of infinite order, such that T, TA, TA2 are all
conjugate in G, then G is not NIU-linear.

Proof. Theorem 4.5 tells us that a power Ae of A is unipotent, but if G were NIU-linear, then Ae would have
finite order.

Corollary 4.7. Gersten’s group G is not NIU-linear or VUF-linear, and in particular is not linear in any positive
characteristic nor embeds in any complex unitary group of any finite dimension.

Proof. We have b−1tb = at = ta and c−1tc = a2t = ta2, with a of infinite order.

Gersten constructed this example specifically because it embeds in Aut(F3), and thus in Aut(Fm) for m ≥ 3
and Out(Fn) for n ≥ 4. Consequently, we have a proof that none of these groups are linear over a field of
positive characteristic without using the theory of algebraic groups in [9]. However, as long as the question
of linearity of Gersten’s group over ℂ is still open, we will not know if this approach can be made to work
in characteristic zero. We remark here that it can be shown that there is no faithful linear representation of
Gersten’s group in GL(d,ℂ) for d ≤ 4 (as was done in [5]). We understand that I. Soroko has extended this to
d = 5. As this involves working through and eliminating the various possible Jordan normal forms (or other
suitable canonical forms), this approach becomes unwieldy as the dimension increases.
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