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Abstract

We prove that the complexity of the Conjugacy Problems for wreath
products and for free solvable groups is decidable in polynomial time. For
the wreath product AwrB, we must assume the decidability in polynomial
time of the Conjugacy Problems for A and B and of the power problem
in B. We obtain the result by making the algorithm for the Conjugacy
Problem in Matthews [11] run in polynomial time. Using this result and
properties of the Magnus embedding, we show that the Conjugacy and
Conjugacy Search Problems in free solvable groups are computable in
polynomial time.
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1 Introduction

In this paper we attack the computational complexity of the Conjugacy and
Conjugacy Search Problems in free solvable groups. We show that they are both
solvable in polynomial time and that the degree of the polynomial is uniform
for the class of free solvable groups. Further, we show that the Conjugacy
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Problem and the Conjugacy Search Problem in wreath products are solvable in
polynomial time modulo some natural conditions.

Algorithmic problems in group theory were considered as early as 1910, when
Dehn introduced the now famous Word and Conjugacy Problems. Briefly, for
a finitely generated group G, given two words as a product of generators, the
Word Problem asks whether they are equal as elements of G and the Conju-
gacy Problem asks whether they are conjugate to each other in G. Both of
these decision problems quickly became an active area of research. Novikov
([15], [16]) gave the first example of a finitely presented group with undecidable
Word (and hence Conjugacy) Problem. A beautiful result of Miller exhibits
a group which has decidable Word Problem and undecidable Conjugacy Prob-
lem [12]. At present, there are many interesting classes of groups where these
problems are decidable. Here we mention only a few positive results about non-
solvable groups and discuss solvable groups in more detail below. The Word
and Conjugacy Problems are decidable in braid groups (Artin, [1]), hyperbolic
groups (Gromov, [6]), wreath products of groups under some natural additional
conditions (Matthews [11]), the Grigorchuk group (Grigorchuk [5], Leonov [8]),
bi-automatic groups (Gersten and Short, [4]), toral relatively hyperbolic groups,
free solvable groups (Remeslennikov, Sokolov [18]).

Nowadays, while decidability is still an open area of research, the emphasis
has shifted to complexity of decidable problems. It is worth mentioning the
work of Lysenok, Miasnikov, and Ushakov who showed in [10] that the Con-
jugacy Problem in the Grigorchuk group is decidable in polynomial time, the
work the work of Lipton and Zalenstein on the polynomial time decidability
of the Word Problem in linear groups [9], the work of Marshall, Bridson and
Haefliger, Epstein and Holt which, through successively improving time bounds,
culminates in showing that the Conjugacy Problem in word-hyperbolic groups
is decidable in linear time [3] and the work of Cannon, Goodman and Shapiro,
and Holt and Rees [7] in giving a linear time algorithm for deciding the Word
Problem in nilpotent groups.

Solvable groups offer a whole new world on their own. An example of
Kharlampovich of a solvable group with undecidable Word, and hence Con-
jugacy, Problem shows that one cannot derive any positive results about the
entire class of solvable groups. However, there are many interesting subclasses
in which the Conjugacy Problem is decidable, for instance finitely generated
metabelian groups (Noskov [14]), nilpotent groups (Blackburn [2]), polycyclic
groups (Remeslennikov [17]) and free solvable groups (Remeslennikov - Sokolov
[18]. In all of the above cases, however, the results are about decidability with-
out mention of the time complexity. The complexity of algorithmic problems in
solvable groups has recently become an active area of research with a paper by
Miasnikov, Roman’kov, Ushakov and Vershik [13] which presents a cubic time
algorithm to decide the Word Problem in free solvable groups.

Most complexity results concern a fixed group. To the knowledge of the
author, there is no other studied class of infinite solvable groups for which
the Word and Conjugacy Problems can be decided uniformly in polynomial
time. Even in the cases where one can solve the given problem using a general
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description of the group, the algorithm involves heavy pre-computations specific
to this group which cannot be generalized to produce a uniformly polynomial-
time algorithm.

In this paper we use this result in [13] to show that the Conjugacy Problem
in free solvable groups is decidable in quintic time. The proof follows the ideas
of Remeslennikov and Sokolov ([18]). First, we embed the free solvable group
of degree (d+1) and rank r in a wreath product of an abelian group and a free
solvable group of degree d. The image of a word of length n can be found in
time O(rdn3). Since the images of two words under the Magnus embedding are
conjugate if and only if these words are conjugate, we can apply our general
result, namely that the Conjugacy Problem in this wreath product is decidable
in polynomial time, provided the Conjugacy Problems in each factor (and the
Power Problem in the second factor) are decidable in polynomial time. The
second factor is a free solvable group of lesser degree, so we proceed by induction.
Similarly, we solve the Conjugacy Search Problem.

2 Preliminaries

2.1 Wreath products and the Magnus embedding

We start by defining the objects essential to this paper – wreath products and
the Magnus embedding.

Let G be a group generated by a fixed finite set of generators Y . We represent
elements in G by words w over Y ± and denote by |w| the length of the word w.

Let A and B be groups. The restricted wreath product AwrB is the group
formed by the set

AwrB = {bf | b ∈ B, f ∈ A(B)},

with multiplication defined by bfcg = bcf cg, where f c(x) = f(xc−1) for x ∈ B,
where A(B) denotes the set of functions from B to A with finite support (i.e.,
functions fromB to A which take non-zero values only for finitely many elements
of B). Note that A(B) is a group under pointwise multiplication of functions
with identity 1 : B → 1, so we can view AwrB as the semi-direct product
B ⋉A(B).

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the generating sets for A
and B, respectively. AwrB is generated by X,Y in the following sense: every
function, f ∈ A(B) can be written as a product f =

∏

i a
bi
i . Indeed consider the

functions of the form

fai,bi(x) =

{

ai if x = bi
1 otherwise

For simplicity, we denote fai,1 by fai
. Then for any f ∈ A(B), one can write

f =
∏

i fai,bi =
∏

i f
bi
ai
. There is clearly an identification between fai

and ai.
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Remark 2.1. One can rewrite a word w = b1a1 . . . bkak in generators X and
Y as w = bf in polynomial time. Observe that

w = b1 . . . bka
b2...bk
1 . . . ab3...bk2 abkk−1ak.

Here b = b1 . . . bk ∈ B and ab2...bk1 ab3...bk2 . . . abkk−1ak corresponds to a function in

A(B) as follows. Denote Bi = bi . . . bk. For each 1 < i < j ≤ k, check whether
Bi = Bj in B. This amounts to solving

(

k−1
2

)

Word Problems in B. For each
Bi1 = Bi2 = . . . = Bij , write f(Bi1) = a1 . . . aj . This determines f completely
and we can change presentations in time O(|w|2TWB(|w|)), where TWB is the
time function for the Word Problem in B. Note that if a word is given as a
product of generators, converting it to standard (or pair) form gives an ordering
for supp(f) = {Bi}i determined by the indices i. More precisely, Bi < Bj

whenever i < j.

Fix a free group F of rank r with basis X . The derived subgroup F (d) is
defined by induction as follows: F ′ = [F, F ] and F (d+1) = [F (d), F (d)]. Define
the free solvable group, Sd,r = F/F (d+1).

Let N be a normal subgroup of F . Denote by µ : F → F/N the canonical
epimorphism. Let U be a free Z(F/N)-module with basis {u1, . . . , ur}, so U ≃
Z(F/N)⊕ . . .⊕ Z(F/N). Then the set of matrices

M(F/N) =

(

F/N U
0 1

)

=

{(

g u
0 1

)

| g ∈ F/N, u ∈ U

}

forms a group with respect to matrix multiplication. One can see that (see for
example, [18]) M(F/N) ≃ F/F ′wrF/N .

The map ϕ : F (X) → M(F/N) defined by

xi 7→

(

µ(xi) ui

0 1

)

, i = 1, . . . , r

extends to an injective homomorphism ϕ : F/N ′ → M(F/N), called the Magnus
embedding.

In the sequel, for x ∈ F put

ϕ(x) =

(

µ(x) ux

0 1

)

.

2.2 Algorithmic Results for the Magnus Embedding

Here we present and prove a few preliminary results on the Magnus embedding
that we will need in Section 5.

Theorem 2.2 ([18]). Let f̄ , ḡ ∈ F/N ′, where N is normal in F and N ′ is
torsion-free. Then f̄ and ḡ are conjugate in F/N ′ if and only if their images in
M(F/N) are conjugate.

In particular, the theorem above holds for the free solvable group F/F (d+1),
which is F/N ′ for N = F (d).
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Theorem 2.3 ([13]). The following hold:

1) For a given w ∈ Sd,r, one can compute ϕ(w) in time O(dr|w|3);

2) The Word Problem in Sd,r is solvable in time O(dr|w|3), where w is the
input word.

Corollary 2.4. The Conjugacy Problem in Sd,r reduces to the Conjugacy Prob-
lem in F/F ′wrSd−1,r it time O(rdL3), where L is the length of the input words.

The Power Problem for a group G for given elements x, y ∈ G consists of
determining whether there exists an integer n ∈ Z such that x = yn and if so,
to find it.

Theorem 2.5. The power problem in F/F (d) is decidable in time O(rdL6),
where r is the rank of F and L = |x|+ |y| is the length of the input.

Proof. Let x and y be elements in F/F (d) given as products of generators. Con-
sider first the two trivial cases. If y = 1, which can be checked in time O(rd|y|3),
the problem reduces to a Word Problem, which is decidable in O(rd|x|3). If
x = 1, then n = 0 is always a solution. Hence, after some preliminary compu-
tation which can be done in O(rdL3), we can assume without loss of generality
that both x and y are non-trivial elements in F/F (d). Observe the following.

Fact 2.6. 1. If there exists n ∈ Z such that x = yn in F/F (d), then x = yn

in F/F ′.

2. If there exists n ∈ Z such that x = yn in F/F (d), then n is unique with
this property.

The first claim follows easily since F/F ′ is a quotient of F/F (d) and the
second one follows from the fact that free solvable groups are torsion-free. We
proceed to solve the general case of the Power Problem in a free solvable group
F/F (d).

Step 1: Solve the Power Problem in F/F ′. It is a free abelian group, so the
elements x and y can be uniquely presented in the form x = xa1

1 . . . xar
r

and y = xb1
1 . . . xbr

r , where X = {x1, . . . , xr} is the basis for F . Obviously,
this decomposition can be found in log-linear time, which is certainly in
O(rL6). Then for each 1 ≤ i ≤ r set ni = ai/bi. If all ni are equal and
integer, then x = yn1 , as required. Otherwise, x 6∈ 〈y〉 and we are done.
Clearly, this can be done in time O(r(|x| + |y|)).

Note that the exponent n satisfies n ≤ |x|+ |y| = L.

Step 2: Using n from Step 1, check whether the equation

x = yn (1)

holds in F/F (d). By Theorem 2.3, this can be done in time O
(

rd
(

|x| +

n|y|
)3)

⊆ O(rdL6). If (1) does not hold, then x 6= ym for all integers m.
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Indeed, if there were some m ∈ Z for which x = ym in F/F (d), then by
Fact1 the same equation would hold in F/F ′. But by the uniqueness of n
(Fact2), this is impossible.

3 Complexity of the Conjugacy Problem in

Wreath Products

We establish a bound on the complexity of the Conjugacy Problem in wreath
products AwrB by giving a bound for a variant of the algorithm developed by
Matthews [11].

Let x = bf, y = cg ∈ AwrB, where b, c ∈ B and f, g ∈ A. Denote supp(f) =
{b1, . . . , bn} and supp(g) = {β1, . . . , βm} where the bi and βj are ordered as in
Remark 2.1. Recall that all elements are given as words in generators. Let b̄
and β̄ be the longest elements in supp(f) and in supp(g), and ā and ᾱ be the
longest element in the image of f and of g, respectively.

For each left 〈b〉-coset in B that intersects supp(f)∪ supp(g), choose a coset
representative from supp(f) ∪ supp(g) and let Tb = {ti}i∈I1∪I2 , where I1 in-
dexes the coset representatives we just chose and I2 indexes the remaining ones.
Deciding whether bi, bj ∈ supp(f) ∪ supp(g) are in the same coset is a Power
Problem, since bi, bj are in the same coset if and only if bib

−1
j = bk for some k.

To find Tb one needs to solve the Power Problem
(

(n+m)
2

)

times (for all pairs

(bi, bj)). Hence it takes time
(

(n+m)
2

)

TPB(2|b̄| + 2|β̄| + |b|), where TPB is the
time function for the power problem in B. For each γ ∈ B and i ∈ I1 ∪ I2,

associate with Tb the following map π
(γ)
ti

: A(B) → A:

π
(γ)
ti

(f) =























N−1
∏

j=0

f(tib
jγ−1) if b is of finite order N,

∞
∏

j=−∞

f(tib
jγ−1) if b is of infinite order.

Note that in the above all the products are finite, since f has finite support.

Denote π
(1)
ti

(f) by πti(f). Matthews gives a condition to check conjugacy, which
will be used here.

Theorem 3.1 ([11]). Let A, B be finitely generated groups. Two elements
x = bf, y = cg ∈ AwrB are conjugate if and only if there exists d ∈ B such that
for all ti ∈ Tb the following hold:

(1) db = cd,

(2) when the order of b is finite, π
(d)
ti

(g) is conjugate to πti(f) in A,

(3) when the order of b is infinite, π
(d)
ti

(g) = πti(f) in A.
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In order to use this criterion computationally, we need to circumvent the use
of the conjugator d.

Lemma 3.2. Let {s̄i}i∈I and {s̃i}i∈I be two sets of left 〈c〉-coset representatives
such that s̄i〈c〉 = s̃i〈c〉. Then πs̄i(g) and πs̃i(g) are conjugate for any i ∈ I.

Proof. Since s̄i〈c〉 = s̃i〈c〉, there is some integer ki for which s̄i = s̃ic
ki and

hence,

πs̄i(g) =
∏

j

g(s̄ic
j) =

∏

j

g(s̃ic
kicj) =

∏

j

g(s̃ic
ki+j).

This last product is a cyclic permutation of the factors in
∏

j g(s̃ic
j) = πs̃i(g)

and so is conjugate to πs̃i(g).

Using the Theorem 3.1 and Lemma 3.2 we show that the time complexity
of the Conjugacy Problem in wreath products is polynomial.

Theorem 3.3. Let A and B be finitely generated groups such that the following
hold:

1) there are decision algorithms for the Conjugacy Problem in A and in B
with polynomial time functions, TCA, TCB, respectively;

2) there is an algorithm with polynomial time function TPB for the Power
Problem in B.

Then the Conjugacy Problem in AwrB is decidable with complexity

O
(

L2TCA(L
2) + LTCB(L) + L2TPB(L)

)

, (2)

where L = |x|+ |y| is the length of the input pair x, y ∈ AwrB.

Remark 3.4. Note that every Word Problem ”s x = 1?” is precisely the Con-
jugacy Problem ”Is x conjugate to 1”? To simplify the presentation, the com-
plexities of all Word Problems considered in this section will be bounded by the
complexities of the corresponding Conjugacy Problems.

Proof. Let x = bf, y = cg ∈ AwrB. The notation from the beginning of this
section will be used throughout. In order to simplify the subsequent treatment
of complexity in this section, we will implicitly use the bounds

|x|, |y|, n,m, |c|, |b|, |b̄|, |ti|, |ā| ≤ L.

Claim 3.5. There is a polynomial time algorithm which computes π
(γ)
ti

(f). More
precisely,

• π
(γ)
ti

(f) can be computed in time LTPB(L).

• |π
(γ)
ti

(f)| ≤ L2.

Proof. The algorithm is as follows:
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Step 1: For each bk ∈ supp(f) check whether there is some j such that
tib

jγ−1 = bk, i.e., t
−1
i bkγ = bj . This is an instance of the Power Problem

in B and so can be done in time TPB(2|b̄|+ |b|+ |γ|). If such j exists, look
up the corresponding value aj = f(bk). Otherwise, aj does not occur in
the product.

Step 2: There are n elements in supp(f) to perform computations on, so

computing π
(γ)
ti

(f) takes time nTPB(2|b̄|+ |b|+ |γ|).

Step 3: Set π
(γ)
ti

=
∏

j aj . Note that the order in which the factors are multi-
plied is a priori determined by the solution j to the Power Problem. How-
ever, if the order of b is finite, by the definition of π we take j mod N ,
and if the order of b is infinite, then the solution to the Power Problem

is unique because in this case b has no torsion. Thus, a fortiori, π
(γ)
ti

is
indeed equal to

∏

j aj , where the aj are computed as above.

Note that |π
(γ)
ti

(f)| ≤ n|ā|, since each factor in the product π
(γ)
ti

(f) is in the
image of f .

We modify the algorithm from [11] so that it runs in polynomial time as
follows:

Step 1. Determine whether b and c are conjugate in B. This takes time
TCB(|x| + |y|) ∈ O(TCB(L)). If not, x and y are not conjugate. If b
and c are conjugate in B, let d ∈ B be such that db = cd (it is not
required to find this d).

Step 2. Consider the following three cases.

Case 1: g = 1. Then π
(d)
ti

(g) = 1, so x and y are conjugate if and only if
πti(f) = 1. To check this compute πti(f) as in Claim 3.5 and solve the
Word Problem in A. This takes time

O
(

LTPB(L) + TCA(L
2)
)

. (3)

Case 2: g 6= 1, and πti(f) = 1 for all i ∈ I1. In order to check the latter,
simply compute πti(f) for all i ∈ I1. This will take time O(L2TPB(L)).

Then, by Theorem 3.1, x is conjugate to y if and only if π
(d)
ti

(g) = 1

for all i ∈ I1 (since the π
(d)
ti

(g) = 1 for i ∈ I2). Note that we need not
know what d actually is – its existence is enough. Indeed, since db = cd,
g(tib

jd−1) = g(tid
−1cj) and hence

π
(d)
ti

(g) =
∏

j

g(tib
jd−1) =

∏

j

g(tid
−1cj) = πtid−1(g),
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where {tid
−1}i∈I1∪I2 is a set of left 〈c〉-coset representatives. Moreover,

by Lemma 3.2, πtid−1(g) is conjugate to πsi(g) for any other set of left
〈c〉-coset representatives {si}i∈I1∪I2 for which tid

−1〈c〉 = si〈c〉. It follows

that π
(d)
ti

(g) = 1 for all i ∈ I1∪I2 if and only if πsi(g) = 1 for all i ∈ I1∪I2.

Since πsi(g) = 1 for all i ∈ I2, to check whether x and y are conjugate,
it is enough to check whether for some set of left 〈c〉-coset representatives
Tc = {si}i∈I1 , πsi (g) = 1 for all i ∈ I1. Choosing Tc can be done in
time O(L2TPB(L)) and by Claim 3.5, checking whether πsi(g) = 1 for all
i ∈ I1 can be done in time L2TCA(L

2). Thus checking whether x and y
are conjugate takes time

O
(

L2TPB(L) + L2TCA(L
2)
)

. (4)

Case 3: g 6= 1 and some πti(f) 6= 1. There are two subcases:

1) The order of b is finite. By Theorem 3.1, x and y are conjugate if and only if

πti(f) and π
(d)
ti

(g) are conjugate. As in Case 2, π
(d)
ti

(g) = πtid−1(g), which
is conjugate to πsi(g) if tid

−1〈c〉 = si〈c〉. This does not have to be the
case for the set Tc = {si}i∈I1 computed in Case 2, but we know that for
each i ∈ I1 ∪ I2 there is a unique k ∈ I1 ∪ I2 such that tid

−1〈c〉 = sk〈c〉.
Hence, for each i ∈ I1, it is enough to check for all k ∈ I1 whether

πti(f) and πsk(g) are conjugate.

If for each i ∈ I1 there is some k ∈ I1 for which this is true, then x and y are
conjugate. Otherwise, they are not. Note that the above computations
amount to solving L2 instances of the Conjugacy Problem in A and so
determining whether x and y are conjugate can be done in time

O
(

L2TPB(L) + L2TCA(L
2)
)

. (5)

2) The order of b is infinite. Let k be a fixed integer such that πtk(f) 6= 1 (such
a k must be found already in the beginning of Case 3). We proceed to

check that πtk(f) = π
(d)
tk

(g) without finding d. Assume that π
(d)
tk

(g) = 1
as otherwise, by Theorem 3.1, we can conclude that x and y are not

conjugate. Since π
(d)
tk

(g) =
∏

j g(tkb
jd−1) 6= 1, there is some integer l for

which g(tkb
ld−1) 6= 1. Then tkb

ld−1 = βp for some βp ∈ supp(g) and so
d = β−1

p tkb
l. It would suffice to check for all d of the form d = β−1

p tkb
l

such that db = cd whether πti(f) = π
(d)
ti

(g).

In order to check the former, we need to check for all βp ∈ supp(g) whether
β−1
p tkb

lb = cβ−1
p tkb

l, i.e., it is enough to check whether β−1
p tkb = cβ−1

p tk.
These are m instances of the Word Problem in B which do not involve
l, so they can be decided in time mTCB(6L). Thus checking whether d
satisfies db = cd can be done in time O

(

LTCB(L)
)

.
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It remains to check whether πti(f) = π
(d)
ti

(g). Notice that

π
(d)
ti

(g) =

∞
∏

j=−∞

g(tib
jd−1) =

∞
∏

j=−∞

g(tib
jb−lt−1

k βp)

=

∞
∏

j=−∞

g(tib
j−lt−1

k βp) =

∞
∏

j=−∞

g(tib
jt−1

k βp) = π
(β−1

p tk)

ti
(g).

So we need to check whether π
(β−1

p tk)

ti
(g) = πti(f). Using 3.5 this can be

done in time
O
(

LTCB(L) + TCA(L
2) + LTPB(L)

)

. (6)

The complexity of the conjugacy problem in AwrB is

O
(

L2TCA(L
2) + LTCB(L) + L2TPB(L)

)

,

which is clearly polynomial since TCA, TCB and TPB are polynomial.

Remark 3.6. The algorithm described above differs from the algorithm de-
scribed in [11] in item 2) of Case 3. The original algorithm is not polynomial in
this part.

4 Complexity of the Conjugacy Search Problem

in Wreath Products

We use the same notation as in the previous section. The following result is a
corollary of several propositions in [11], together with their proofs.

Lemma 4.1. Let A and B be finitely generated groups and let x = bf , y = cg
be conjugate in AwrB. Then z = dh ∈ AwrB conjugates x to y if and only if z
satisfies

1. db = cd in B;

2. when the order of b is finite, h satisfies

h(tib
k) =





k
∏

j=0

g(tib
jd−1)





−1

αi

k
∏

j=0

f(tib
j), (7)

where αi is such that π
(d)
ti

(g) = αiπti(f)α
−1
i ;

3. when the order of b is infinite, h satisfies

h(tib
k) =





k
∏

j=0

g(tib
jd−1)





−1
k
∏

j=0

f(tib
j). (8)
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Note that it follows from [11] that the formulas (7) and (8) define h(β) for
all β ∈ B and do not depend on the choice of coset representatives. With this,
we can now prove the following theorem.

Theorem 4.2. Let A and B be finitely generated groups such that the following
hold:

1) there are algorithms which solve the Conjugacy Search Problem in A and
in B with polynomial time functions, TCSA, TCSB, respectively;

2) there is an algorithm with polynomial time function TPB for the Power
Problem in B.

Then the Conjugacy Search Problem in AwrB is solvable with complexity

O(TCSB(L) + TCSA(L) + L2TPB(L)),

where L = |x|+ |y| is the length of the input pair x, y ∈ AwrB.

Proof. Let x = bf , y = cg be conjugate in AwrB (this can be checked in poly-
nomial time using Theorem 3.3). Using the algorithm to solve the Conjugacy
Search Problem in B, one can find d ∈ B such that db = cd in time TCSB(L). It
remains to show that the function h as described in Lemma ?? can be described
by a finite set of pairs {(bi, h(bi))}.

First, assume that the order of b in B is infinite. Let

M = max{Mi | tib
Mi ∈ supp(f) ∪ supp(g), and i ∈ I1}.

We show that M can be found in polynomial time. For each bj ∈ supp(f) ∪
supp(g) and for each ti ∈ Tb, compute Mij such that tib

Mij = bj . This can be
done in time O(L2TPB(L)). Let M = max{Mi | bj ∈ supp(f)∪ supp(g)}. Then
M = max{Mi | i ∈ I1} can be computed in O(L2TPB(L)) steps. Consider the
following cases.

1. k ≥ M . Then h(tib
k) =

(

π
(d)
ti

(g)
)−1

πti(f) = 1, by Theorem 3.1. Hence
h(tib

k) = 1.

2. k < M .

(a) If ti /∈ supp(f) ∪ supp(g) and tid
−1 /∈ supp(f) ∪ supp(g), then

f(tib
j) = 1 and g(tid

−1bj) = 1 for all j and hence h(t̃ib
k) = 1.

(b) If ti ∈ supp(f) ∪ supp(g), but tid
−1 /∈ supp(f) ∪ supp(g), then

h(t̃ib
k) =





∏

j≤k

g(t̃id
−1cj)





−1
∏

j≤k

f(tib
j) =

∏

j≤k

f(tib
j),

which can be computed in time O
(

MLTPB(L))
)

.
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(c) If ti /∈ supp(f) ∪ supp(g), but tid
−1 ∈ supp(f) ∪ supp(g),

h(t̃ib
k) =

∏

j≤k

g(t̃ib
jd−1) which can be similarly computed in time

O
(

MLTPB(L))
)

.

(d) If ti, tid
−1 ∈ supp(f) ∪ supp(g), then

h(t̃ib
k) =





∏

j≤k

g(tib
jd−1)





−1
∏

j≤k

f(tib
j)

can be computed in time O
(

MLTPB(L)
)

.

Thus, if k < M , h(tib
k) can be computed in time O

(

MLTPB(L)
)

. It is
clear from the definition of M that M < L, so one can compute h(tib

k)
in time O(L2TPB(L)).

Assume that the order of b is finite, say N . Using the algorithm to solve
the Conjugacy Search Problem in A, one can find in time TCSA(L

2), for

each i ∈ I1, an αi ∈ A such that π
(d)
ti

(g) = αiπti(f)α
−1
i . Then h(tib

k) =
(

k
∏

j=0

g(tib
jd−1)

)−1

αi

k
∏

j=0

f(tib
j) can be found in time O(TCSA(L)+L2TPB(L))

by arguing as in the infinite order case (here instead of M , we use the order N
of b).

Thus the conjugacy search problem in AwrB is solvable in time

O
(

TCSB(L) + TCSA(L) + L2TPB(L)
)

.

5 Complexity of the Conjugacy and Conjugacy

Search Problems in Free Solvable Groups

By Corollary 2.4 the Conjugacy Problem in free solvable groups can be reduced
in polynomial time to the Conjugacy Problem in a wreath product. Then the
result from Section 3 can be applied to deduce that the Conjugacy Problem in
free solvable groups is solvable in polynomial time. Though the bound for the
complexity will be polynomial, the degree of the polynomial will depend on the
degree of solvability (this is because of the factor of L in front of TCB(L) in
(2)). However, by making a modification to the algorithm, the complexity of
the Conjugacy Problem in free solvable groups is shown to be a polynomial of
degree eight.

Theorem 5.1. The Conjugacy Problem in a wreath product AwrB, in which A
is abelian is in

O
(

TCA(L
2) + TCB(L) + L2TPB(L)

)

,

where L is the length of the input pair (x, y).
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Proof. The algorithm is similar to the one in Theorem 3.3. The only alteration
to be made is in Case 3, where the order of b is infinite. Let {si}i∈I1 be the
set of coset representatives computed in Case 2. Then πsi(g) is conjugate to

π
(d)
ti

(g). Since A is now abelian, πsi(g) = π
(d)
ti

(g). Thus πti(f) = π
(d)
ti

(g) if and
only if πti(f) = πsi(g). Checking this requires

O
(

|x|TPB(|x|) + |y|TPB(|y|) + TCA(|x|
2 + |y|2)

)

. (9)

As a result the overall complexity of the modified algorithm is

O
(

TCA(L
2) + TCB(L) + L2TPB(L)

)

.

Theorem 5.2. The Conjugacy Problem in Sd,r is in O
(

rdL8
)

, where L =
|x|+ |y| is the input length.

Proof. We proceed by induction on the degree of solvability, d. The base case
is the abelian group F/F ′, where the Conjugacy Problem is in O(rL). Now
suppose there is an algorithm, which solves the Conjugacy Problem in F/F (d) in
O
(

rdL8
)

. By Corollary 2.4, one can reduce the Conjugacy Problem in F/F (d+1)

to the Conjugacy Problem in F/F ′wrF/F (d) in time O(rdL3). Since F/F ′ is
abelian, we apply Theorem 5.1. In order to do this we need polynomial bounds
for the Conjugacy Problems of F/F ′, F/F (d) and the Power Problem in F/F (d).

The Conjugacy Problem in F/F ′ is in O(rL). By the induction hypothesis,
there is an algorithm which solves the Conjugacy Problem in F/F (d) inO

(

rdL8
)

.

By Theorem 2.5 there is an algorithm which solves the Power Problem in F/F (d)

in O(rdL6). Then from Theorem 5.1, the complexity of the Conjugacy Problem
in F/F (d+1) is

O
(

rL2 + rdL8 + L2rdL6
)

,

It is easily seen now that the complexity of the Conjugacy Problem in free
solvable groups is

O
(

rdL8
)

.

Since all the proofs of the decidability results are constructive one can also
deduce the following theorem.

Theorem 5.3. The Conjugacy Search Problem in Sd,r is solvable in time
O
(

rdL8
)

, where L = |x|+ |y| is the input length.

Proof. Again we proceed by induction on the degree of solvability d, this time
making sure that at each step we are effectively finding the required object.
When d = 1 the group is abelian and so deciding the Conjugacy Search Prob-
lem there is trivial – two words are conjugate if and only if the identity is a
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conjugator. Now suppose that there is an algorithm running in time O(rdL8),
which, if two words x̄, ȳ ∈ F/F (d) are conjugate, exhibits a conjugator. We
proceed to describe an algorithm which does the same for two conjugate ele-
ments x, y ∈ F/F (d+1) given as products of generators of F . As before, by
Corollary 2.4, we reduce the Conjugacy Problem in F/F (d+1) to the Conjugacy
Problem in F/F ′wrF/F (d). Hence by Theorem 4.2 there is an algorithm run-
ning in time O(rdL8), which finds a conjugator for ϕ(x) and ϕ(y). The proof
of Theorem 2 in [18] gives a pre-image s ∈ F/F (d+1) for this conjugator. One
can see easily that computing s can be done in time O(r(d + 1)L3). Thus, the
overall complexity of this algorithm is

O
(

r(d + 1)L8
)

.
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