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Abstract:With every additional individual whose genome
is sequenced thousands of novel variants enter the scene.
It is these variants of unknownclinical significance, VUCS,
that represent a great challenge to geneticists, who are
dealing with high-throughput sequencing data sets. Espe-
cially in diagnostics of patients with unknownmonogenic
disease the joint effort of geneticists is required to find new
disease gene associations. For this purpose, online plat-
forms for matchmaking have been developed that allow
clinician scientists to collaborate worldwide and to share
medically relevant data. However, for a success of these
tools, skills in deep phenotyping as well as new statistical
approaches will be required.
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1 Introduction
Over the recent few years, geneticists worldwide could
identify hundreds of newdisease genes for rareMendelian
disorders thanks to high-throughput sequencing technol-
ogy. The basis of this success story is not only a very good
draft of the human genome that is available now for about
15 years. Of similar importance are allele frequency data
that are crucial for filtering sequence variants of an indi-
vidual’s genome. The 1000 genomes project, 1 KGP, gen-
erated a global reference for human genetic variation and
added about 80 million single nucleotide variants to the
databases of known polymorphisms [1]. A single individ-
ual differs at about3millionpositions from thehaploid ref-
erence genome, that has a size of about 3.2 ⋅ 109 bp. When
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all individuals of the 1 KGP are used for filtering and only
variants are considered that haven’t been seen in any other
sample, this number reduces to about 104. These rare vari-
ants are alsooften referred to as singletons and theyare the
starting point for the analysis of raremonogenic disorders.
Such diseases are either caused by a single mutation that
affects one copy of a gene – these disorders follow a domi-
nant pattern of inheritance. Or, in a recessive disorder, all
available copies of the gene harbor a pathogenicmutation.
The incidence of a disorder may serve as a rough upper
bound for theallele frequencyof a pathogenicmutation. In
a dominant disorder that affects less than one in a million
people, the allele frequency of the disease-causing muta-
tion is expected to be below this frequency. In a recessive
disorder of this incidence, where two of such alleles must
occur, the frequency cutoff is about the square root, thus
about 0.001. This simple rule of thumb assumes high pen-
etrance for the pathogenic mutations, that is, the presence
of one of such alleles in a dominant disorder, or two for
a recessive disorder, will cause the disease.

If you were lucky enough to find presumably patho-
genic mutations in a novel gene in three or more unre-
lated patients with the same phenotype, you got into re-
view in a high-ranking journal. From a statistical point of
view these analyseswere rather straightforward: Theprob-
ability that pathogenic mutations occur bymere chance in
a cohort of phenotypically similar patients is regarded so
low that this null hypothesis is commonly rejected. How-
ever, this approach meets its limit when:
1. the phenotypes are extremely rare and the case groups

of a single research group are too small,
2. the phenotype caused by a pathogenic allele is highly

variable and penetrance is reduced, and
3. the disease causingmutations are non-coding and the

allocation to a gene becomes ambiguous.

In this paper wewill discusswhat it will take to meet these
new challenges in the identification of pathogenic alleles.

2 Networks of collaboration
The problem of small case groups can only be overcome,
when clinician scientists join their efforts and share pa-
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tient data. Up-to-date this process hasn’t been formalized
yet, although there has been some progress on data for-
mats. The 1 KGP helped to define a de facto standard for
reporting sequence variants, that is called VCF [2]. This
format is now used to list the variant calls of a high-
throughput sequencing run and allows to compare variant
data in an unambiguous way.

With phenotype data, however, it is a different story.
The most effective way was to attend the annual meetings
of the respective medical society, to build up one’s own
professional network and to make extensive use of email
and telephone. However, web technology offers a lot to
professionalize this scientific exchange and over the re-
cent months many platforms for matchmaking arose. In-
deed, the journal Human Mutation dedicated a whole is-
sue to this topic and gave an overview about some of the
current initiatives (Volume 36, Issue 10). The participation
in any of such matchmaking platforms is surely reward-
ing as it is expected that more than 3000 disease-gene-
associations are still to be found and the success rate is
expected to grow almost exponentially with the number
of contributions [3]. However, in contrast to what common
sense would suggest as ideal, there is not a unique match-
making platform, but there are plenty. For computer sci-
entists there is a popular comic illustrating this issue for
programming languages anddata formats. Adapted for ge-
netics it would probably read like this:

Situation: There are n competing platforms for match-
making. A conversation among two geneticists: n?! That’s
ridiculous! We need to develop one universal platform that
fits the needs of everyone! Soon: There are n+1 competing
platforms.

Probably all of these platforms have a right to exist as
they serve special needs and implemented features that
cannot be found in the other platforms. National differ-
ences in patient data protection and sharing or the guide-
lines about how to classify novel variants, are likely the
reason why many countries are starting their own initia-
tives. Here, the challenge is to find a lowest common de-
nominator about what is allowed to exchange on an inter-
national level so that these portals can interact.

A second hurdle is that each of these platforms needs
to become an independent trustee that is respected by
clinician scientists that work in a highly competitive field.
The VarWatch project is such an attempt that just started
in Germany and that intends to act as a matchmaker for
scientists with variants of unclear clinical significance,
VUCS. The core idea is a “give-and-take” code of conduct.
A query to VarWatch presupposes that a scientist identi-
fied some promising candidatemutations in a patientwith

a Mendelian disease that are yet inconclusive and he is
looking for “the second patient of its kind” to clarify their
status. By submitting a query, the user agrees that a col-
laboration is started to finalize the assessment of a variant
as soon as a match was made and that more detailed phe-
notypic information of the patients will be exchanged.

Like all matchmaking platforms also VarWatch has to
encourage contributions to obtain a critical mass to be at-
tractive to users. Recently, VarWatch announced a collab-
oration with HGMD professional to ensure the quality of
each query. At best, this will point VarWatch users to sci-
entific literature they might have missed and it will help
HGMD to rerate some of the mutations with false classifi-
cations, of which there are plenty.

However, a potential misconduct is also imaginable
when VarWatch is used as a shortcut to get HMGD anno-
tations. An administrator might exclude particular users
with such undesired behavior, but ideally, the platform
should evolve to a robust self-regulating system. A rep-
utation system that rewards valuable microcontributions
might be an option. ResearchGate, for instance, which is
a fast growing professional network for scientists, encour-
ages cooperative behavior by increasing the RG score of
users that actively share their knowledge [4].

Like many resources that are important for scientific
work, VarWatch is initially publicly funded, but it is re-
quired to become economically sustainable over time. It
is assumed that the expertise of an independent adminis-
trator will be required beyond the funding period, if Var-
Watch becomes a success and is heavily used. The main
task of this staff will be to support users in the process
of clarifying VUCS as soon as a match was made. Cur-
rently, VarWatch is working together with several commer-
cial software providers such as GeneTalk, JSI-Medical Sys-
tems, and Genomatix that will provide access to VarWatch
integrated into their solutions. In the long run royalties
from these commercial entities might finance VarWatch as
efficient matchmaking adds value to their products.

Another urgent question is how to gain support of
commercial diagnostics providers. It is obvious that large
entities such as e. g.Myriad or Centogene, couldmine their
sequencing data and monetarize it as paid content (see
e. g. CentoMD). However, often health insurances cover
the costs of the initial diagnostics test, on which this clini-
cal knowledge is based on. From a mere economical point
of view the insurance agencies should insist that the clin-
ical relevant data is shared and feed into free access data
bases, as this will lower health care costs. If a voluntary
commitment of commercial diagnostics providers turns
out to be not feasible, legislators should become active.
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3 Site frequency spectrum
As alreadymentioned in the introduction, allele frequency
distributions are the key in analyzing patient’s genomes.
About fifty years ago Kimura developed the neutral the-
ory of molecular evolution, that describes the allele fre-
quency distribution, 𝐹(𝑥), for sequence variants that do
not have a functional impact in a population that is con-
stant in size and whose individuals are randomly mat-
ing [5]. For small allele frequencies, 𝑥, there is a 1/𝑥 de-
pendency, that is, most alleles in the population are ex-
tremely rare. Furthermore, especially the composition of
rare variants is highly population-specific. The results of
1070 recently sequenced healthy Japanese illustrate that:
Of 21 million single nucleotide variants, SNVS, that were
detected,more thanhalfwere novel [6]. Thus, further large
sequencingprojects are needed to provide suitable site fre-
quency spectra, SFS, with high resolution for patients of
different ethnicities.

4 Phenotypic overlap
For most Mendelian disorders there doesn’t exist a singu-
lar pathognomonic finding, but it is rather a combination
of characteristic features that guides to the clinical diagno-
sis. The prerequisite for a comparison of a set of symptoms
is a computer searchable terminology and theHumanPhe-
notype Ontology, HPO, has become the de facto standard
for deep phenotyping [7]. In a tour de force Robinson et al.
derived the information content of each phenotypic fea-
ture of the HPO: They annotated all known genetic disor-
ders and computed how often a term or a descendent of
it was used as a disease feature. By this means e. g. “in-
tellectual disability” receives a lower information content
as “hyperphosphatasia” as it occurs inmore syndromes as
a symptom.

Köhler et al. developed a tool, called Phenomizer, that
allows using sets of phenotypic features to prioritize dif-
ferential diagnoses [8]. In short, there might be many
hundreds of diseases with intellectual disability as a fea-
ture and several others, where an elevated alkaline phos-
phatase occurs but the combination is highly indicative for
Hyperphosphatasia with Mental Retardation Syndrome.
HPMRS is a molecular pathway disease that is caused by
pathogenic mutations in genes that are involved in the
GPI-anchor synthesis.

For patients with dysmorphic features, image analysis
technology, such as e. g. from FDNA, might also be used
to support deep phenotyping. The software Face2Gene is

able to predict the correct syndrome in a suggested list of
ten differential diagnoses in about 80% of the cases.

Over the recent years several groups analyzed the di-
agnostic yield of large gene-panel sequencing approaches
that were used as first line analysis for patients with sus-
pected syndromic disorders [9, 10]. In some of these stud-
ies phenotype-based prioritization was used to rank the
detected variants. Interestingly, someof thediagnoses that
could be made, were beyond the phenotypic spectrum,
that was known for the disease and it is therefore assumed
that the phenotypic variability of many disorders is con-
siderably higher than currently known. For inherited GPI-
anchor deficiencies, IGDs, for examplehyperphosphatasia
was expected to be a hallmark feature. However, exome se-
quencing of large cohorts with patients with intellectual
disability and epilepsies have also identified several novel
cases with GPI-anchor deficiencies, but normal levels of
alkaline phosphatase [11]. On the other hand, there were
many symptoms present in these patients that fit very well
to an IGD, such asmuscular hypotonia, certain organmal-
formations, and skeletal abnormalities, but their expres-
sivity is highly variable in this disorder.

Conceptually, frequency information can also be con-
sidered in phenotype-based prioritization algorithms. For
a couple of neurological disorders Köhler et al. contributed
disease annotations that incorporate whether a symp-
tom is rare or common [12]. This quantitative approach of
disease description will especially improve matching of
highly variable phenotypes. Deep and quantitative pheno-
typing may also help to define cohorts of unsolved cases
that can be further analyzed for disease gene associations.
Such comprehensively characterized cohorts will also be
essential for a deeper understanding of loss of function
mutations with reduced penetrance [13].

5 Non-coding mutations
Let’s suppose we identified the following three muta-
tions in a cohort of patients with intellectual disability via
genome sequencing:

Chr12:49.416.115G>A
Chr12:49.440.141G>C
Chr12:49.448.455C>A

A Without further knowledge it is pretty difficult to de-
cide, whether these variants that are distributed overmore
than 30 kb, are disease associated. However, with the ad-
ditional information that 1) all three mutations haven’t
been reported so far in healthy controls and 2) result in



DE GRUYTER OLDENBOURG P.M. Krawitz, Challenges ahead for matchmaking | 143

a premature termination of the coding sequence of the
gene KMT2D (nonsense mutations), the puzzle would be
solved [14].

For non-coding mutations we not only lack theoreti-
cal models for the expected functional impact but there is
also much less frequency data available. While there are
almost 100.000 exomes in the public domain that can be
used for filtering coding variants, we are still basically lim-
ited to about 2.500 whole genome data sets from the 1000
genomes project, when it comes to intergenic and deeply
intronic variants [1]. However, both are essential when co-
horts of patients with Mendelian disorders are analyzed
for gene associations. In genomewide association studies,
the test statistics differ for common and rare variants. Rare
variants association studies, RVAS, have to work on col-
lapsed sets of rare alleles. However, the power of these bur-
den tests is increased only if the alleles that are subjected
to the analysis, are more likely to be pathogenic [15]. In
contrast, if neutral variants outweigh, it’s hardly possible
to detect a true disease-gene-association. For RVAS on re-
cessive Mendelian diseases the most effective approach is
a very strict allele frequency filter, prior to association test-
ing, as most pathogenic alleles occur in less than 1 out of
10.000 healthy controls. However, in this frequency spec-
trum confounding from population substructure is differ-
ent to common variants and the existing correction meth-
ods fromGWAS cannot be applied [16]. Zhu et al. suggested
a statistical framework for optimizing rare variant asso-
ciation studies, RVAS, on exome data for Mendelian dis-
orders [17]. They could reproduce the results of some dis-
ease case collections that were already successfully ana-
lyzed, as e. g. the aforementioned Kabuki make-up cohort,
and they could also contribute to the identification of the
disease gene TGDS in Catel-Manzke’s syndrome [18]. The
probability to rank a true disease gene at the top position
was higher, when cases were matched with controls that
showed a similar profile of rare variants.

New large population scale sequencing projects such
as the 100.000 genomes project in the UK are the precon-
dition to extent RVAS to rare noncoding variants. In addi-
tion, our theoretical understanding of cis-interactions has
to grow as classical gene coordinates will not suffice for
defining appropriate intervals for collapsing rare variants.
In a landmark paper by Dixon et al. topological domains,
TADs, were introduced as regions of the genome that are
able to functionally interact [19]. These intervals might be
used for rare variant burden test. However, with a size of
2–3Mb these regions harbor still too many neutral rare
variants that dilute a signal. Even if every patient of a large
case group would carry two rare non-coding pathogenic
alleles in a TAD, additional filters are required for weight-

ing. The few studies that could identify pathogenic non-
coding alleles so far used e. g. epigenomic annotations for
prioritization [20]. Evolutionary conservation and binding
profiles of transcription factors, microRNAs and further
regulatory active RNAs can serve as input data tracks for
machine learning classifiers [21]. Currently the main bot-
tleneck for such endeavors is the small training sets: In
ClinVar more than 100.000 disease-causing missense and
nonsense mutations are listed, whereas only a handful
of pathogenic intergenic mutations are known. Hopefully,
phenotype- andmutation-based matchmaking efforts will
fill that gap soon.
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