Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter Oldenbourg July 28, 2022

Airborne LiDAR data in landscape archaeology. An introduction for non-archaeologists

  • Benjamin Štular

    Assoc. Prof. Dr. Benjamin Štular is a principal research associate at Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (Slovenia). His research and teaching are focused on digital archaeology (digital archiving and airborne LiDAR), landscape archaeology, and medieval archaeology.

    EMAIL logo
    and Edisa Lozić

    Assist. Prof. Dr. Edisa Lozić is an assistant researcher at Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (Slovenia). Her research and teaching are focused on the archaeology of the Roman funerary monuments and airborne LiDAR.

Abstract

The use of airborne LiDAR data has become an essential component of landscape archaeology. This review article provides an understandable introduction to airborne LiDAR data processing specific to archaeology with a holistic view from a technical perspective. It is aimed primarily at researchers, students, and experts whose primary field of study is not archaeology. The article first outlines what the archaeological interest in airborne LiDAR data is and how the data processing workflow is archaeology-specific. The article emphasises that the processing workflow is riddled with archaeology-specific details and presents the key processing steps. These are, in order of their impact on the final result, enhanced visualisation, manual reclassification, filtering of ground points, and interpolation. If a single most important characteristic of airborne LiDAR data processing for archaeology is to be emphasised, it is that archaeologists need an archaeology-specific DEM for their work.

ACM CCS:

Award Identifier / Grant number: N6-0132

Funding statement: Javna Agencija za Raziskovalno Dejavnost RS, Grant Number: N6-0132.

About the authors

Assoc. Prof. Dr. Benjamin Štular

Assoc. Prof. Dr. Benjamin Štular is a principal research associate at Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (Slovenia). His research and teaching are focused on digital archaeology (digital archiving and airborne LiDAR), landscape archaeology, and medieval archaeology.

Assist. Prof. Dr. Edisa Lozić

Assist. Prof. Dr. Edisa Lozić is an assistant researcher at Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (Slovenia). Her research and teaching are focused on the archaeology of the Roman funerary monuments and airborne LiDAR.

References

1. Abramov, O., McEwen, A.: An evaluation of interpolation methods for Mars Orbiter Laser Altimeter (MOLA) data. International Journal of Remote Sensing. 25, 3, 669–676 (2004).10.1080/01431160310001599006Search in Google Scholar

2. Aguilar, F.J. et al.: Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy. Photogrammetric Engineering & Remote Sensing. 71, 7, 805–816 (2005).10.14358/PERS.71.7.805Search in Google Scholar

3. Ali, T.A.: On the Selection of an Interpolation Method for Creating a Terrain Model (TM) from LIDAR Data. In: Proceedings of the American Congress on Surveying and Mapping (ACSM) Conference 2004, Nashville, TN, USA, 2004.Search in Google Scholar

4. Aston, M.: Interpreting the Landscape: Landscape Archaeology and Local History. Routledge (1985).Search in Google Scholar

5. Balsi, M. et al.: Preliminary Archeological Site Survey by UAV-Borne Lidar: A Case Study. Remote Sensing. 13, 3, 332 (2021).10.3390/rs13030332Search in Google Scholar

6. Bater, C.W., Coops, N.C.: Evaluating error associated with lidar-derived DEM interpolation. Computers & Geosciences. 35, 2, 289–300 (2009). https://doi.org/10.1016/j.cageo.2008.09.001.10.1016/j.cageo.2008.09.001Search in Google Scholar

7. Bennett, R. et al.: A comparison of visualization techniques for models created from airborne laser scanned data. Archaeological Prospection. 19, 1, 41–48 (2012). https://doi.org/10.1002/arp.1414.10.1002/arp.1414Search in Google Scholar

8. Bewley, R.H. et al.: New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity. 79, 305, 636–647 (2005).10.1017/S0003598X00114577Search in Google Scholar

9. Bofinger, J., Hesse, R.: As far as the laser can reach...: Laminar analysis of LiDAR detected structures as a powerful instrument for archaeological heritage management in Baden-Württemberg, Germany. In: Cowley, D. (ed.), Remote Sensing for Archaeological Heritage Management. pp. 161–172 Europae Archaeologia Consilium, Brussels (2011).Search in Google Scholar

10. Briese, C. et al.: Radiometric Information from Airborne Laser Scanning for Archaeological Prospection. International Journal of Heritage in the Digital Era. 3, 1, 159–178 (2014).10.1260/2047-4970.3.1.159Search in Google Scholar

11. Canuto, M.A. et al.: Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science. 361, 6409, eaau0137 (2018). https://doi.org/10.1126/science.aau0137.10.1126/science.aau0137Search in Google Scholar PubMed

12. Carey, C.J. et al.: Predictive modelling of multiperiod geoarchaeological resources at a river confluence: a case study from the Trent–Soar, UK. Archaeological Prospection. 13, 4, 241–250 (2006). https://doi.org/10.1002/arp.295.10.1002/arp.295Search in Google Scholar

13. Challis, K. et al.: A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data. Archaeological Prospection. 18, 4, 279–289 (2011). https://doi.org/10.1002/arp.421.10.1002/arp.421Search in Google Scholar

14. Challis, K. et al.: Airborne lidar intensity and geoarchaeological prospection in river valley floors. Archaeological Prospection. 18, 1, 1–13 (2011). https://doi.org/10.1002/arp.398.10.1002/arp.398Search in Google Scholar

15. Challis, K. et al.: Assessing the preservation potential of temperate, lowland alluvial sediments using airborne lidar intensity. Journal of Archaeological Science. 38, 2, 301–311 (2011). https://doi.org/10.1016/j.jas.2010.09.006.10.1016/j.jas.2010.09.006Search in Google Scholar

16. Challis, K., Howard, A.: The role of lidar intensity data in interpreting environmental and cultural archaeological landscapes. In: Opitz, R.S., Cowley, D.C. (eds.), Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. pp. 161–170 Oxbow Books, Oxford (2013).10.2307/j.ctvh1dqdz.18Search in Google Scholar

17. Chaplot, V. et al.: Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology. 77, 126–141 (2006).10.1016/j.geomorph.2005.12.010Search in Google Scholar

18. Chase, A.F. et al.: Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of Sciences. 109, 32, 12916–12921 (2012). https://doi.org/10.1073/pnas.1205198109.10.1073/pnas.1205198109Search in Google Scholar

19. Chen, C. et al.: A Robust Algorithm of Multiquadric Method Based on an Improved Huber Loss Function for Interpolating Remote-Sensing-Derived Elevation Data Sets. Remote Sensing. 7, 3, 3347–3371 (2015). https://doi.org/10.3390/rs70303347.10.3390/rs70303347Search in Google Scholar

20. Chen, C., Li, Y.: A Fast Global Interpolation Method for Digital Terrain Model Generation from Large LiDAR-Derived Data. Remote Sensing. 11, 11, 1324 (2019).10.3390/rs11111324Search in Google Scholar

21. Chu, H.-J. et al.: Effect of point density and interpolation of LiDAR-derived high-resolution DEMs on landscape scarp identification. GIScience & Remote Sensing. 51, 6, 731–747 (2014).10.1080/15481603.2014.980086Search in Google Scholar

22. Ćmielewski, B. et al.: UAV LiDAR Mapping in the Historic Sanctuary of Machupicchu: Challenges and Preliminary Results: Part 1 = Mapowanie Historycznego Sanktuarium Machupicchu przy użyciu bezzałogowego systemu powietrznego wyposażonego w LiDAR. Wyzwania i wstępne wyniki (cz. 1). Journal of Heritage Conservation. 67, 159–170 (2021). https://doi.org/10.48234/WK67LIDAR.Search in Google Scholar

23. Coren, F. et al.: Integrating LiDAR intensity measures and hyperspectral data for extracting of cultural heritage. In: Workshop Italy-Canada for 3D Digital Imaging and Modeling: applications of heritage, industry, medicine and land (2005).Search in Google Scholar

24. Cowley, D.C. et al., eds.: Landscapes through the Lens. Aerial Photographs and the Historic Environment. Oxbow Books, Oxford (2010).Search in Google Scholar

25. Crawford, O.G.S.: Archaeology in the Field. Phoenix House Ltd., London (1953).Search in Google Scholar

26. Crutchley, S., Crow, P.: The Light Fantastic: Using Airborne Lidar in Archaeological Survey. English Heritage, Swindon (2010).Search in Google Scholar

27. Desmet, P.J.J.: Effects of Interpolation Errors on the Analysis of DEMs. Earth Surface Processes and Landforms. 22, 563–580 (1997).10.1002/(SICI)1096-9837(199706)22:6<563::AID-ESP713>3.0.CO;2-3Search in Google Scholar

28. Devereux, B.J. et al.: The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity. 79, 305, 648–660 (2005). https://doi.org/10.1017/S0003598X00114589.10.1017/S0003598X00114589Search in Google Scholar

29. Doneus, M.: Die Hinterlassene Landschaft. Prospektion und Interpretation in der Landschaftsarchäologie. Verlag der österreichischen Akademie der Wissenschaften, Wien (2013).10.2307/j.ctt1vw0qcbSearch in Google Scholar

30. Doneus, M. et al.: Airborne Laser Bathymetry for Documentation of Submerged Archaeological Sites in Shallow Water. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W5, 99–107 (2015). https://doi.org/10.5194/isprsarchives-XL-5-W5-99-2015.10.5194/isprsarchives-XL-5-W5-99-2015Search in Google Scholar

31. Doneus, M. et al.: Airborne laser bathymetry–detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science. 40, 4, 2136–2151 (2013).10.1016/j.jas.2012.12.021Search in Google Scholar

32. Doneus, M. et al.: Airborne laser scanning and Mediterranean environments – Croatian case studies. Izdanja Hrvatskog arheološkog društva. 30, 148–163 (2015).Search in Google Scholar

33. Doneus, M. et al.: Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment. Journal of Computer Applications in Archaeology. 3, 1, 92–108 (2020). https://doi.org/10.5334/jcaa.44.10.5334/jcaa.44Search in Google Scholar

34. Doneus, M., Briese, C.: Airborne Laser Scanning in forested areas – potential and limitations of an archaeological prospection technique. In: Cowley, D.C. (ed.), Remote Sensing for Archaeological Heritage Management. pp. 59–76 Europae Archaeologia Consilium (EAC), Brussels (2011).Search in Google Scholar

35. Doneus, M., Kühteiber, T.: Airborne laser scanning and archaeological interpretation – bringing back the people. In: Opitz, R.S., Cowley, D.C. (eds.), Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. pp. 32–50 Oxbow Books, Oxford (2013).10.2307/j.ctvh1dqdz.8Search in Google Scholar

36. Dong, P., Chen, Q.: LiDAR Remote Sensing and Applications. CRC Press, Taylor & Francis Group, Boca Raton (2018).Search in Google Scholar

37. Doucette, P., Beard, K.: Exploring the Capability of Some GIS Surface Interpolators for DEM Gap Fill. Photogrammetric Engineering & Remote Sensing. 66, 7, 881–888 (2000).Search in Google Scholar

38. Eichert, S. et al.: Open LiDAR Toolbox: Version 2.1, Zenodo (2021). https://zenodo.org/record/5786056.Search in Google Scholar

39. Erdogan, S.: A comparison of interpolation methods for producing digital elevation models at the field scale. Earth Surface Processes and Landforms. 34, 3, 366–376 (2009).10.1002/esp.1731Search in Google Scholar

40. Evans, D.: Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. Journal of Archaeological Science. 74, 164–175 (2016). https://doi.org/10.1016/j.jas.2016.05.009.10.1016/j.jas.2016.05.009Search in Google Scholar

41. Evans, D. et al.: Uncovering archaeological landscapes at Angkor using lidar. PNAS. 110, 31, 12595–12600 (2013). https://doi.org/10.1073/pnas.1306539110.10.1073/pnas.1306539110Search in Google Scholar PubMed PubMed Central

42. Fernandez-Diaz, J. et al.: Now You See It... Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing. 6, 10, 9951–10001 (2014). https://doi.org/10.3390/rs6109951.10.3390/rs6109951Search in Google Scholar

43. Fuchs, R. et al.: Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biology. 21, 1, 299–313 (2014).10.1111/gcb.12714Search in Google Scholar PubMed

44. Georges-Leroy, M.: Airborne Laser Scanning for the management of archaeological sites in Lorraine (France). In: Cowley, D.C. (ed.), Heritage Management of Farmed and Forested Landscapes in Europe. pp. 229–234 Europae Archaeologia Consilium (EAC), Brussels (2011).Search in Google Scholar

45. Georges-Leroy, M.: Typologie d’après LiDAR des structures agraires et parcellaires fossilisées sous couvert forestier en Lorraine. Archéologies numériques. 20-4, 1, (2020). https://doi.org/10.21494/ISTE.OP.2020.0521.10.21494/ISTE.OP.2020.0521Search in Google Scholar

46. Guo, Q. et al.: Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods. Photogrammetric Engineering & Remote Sensing. 76, 6, 701–712 (2010). https://doi.org/10.14358/pers.76.6.701.10.14358/PERS.76.6.701Search in Google Scholar

47. Guyot, A. et al.: Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach. Journal of Computer Applications in Archaeology. 4, 1, 1–19 (2021). https://doi.org/10.5334/jcaa.64.10.5334/jcaa.64Search in Google Scholar

48. Guyot, A. et al.: Objective comparison of relief visualization techniques with deep CNN for archaeology. Journal of Archaeological Science: Reports. 38, 103027 (2021). https://doi.org/10.1016/j.jasrep.2021.103027.10.1016/j.jasrep.2021.103027Search in Google Scholar

49. Habib, M.: Evaluation of DEM interpolation techniques for characterizing terrain roughness. CATENA. 198, 105072 (2021).10.1016/j.catena.2020.105072Search in Google Scholar

50. He, Y., Weng, Q., eds.: High Spatial Resolution Remote Sensing: Data, Analysis, and Applications. Taylor and Francis Group, Boca Raton (2018).10.1201/9780429470196Search in Google Scholar

51. Heritage, G.L. et al.: Influence of survey strategy and interpolation model on DEM quality. Geomorphology. 112, 3-4, 334–344 (2009). https://doi.org/10.1016/j.geomorph.2009.06.024.10.1016/j.geomorph.2009.06.024Search in Google Scholar

52. Hesse, R.: LiDAR-derived Local Relief Models–a new tool for archaeological prospection. Archaeological Prospection. 17, 2, 67–72 (2010). https://doi.org/10.1002/arp.374.10.1002/arp.374Search in Google Scholar

53. Hightower, J. et al.: Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sensing. 6, 11, 10716–10732 (2014). https://doi.org/10.3390/rs61110716.10.3390/rs61110716Search in Google Scholar

54. Hoskins, W.G.: The making of the English landscape. Hodder and Stoughton, London (1954).Search in Google Scholar

55. Hutchinson, M.F., Gessler, P.E.: Splines – more than just a smooth interpolator. Geoderma. 62, 1, 45–67 (1994).10.1016/0016-7061(94)90027-2Search in Google Scholar

56. Johnson, K.M., Ouimet, W.B.: Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). Journal of Archaeological Science. 43, 9–20 (2014). https://doi.org/10.1016/j.jas.2013.12.004.10.1016/j.jas.2013.12.004Search in Google Scholar

57. Kenzler, H., Lambers, K.: Challenges and Perspectives of Woodland Archaeology across Europe. In: Giligny, F. et al. (eds.), CAA2014 21st Century Archaeology. Concepts, methods and tools. Proceedings of the 42nd Annual Conference on Computer Applications and Quantitative Methods in Archaeology. Archaeopress, Oxford (2015).Search in Google Scholar

58. Khan, S. et al.: A UAV–lidar system to map Amazonian rainforest and its ancient landscape transformations. International Journal of Remote Sensing. 38, 8-10, 2313–2330 (2017). https://doi.org/10.1080/01431161.2017.1295486.10.1080/01431161.2017.1295486Search in Google Scholar

59. Knapp, B.A., Ashmore, W.: Archaeological Landscapes: Constructed, Conceptualized, Ideational. In: Ashmore, W., Knapp, B.A. (eds.), Archaeologies of Landscape: Contemporary Perspectives. Blackwell Publishing, Malden (1999).Search in Google Scholar

60. Kokalj, Ž. et al.: Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity. 85, 327, 263–273 (2011).10.1017/S0003598X00067594Search in Google Scholar

61. Kokalj, Ž., Hesse, R.: Airborne laser scanning raster data visualization: A Guide to Good Practice. Založba ZRC, Ljubljana (2017).10.3986/9789612549848Search in Google Scholar

62. Kokalj, Ž., Somrak, M.: Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sensing. 11, 7, 747 (2019). https://doi.org/10.3390/rs11070747.10.3390/rs11070747Search in Google Scholar

63. Laharnar, B. et al.: A structured Iron Age landscape in the hinterland of Knežak, Slovenia. In: Cowley, D.C. et al. (eds.), Rural Settlement: Relating buildings, landscape, and people in the European Iron Age. Sidestone Press, Leiden (2019).Search in Google Scholar

64. Lloyd, C.D., Atkinson, P.M.: Deriving DSMs from LiDAR data with kriging. International Journal of Remote Sensing. 23, 12, 2519–2524 (2002).10.1080/01431160110097998Search in Google Scholar

65. Lodewijckx, M., Pelegrin, R., eds.: A View from the Air: Aerial Archaeology and Remote Sensing Techniques. Results and opportunities. Archaeopress (2011).Search in Google Scholar

66. Lozić, E.: Application of Airborne LiDAR Data to the Archaeology of Agrarian Land Use: The Case Study of the Early Medieval Microregion of Bled (Slovenia). Remote Sensing. 13, 16, 3228 (2021). https://doi.org/10.3390/rs13163228.10.3390/rs13163228Search in Google Scholar

67. Lozić, E., Štular, B.: Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing. Geosciences. 11, 1, 26 (2021). https://doi.org/10.3390/geosciences11010026.10.3390/geosciences11010026Search in Google Scholar

68. Muir, R.: Reading the Landscape: a shell book. Michael Joseph, London (1981).Search in Google Scholar

69. Musson, C. et al.: Flights Into The Past Aerial photography, photo interpretation and mapping for archaeology. Aerial Archaeology Research Group (2013).Search in Google Scholar

70. Nyffeler, J.: Kulturlandschaft in neuem Licht: eine Einführung zu LiDAR in der Archäologie. University of Bamberg Press, Bamberg (2018). https://doi.org/10.20378/irbo-51051.Search in Google Scholar

71. Opitz, R., Nuninger, L.: Point Clouds Segmentation of Mixed Scenes with Archeological Standing Remains: A Multi-Criteria and Multi-Scale Iterative Approach. International Journal of Heritage in the Digital Era. 3, 2, 287–304 (2014). https://doi.org/10.1260/2047-4970.3.2.287.10.1260/2047-4970.3.2.287Search in Google Scholar

72. Opitz, R.S.: An overview of airborne and terrestrial laser scanning in archaeology. In: Opitz, R.S., Cowley, D.C. (eds.), Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. pp. 13–31 Oxbow Books, Oxford (2013).10.2307/j.ctvh1dqdz.7Search in Google Scholar

73. Pfeifer, N., Mandlburger, G.: LiDAR Data Filtering and Digital Terrain Model Generation. In: Shan, J., Toth, C.K. (eds.), Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & Francis Group, Boca Raton, London, New York (2018).Search in Google Scholar

74. Pingel, T.J. et al.: Bonemapping: a LiDAR processing and visualization technique in support of archaeology under the canopy. Cartography and Geographic Information Science. 42, sup1, 18–26 (2015). https://doi.org/10.1080/15230406.2015.1059171.10.1080/15230406.2015.1059171Search in Google Scholar

75. Poirier, N. et al.: The mapping of forested archaeological sites using UAV LiDaR. A feedback from a south-west France experiment in settlement & landscape archaeology (La cartographie des sites archéologiques forestiers au moyen d’un LiDaR embarqué par drone. Un retour d’expérience du Sud-Ouest de la France en archéologie du paysage et du peuplement). Archéologies numériques. 4, 2, 1–10 (2020).10.21494/ISTE.OP.2020.0556Search in Google Scholar

76. Razak, K.A. et al.: Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology. 190, 112–125 (2013).10.1016/j.geomorph.2013.02.021Search in Google Scholar

77. Riley, D.N.: Aerial Archaeology in Britain. Shire Publications Ltd., Aylesbury (1982).Search in Google Scholar

78. Rowlands, A., Sarris, A.: Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. Journal of Archaeological Science. 34, 5, 795–803 (2007). https://doi.org/10.1016/j.jas.2006.06.018.10.1016/j.jas.2006.06.018Search in Google Scholar

79. Rutkiewicz, P. et al.: High concentration of charcoal hearth remains as legacy of historical ferrous metallurgy in southern Poland. Quaternary International. 512, 133–143 (2019).10.1016/j.quaint.2019.04.015Search in Google Scholar

80. Schroder, W. et al.: UAV LiDAR Survey for Archaeological Documentation in Chiapas, Mexico. Remote Sensing. 13, 23, 4731 (2021). https://doi.org/10.3390/rs13234731.10.3390/rs13234731Search in Google Scholar

81. Shan, J., Toth, C.K., eds.: Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & Francis Group, Boca Raton (2018).10.1201/9781315154381Search in Google Scholar

82. Storch, M. et al.: Systematic Approach for Remote Sensing of Historical Conflict Landscapes with UAV-Based Laserscanning. Sensors. 22, 1, 217 (2021). https://doi.org/10.3390/s22010217.10.3390/s22010217Search in Google Scholar PubMed PubMed Central

83. Štular, B. et al.: Airborne LiDAR point cloud processing for archaeology. Pipeline and QGIS toolbox. Remote Sensing. 13, (2021).10.3390/rs13163225Search in Google Scholar

84. Štular, B. et al.: Airborne LiDAR-Derived Digital Elevation Model for Archaeology. Remote Sensing. 13, 9, 1855 (2021). https://doi.org/10.3390/rs13091855.10.3390/rs13091855Search in Google Scholar

85. Štular, B.: Scientific Dissemination of Archaeological Interpretation of Airborne LiDAR-derived Data. In: Garstki, K. (ed.), Critical Archaeology in the Digital Age. pp. 111–122 Cotsen Insititute of Archaeology Press, Los Angeles, CA (2022).10.2307/j.ctv2fcctzd.14Search in Google Scholar

86. Štular, B. et al.: Interpolation of Airborne LiDAR Data for Archaeology. Pre-Print HAL. 1–26 (2021). https://hal.archives-ouvertes.fr/hal-03196185/.Search in Google Scholar

87. Štular, B.: The use of lidar-derived relief models in archaeological topography The Kobarid region (Slovenia) case study. Arheološki vestnik. 62, 393–432 (2011).Search in Google Scholar

88. Štular, B. et al.: Visualization of lidar-derived relief models for detection of archaeological features. Journal of Archaeological Science. 39, 11, 3354–3360 (2012). https://doi.org/10.1016/j.jas.2012.05.029.10.1016/j.jas.2012.05.029Search in Google Scholar

89. Štular, B., Lozić, E.: Comparison of Filters for Archaeology-Specific Ground Extraction from Airborne LiDAR Point Clouds. Remote Sensing. 12, 18, 3025 (2020). https://doi.org/10.3390/rs12183025.10.3390/rs12183025Search in Google Scholar

90. Štular, B., Lozić, E.: Primernost podatkov projekta Lasersko skeniranje Slovenije za arheološko interpretacijo: metoda in študijski primer (The Suitability of Laser Scanning of Slovenia Data for Archaeological Interpretation: Method and a Case Study). In: Ciglič, R. et al. (eds.), Digitalni podatki. pp. 57–166 Geografski inštitut antona Melika ZRC SAZU, Ljubljana (2016).Search in Google Scholar

91. Su, J., Bork, E.: Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy. Photogrammetric Engineering & Remote Sensing. 72, 11, 1265–1274 (2006).10.14358/PERS.72.11.1265Search in Google Scholar

92. Tapete, D. et al.: Contextualising archaeological models with geological, airborne and terrestrial LiDAR data: The Ice Age landscape in Farndon Fields, Nottinghamshire, UK. Journal of Archaeological Science. 81, 31–48 (2017). https://doi.org/10.1016/j.jas.2017.03.007.10.1016/j.jas.2017.03.007Search in Google Scholar

93. Verhoeven, G. et al.: From pixel to mesh – accurate and straightforward 3D documentation of cultural heritage from the Cres/Lošinj archipelago. Izdanja Hrvatskog arheološkog društva. 30, 165–176 (2015).Search in Google Scholar

94. Verhoeven, G.J.: Mesh Is More-Using All Geometric Dimensions for the Archaeological Analysis and Interpretative Mapping of 3D Surfaces. Journal of Archaeological Method and Theory. 24, 999–1033 (2017). https://doi.org/10.1007/s10816-016-9305-z.10.1007/s10816-016-9305-zSearch in Google Scholar

95. Xiaoye, L.: Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography. 32, 1, 31–49 (2008).10.1177/0309133308089496Search in Google Scholar

96. Yoëli, P.: Analytical Hill Shading. Surveying and Mapping. 25, 4, 573 (1965).Search in Google Scholar

97. Zapłata, R.: Historyczne załozenia obronne, architectura militaris i LiDAR. Wybrane zagadnienia metodyczne z zakresu zastosowania skanowania laserowego w detekcji i inwentaryzacji nowozytnych fortyfikacji. Studia Geohistorica. 3, 150 (2017).10.12775/SG.2015.11Search in Google Scholar

Received: 2022-01-06
Revised: 2022-05-25
Accepted: 2022-07-21
Published Online: 2022-07-28
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/itit-2022-0001/html
Scroll to top button