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Time-Order Representation Based Method
for Epoch Detection from Speech Signals

Pooja Jain and Ram Bilas Pachori

Abstract. Epochs present in the voiced speech are defined as time instants of significant
excitation of the vocal tract system during the production of speech. Nonstationary na-
ture of excitation source and vocal tract system makes accurate identification of epochs a
difficult task. Most of the existing methods for epoch detection require prior knowledge
of voiced regions and a rough estimation of pitch frequency. In this paper, we propose a
novel method that relies on time-order representation (TOR) based on short-time Fourier–
Bessel (FB) series expansion which can be employed on entire speech signal to detect
epochs without any prior information. The proposed method automatically detects voiced
regions in the speech signal by computing the marginal energy density with respect to
time in the low frequency range (LFR) from the energy distribution in the time-frequency
plane. An estimate of pitch frequency for each detected voiced region is then obtained by
computing the marginal energy density with respect to frequency in the LFR from the en-
ergy distribution in the time-frequency plane. Epochs are located for each detected voiced
region as peaks in the derivative of the low pass filtered (LPF) signal corresponding to
falling edges of peak negative cycles in the LPF signal synthesized from TOR coefficients
corresponding to LFR. Experimental results obtained by the proposed method on speech
signals taken from the CMU-Arctic database are found to be promising. The proposed
method detects epochs with high accuracy and reliability.

Keywords. Speech Signal Analysis, Epoch Detection, Pitch Frequency Estimation,
Voiced Detection, Time-Order Representation, Fourier–Bessel Series Expansion.
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1 Introduction

Speech is produced when the vocal tract system is stimulated by the excitation
source. Air is forced through lungs and passed through vocal folds, acting as an
excitation source. The vocal tract system comprises of lips, teeth, nasal cavity,
tongue and mouth which act as a time-varying filter amplifying certain frequen-
cies and attenuating other frequencies present in the excitation. The speech sig-
nal consists of two parts, voiced and non-voiced. During voiced speech, the vocal
folds vibrate and excitation takes the form of quasi-periodic puffs of air which pro-
duces output speech that appears periodic. Non-voiced speech consists of unvoiced
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speech and silence. Unvoiced speech is produced when air rapidly passes through
a narrow constriction in the windpipe, resulting in white noise like output. Si-
lence contains only background noise. About one third part of a speech signal
is unvoiced [9]. Epochs are defined as time instants of significant excitation of
the vocal tract system during the production of speech. Vocal folds vibrate during
voiced activity and glottal closure causes sudden decrease in the glottal impedance
resulting in high signal strength. Time instants of glottal closure when there is lit-
tle or no air flow through the glottis are known as epochs or glottal closure instants
(GCIs). Epochs can be detected from the electro-glottograph (EGG) signal but the
EGG signal is normally not available in practical applications. This provides a
strong motivation to develop techniques for detection of epochs directly from the
speech signal. In this paper, we will use the word epoch and the acronym GCI
interchangeably to denote instants of glottal closure.

Accurate epoch detection is a fundamental requirement for many speech analy-
sis and synthesis applications. Instantaneous pitch frequency computation from
GCIs can be used for automatic gender identification and emotion recognition
[10, 14, 37]. Pitch synchronous waveform encoding of voice needs epoch infor-
mation [12]. Precise identification of epochs allows blind deconvolution of vocal
tract system and excitation source [36, 39]. Speaker recognition and diagnosis of
voice disorders can be performed with knowledge of closed glottis regions [17,29].
The detected epochs can be employed as pitch markers for prosody manipulation,
which is useful in applications like text to speech synthesis and voice conversion
[8, 30].

Several methods have been developed so far to determine epochs from speech
signal without the availability of EGG signal. The task of detecting epochs from
speech signal was earlier addressed by Sobakin and Strube [33, 34]. Time instant
corresponding to the maximum of the determinant of the auto-covariance matrix
within a pitch period of the speech signal is recognized as an epoch. However,
the method has high computational complexity, low accuracy and it does not work
well for some vowel sounds. Many classical methods for GCI detection relied on a
linear prediction model of speech signal, where the vocal tract system is modeled
as an all-pole filter. The parameters of the filter are assumed to be stationary for
the duration of 20–30 ms, assuming that the vocal tract system is varying slowly.
Linear prediction (LP) residual signal is obtained by removing the linear predic-
tion of the speech signal from the speech signal. Time instant corresponding to
large value of LP residual within a pitch period is indicative of GCI [2] but the
presence of peaks of opposite polarities in the LP residual signal around a GCI
causes ambiguity. This limitation was overcome in [1] by computing the Hilbert
envelope of the LP residual whose positive peaks undoubtedly locate GCIs. The
drawback of LP based analysis is that it is sensitive to noise. Moreover, accurate
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parameter estimation of an all-pole model and characterization of the excitation
source are interdependent problems.

Cheng et al. proposed a maximum likelihood theory based method for GCI de-
tection [4]. In this method, the strongest positive pulse within a pitch period of
the resultant signal is detected as GCI. Many suboptimal pulses are present in the
close vicinity of the GCI candidate; therefore a selection function is derived from
the speech signal and its Hilbert transform to contrast between GCI candidate and
other suboptimal pulses. GCI locations from the speech signal can be extracted
from its short-term energy estimate. The Frobenius norm based approach for GCI
identification was proposed in [16]. The Frobenius norm computed using a sliding
window provides an estimate of signal energy at each sample instant. Time instant
with maximum energy within a pitch period is identified as GCI. However, sim-
ulations were carried out only on vowel segments; more complicated cases like
semivowels, nasals have not been dealt with. Epochs can also be detected using
time-frequency analysis. Wavelet transform obtained at various scales has been
used to detect GCIs [35]. Amplitude maxima at various scales are organized into
lines of maximal amplitude (LOMA) using a dynamic programming algorithm.
These lines form “trees” in the time-scale domain. GCIs are then interpreted
as the top of the strongest branch, or trunk, of these trees. Cohen’s class time-
frequency representation based approach for detecting GCIs from speech signal in
noisy environments was presented in [19]. A detection function has been defined
and morphologic filtering has been applied over it to determine GCIs optimally.

Group delay measures have been used to identify GCIs [32]. Average group
delay of the speech signal within an analysis frame corresponds to GCI. The re-
silience of group delay measure in noisy environment was studied in [38]. A
quantitative assessment of various group delay measures for GCI identification
from voiced speech signal was made in [3]. Different group delay measures,
namely average group delay, zero frequency group delay and energy weighted
group delay, were compared on the basis of various performance parameters such
as computational complexity, detection rate, and accuracy. A dynamic program-
ming projected phase-slope algorithm (DYPSA) for GCI detection from voiced
speech signal was presented in [15, 20]. Zero crossings of the phase-slope func-
tion derived from the energy weighted group-delay are further refined by a dy-
namic programming algorithm and identified as GCIs. Lately methods that do not
depend critically on characteristics of time-varying vocal tract system have been
proposed. The zero frequency resonator (ZFR) was proposed in [18] to extract
epochs from voiced speech signal. This method requires the knowledge of voiced
regions and an estimate of pitch period in advance. The amplitude and frequency
modulated (AM-FM) signal model based approach for GCI detection from speech
signals was proposed in [22]. The inherent filtering property of the Fourier–Bessel
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(FB) series expansion was used to weaken the effects of formants. Peaks of ampli-
tude envelope obtained by applying discrete energy separation algorithm (DESA)
to the LPF speech signal were recognized as GCIs. However, this method is appli-
cable only when the filtered speech signal is a mono-component AM-FM signal.

Most of the existing methods require knowledge of voiced parts of speech sig-
nal and need a rough estimation of pitch frequency. Pitch frequency is a time
varying quantity and does not remain constant throughout complete speech sig-
nal. These methods rely on voiced activity detection (VAD) algorithms and pitch
frequency estimation algorithms to provide the required information. Moreover,
many of the available methods are either sensitive to noise or do not give accurate
epoch locations; especially for female speakers, nasals and semivowels. A new
method is proposed in this paper based on the nonstationary nature of the speech
signal. Speech signals possess time-varying spectrum. The proposed method em-
ploys time-frequency analysis in the LFR to detect voiced regions, estimate pitch
frequency and locate epochs simultaneously. Time-frequency analysis using TOR
is carried out for LFR to suppress the formants. It has been observed that signif-
icant energy around the pitch frequency and its harmonics is present only during
voiced regions. At epochs, glottal impedance reduces and the magnitude of rate
of change of glottal impedance is high, resulting in a high magnitude of rate of
change of signal strength. We propose a novel method that locates epochs at peaks
of the derivative corresponding to falling edges of peak negative cycles of the LPF
speech signal synthesized from TOR coefficients corresponding to LFR.

This paper is organized as follows: An overview of time-order representation
(TOR) is presented in Section 2. In Section 3, speech signal behavior in the LFR
is discussed. The proposed method is explained in Section 4. Experimental results
are presented in Section 5. Section 6 concludes the paper.

2 Time-Order Representation Based on Short-Time Fourier–Bessel
Series Expansion

Nonstationary signals are frequently encountered in real environments like speech,
electroencephalogram (EEG), earthquake signals etc. Nonstationary signals have
time-varying amplitude and spectrum. The Fourier transform assumes the signal
to be stationary and thus it is not suitable for efficient analysis of nonstationary
signals. Time-frequency analysis is the most efficient way to characterize nonsta-
tionary signals. The time-order representation (TOR) based on short-time Fourier–
Bessel (FB) series expansion is one such time-frequency technique which is suit-
able for analysis and synthesis of nonstationary signals. The TOR and FB series
expansion employ aperiodic and exponentially decaying Bessel functions as the
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basis. Recently TOR and FB series expansion have been successfully applied in
diversified areas such as postural stability analysis [24], detection of voice on-
set time [23], separation of speech formants [28], EEG signal segmentation [26],
speech enhancement [7] and speaker identification [6]. The FB series expansion
has also been used to reduce cross terms in the Wigner–Ville distribution (WVD)
[25].

In this paper, we have employed the TOR for speech analysis and its synthesis
in the LFR. More specifically; the energy distribution in the time-frequency plane
computed from the TOR has been used to detect voiced regions and estimate pitch
frequency for each detected voiced region. The speech signal is then reconstructed
in the LFR to locate epochs. Hence, we present brief overview of the FB series
expansion and the TOR. The zero order FB series expansion of the band-limited
signal x.t/ spanning over the time period .0; T / has been defined as follows [31]:

x.t/ D

QX
lD1

ClJ0

��l t
T

�
; (1)

where �l for l D 1; : : : ;Q are the ascending order positive roots of J0.�/ D 0,
and the zero-order Bessel functions are represented by J0.�l t

T
/ in (1). By exploit-

ing the orthogonality of zero-order Bessel functions, the FB coefficients Cl are
computed as follows:

Cl D
2
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2

Z T

0
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��l t
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dt; l D 1; 2; : : : ;Q; (2)

where J1.�l/ are the first-order Bessel functions. The range Q of the FB series
expansion must be equal to the length of the discrete time signal in order to cover
the entire bandwidth of the discrete time signal, i.e., the half of the sampling fre-
quency of the discrete time signal. The range and order of the FB series expansion
increases with increase in bandwidth and center frequency of the signal, respec-
tively. The order of the FB series expansion and the frequency are related to each
other as follows [26]:

�l D 2�F T; (3)

where F represents the frequency in Hz. The FB coefficients Cl are unique for a
given signal. The TOR has been demonstrated [27] to efficiently separate mono-
components of a multicomponent signal. The TOR X.ti ; l/ for a given signal x.t/
has been defined as follows:

X.ti ; l/ D
2

T 2ŒJ1.�l/�
2

Z T
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��l�
T

�
d�; (4)
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where l D 1; : : : ;Q and i D 1; 2; : : : . The window function having finite time
support is represented by w.t/. The window function is real and an even function
of time. The TOR is computed at the time ti where the window is centered. The
energy distribution in the time-order plane E.ti ; l/ can be computed from TOR
coefficients X.ti ; l/ as follows [21]:

E.ti ; l/ D
T 2ŒJ1.�l/�

2

2
X2.ti ; l/; (5)

and the energy distribution in the time-frequency plane E.ti ; F / can be obtained
from the energy in the time-order distribution E.ti ; l/ by using the relation in (3).
The signal can be reconstructed from TOR coefficients X.ti ; l/ as follows:

x.t/ D

QX
lD1

X
i

X.ti ; l/w.t � ti /J0

��l t
T

�
: (6)

The windowing of the signal leads to a trade-off between time and frequency res-
olution. For acquiring good time resolution one requires a short duration window,
whereas good frequency resolution can be achieved by a long time duration win-
dow function.

3 Speech Signal Representation in the Low Frequency Range

Pitch frequency varies according to gender, age, emotion, language etc. For adult
males, the pitch frequency lies between 60 and 140 Hz, and for adult females the
pitch frequency lies between 150 and 400 Hz. For children the pitch frequency
can be as high as 500 Hz. The vocal tract system resonates at certain frequencies
called as formants. Formants are defined as spectral peaks of the spectrum of the
voiced part of speech signal. Information required by humans to distinguish be-
tween vowels can be represented quantitatively by the frequency content of vowel
sounds. Voiced regions can be detected accurately from the energy distribution in
the LFR. The time-varying behavior of speech signals in the LFR can be well un-
derstood by computing the energy distribution in the time-frequency plane in the
LFR. The contour plot of the energy distribution of speech signal in the time-order
plane computed from TOR coefficients corresponding to the frequency range of
0–500 Hz using (5) is depicted in Figure 1 (b). The Gaussian window of size 512
samples (32 ms) has been employed to compute time-order coefficients at each
instant of speech signal. The order range corresponding to the frequency range
of 0–500 Hz can be computed using the effective length of the windowed signal
and the relation in (3). Significant energy is present around the fundamental fre-
quency at 225 Hz and its second harmonic at 450 Hz during voiced regions and
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Figure 1. (a) Speech signal segment. (b) Energy distribution of speech signal seg-
ment in the time-order plane for LFR. (c) DEGG signal. Reference voiced regions
are shown by dashed lines. Speech signal is taken from the CMU-Arctic database
with speaker id 30001.

negligible energy is present during non-voiced regions of speech signal. Refer-
ence voiced regions are obtained from the differenced EGG (DEGG) signal shown
in Figure 1 (c). We propose representation of the discrete time speech signal in the
LFR using a multi-component AM-FM signal model as follows:

xLFŒn� D

MX
lD1

Al Œn� cos.2�lf0Œn�nC �l Œn�/; (7)

where xLFŒn� represents the discrete time speech signal in the LFR. The time vary-
ing normalized fundamental frequency (or pitch) is represented by f0Œn�. The time
varying amplitude envelope and phase of the l th harmonic of the fundamental fre-
quency is represented by Al Œn� and 'l Œn�, respectively, and M represents the total
number of harmonics present in the speech signal in the LFR.

4 Time-Order Representation Based Method for Epoch Detection

Most of the existing methods require knowledge of voiced regions and a rough
estimate of pitch frequency for epoch detection from speech signals. Till now,
detection of voiced regions, pitch frequency estimation and epoch detection have
been treated as independent problems and separate methods have been employed
to find solutions to each problem. In this work, we propose a new method based
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on time-frequency analysis of the speech signal in the LFR to simultaneously de-
tect voiced regions, estimate the pitch frequency for detected voiced regions and
accurately identify epochs from the speech signal.

A frequency range of 60–500 Hz is chosen as LFR for time-frequency anal-
ysis of the speech signal in order to include the fundamental frequency compo-
nent, its harmonics and deemphasize formants [11]. Time-order coefficients of
the speech signal are computed and the energy density distribution in the time-
frequency plane is evaluated using (3) and (5). Marginal energy densities with
respect to time and frequency in the LFR are used for detection of voiced regions
and an estimation of pitch frequency, respectively. The LPF speech signal is syn-
thesized from the time-order coefficients corresponding to LFR using (6). In order
to extract peak negative cycles of LPF speech signal, the fundamental harmonic
component of the speech signal is constructed using (6), modified and multiplied
with the LPF speech signal. Finally, the derivative of the LPF speech signal corre-
sponding to peak negative cycles of the LPF speech signal is isolated and epochs
are identified as peaks of the derivative corresponding to falling edges of peak neg-
ative cycles of the LPF speech signal. The proposed method is summarized in the
following steps:

1. Time-frequency analysis: Compute discrete time-order coefficients XLFŒn; l�

of the discrete time speech signal xŒn� for LFR using (4).

2. Energy distribution: Evaluate the energy distributionELFŒn; f � of the discrete
time speech signal xŒn� in the time-frequency plane from time-order coefficients
XLFŒn; l� corresponding to LFR using (3) and (5).

3. Voiced detection: Perform summation of the energy distribution ELFŒn; f �

with respect to frequency to obtain the marginal energy density with respect to
time ZŒn� in the LFR as follows:

ZŒn� D
X

f 2LFR

ELFŒn; f �: (8)

During voiced activity, substantial energy is present around the fundamental
frequency and its harmonics. Vocal regions can be detected from ZŒn� by select-
ing an appropriate threshold. Durations of the speech signal, where the marginal
energy density ZŒn� is greater than the threshold value, are detected as voiced re-
gions. The speech signal segment and its marginal energy density with respect to
time for LFR are shown in Figure 2.
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Figure 2. (a) Speech signal segment. (b) Marginal energy density of speech signal
segment with respect to time for LFR. (c) DEGG signal. Reference voiced regions
are shown by dashed lines. Speech signal is taken from the CMU-Arctic database
with speaker id 30001.

4. Pitch frequency estimation: Perform summation of the energy distribution
ELFŒn; f � over the duration of each detected voiced region to obtain the marginal
energy density with respect to frequency WmŒf � for the mth voiced region as fol-
lows:

WmŒf � D
X

n2ŒnmL;nmH �

ELFŒn; f � where f 2 LFR; (9)

where ŒnmL; nmH � represents the mth voiced region in the speech signal. nmL
and nmH denote the detected lower time limit and upper time limit of the mth
voiced region, respectively. The marginal energy density function with respect
to frequency for the mth voiced region WmŒf � will have peaks occurring at the
pitch frequency and its harmonics. The frequency corresponding to the first local
maxima of WmŒf � in the LFR provides an estimate of the pitch frequency FPF;m
for the mth voiced region as follows:

WmŒf1� D FLM.WmŒf �/;

FPF;m D f1 � Fs;
(10)

where Fs denotes the sampling frequency and the operator FLM denotes the first
local maximum. Frequencies below 60 Hz are not considered as the maximum
possible pitch period is 16 ms (see [11]). Marginal energy densities with respect
to frequency for two different voiced regions of the speech signal are shown in
Figure 3.
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Figure 3. Marginal energy density with respect to frequency for two different voiced
regions of the speech signal. Speech signal is taken from the CMU-Arctic database
with speaker id 30001.

5. Epoch detection: Epochs are identified as peaks of the derivative correspond-
ing to falling edges of peak negative cycles of the LPF speech signal. The follow-
ing operations have to be performed to extract epochs automatically:

(a) LPF speech signal: Synthesize the discrete LPF speech signal xLFŒn� from
discrete time-order coefficients XLFŒn; l� using (6).

(b) Derivative of the LPF speech signal: Compute the differenced LPF speech
signal x0LFŒn� as follows:

x0LFŒn� D xLFŒn� � xLFŒn � 1� D �xLFŒn�; (11)

where � denotes the difference operator.

(c) Bandwidth of the fundamental harmonic component: For each detected voiced
region, a range of frequencies around the fundamental frequency (or pitch)
with significant magnitude for the marginal energy density with respect to
frequency is taken into account for the reconstruction of the fundamental har-
monic component from the time-order coefficients XLF.n; l/ in the LFR. Let
ŒlmL; lmH � denote the range of order of the FB series expansion around the
order corresponding to the fundamental frequency FPF;m for the mth voiced
region which has significant magnitude for the marginal energy density with
respect to frequency WmŒf �. lmL and lmH denote the index corresponding to
the lower and upper limit of the order range around the fundamental frequency
FPF;m, respectively.
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(d) Modification of time-frequency coefficients: In order to synthesize the fun-
damental harmonic component from time-order coefficients XLFŒn; l�, time-
order coefficients XLFŒn; l� corresponding to higher harmonics must be made
zero for each voiced region as follows:

QXLFŒn; l� D

´
XLFŒn; l� if l 2 ŒlmL; lmH � for all n;
0 otherwise:

(12)

(e) Fundamental harmonic synthesis: Reconstruct the fundamental harmonic
component aŒn� from modified time-order coefficients QXLF.n; l/ using (6).

(f) Develop a new signal bŒn� from the fundamental harmonic component aŒn� as
follows:

bŒn� D

´
0 if aŒn� � 0,
1 if aŒn� < 0.

(13)

(g) Construct a new signal cŒn� from the LPF speech signal xLFŒn� as follows:

cŒn� D

´
0 if xLFŒn� � 0,
xLFŒn� if xLFŒn� < 0.

(14)

(h) Generate a new signal dŒn� from the differenced LPF speech signal x0LFŒn� as
follows:

dŒn� D

´
0 if x0LFŒn� � 0,
x0LFŒn� if x0LFŒn� < 0.

(15)

(i) Peak negative cycles extraction: Perform multiplication of bŒn� and cŒn� to
isolate peak negative cycles of the LPF speech signal xLFŒn� as follows:

gŒn� D bŒn� � cŒn�: (16)

(j) Create a new signal pŒn� from gŒn� as follows:

pŒn� D

´
0 if gŒn� � 0,
1 if gŒn� < 0.

(17)

(k) Generate a new signal qŒn� to extract the derivative corresponding to falling
edges of peak negative cycles of the LPF speech signal xLFŒn� as follows:

qŒn� D pŒn� � dŒn�: (18)

(l) Locate epochs: Time instants corresponding to local minima of qŒn� are de-
tected as epochs.
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5 Experimental Results

The proposed method has been simulated on speech signals taken from the CMU-
Arctic database [5,13] for performance assessment and comparison of results with
the ZFR method. The CMU-Arctic database consists of around 1150 phonetically
balanced sentences of about 3 seconds duration carefully selected from out-of-
copyright texts from project Gutenberg. They are spoken by five male speakers
and two female speakers. It also consists of simultaneous recordings of EGG
signals for two male speakers and one female speaker. Speech and EGG signals
are digitized in time at a sampling rate of 32 kHz and 16 bit resolution. Time
alignment of speech signals and EGG signals was already done in the CMU-Arctic
database to compensate for the larynx to microphone delay which was determined
to be 0.7 ms.

The time-order representation (TOR) has been used as a time-frequency anal-
ysis and synthesis tool. In order to reduce the computational complexity, speech
signals obtained from the database have been downsampled to 16 kHz sampling
rate. The Gaussian window of size 512 samples (32 ms) has been employed to
compute time-order coefficients at each sample instant of the speech signal. The
window size cannot be made arbitrarily small for the speech segment spectral prop-
erties to have correlation with the spectral properties of the original speech signal.
A threshold equal to 1% of the maximum marginal energy density with respect
to time is chosen to identify voiced activity regions. Figure 4 shows the speech
signal segment of a female speaker, the LPF speech signal, the derivative of the
LPF speech signal, the fundamental harmonic component, extracted peak negative
cycles, the isolated derivative corresponding to falling edges of peak negative cy-
cles of the LPF speech signal and the DEGG reference signal. Reference epochs
are extracted by finding peaks in the DEGG signal during voiced regions. Figure 5
depicts the same signals as mentioned above obtained during the simulation of
the proposed method on a speech signal segment of a male speaker. The follow-
ing measures defined in [20] have been used to evaluate the performance of the
proposed method.

1. Larynx cycle: The range of samples nr�1Cnr

2
� n �

nrCnrC1

2
, given an epoch

reference at sample nr , with preceding and succeeding epoch references at sam-
ples nr�1 and nrC1, respectively.

2. Identification rate (IDR): The percentage of larynx cycles for which exactly one
epoch is detected.

3. Miss rate (MR): The percentage of larynx cycles for which no epoch is detected.

4. False alarm rate (FAR): The percentage of larynx cycles for which more than
one epoch is detected.
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Figure 4. (a) Female speech signal segment. (b) LPF speech signal. (c) Derivative
of LPF speech signal. (d) Fundamental harmonic component. (e) Extracted peak
negative cycles of LPF speech signal. (f) Derivative corresponding to falling edges
of peak negative cycles of LPF speech signal. (g) DEGG reference signal. Pulses in
dashed lines correspond to detected epochs. Speech signal is taken from the CMU-
Arctic database with speaker id 30001.

Figure 5. (a) Male speech signal segment. (b) LPF speech signal. (c) Derivative
of LPF speech signal. (d) Fundamental harmonic component. (e) Extracted peak
negative cycles of LPF speech signal. (f) Derivative corresponding to falling edges
of peak negative cycles of LPF speech signal. (g) DEGG reference signal. Pulses in
dashed lines correspond to detected epochs. Speech signal is taken from the CMU-
Arctic database with speaker id 10201.
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Method IDR (%) MR (%) FAR (%) Mean
Absolute
IE (ms)

IDA
(ms)

Proposed 98.55 0.80 0.65 0.24 0.22
Zero Frequency
Resonator

97.96 1.04 0.77 0.46 0.25

Table 1. Performance comparison of epoch detection methods on three male and
three female speech signals taken from the CMU-Arctic database.

5. Identification error � (IE): The timing error between the reference epoch lo-
cation and the detected epoch location in larynx cycles for which exactly one
epoch was detected. Smaller values of � indicate high accuracy of identifica-
tion.

6. Identification accuracy � (IDA): It is defined as the standard deviation of the
identification error �. Smaller values of � indicate high accuracy of identifica-
tion.

Table 1 shows the comparison of performance results of the proposed method
and the ZFR method on three male and three female speech signals taken from the
CMU-Arctic database. The ZFR method [18] requires prior knowledge of voiced
regions and an estimate of the average pitch frequency. The proposed method
has no such prerequisite and can be employed on entire speech signal. The mean
of the absolute value of the identification error for the proposed method is signifi-
cantly better than the ZFR method. It implies that epochs detected by the proposed
method are close to reference epochs identified from the DEGG signal. The per-
formance is nearly the same on all other parameters.

6 Conclusion

In this paper, we have presented a time-frequency analysis based novel method for
epoch detection that can be applied on entire speech signal without prerequisite of
voiced detection. The proposed method does not depend on the modeling of the
vocal tract system. The method has exploited the behavior of the speech signal
in the low frequency range (LFR). The marginal energy density with respect to
time has been used to identify voiced regions. The fundamental harmonic com-
ponent extracted from the speech signal has been used to isolate the derivative
corresponding to falling edges of peak negative cycles of the LPF speech signal
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which was synthesized from the time-order coefficients of the speech signal cor-
responding to the LFR. Epochs were identified as peaks of the isolated derivative
signal. The performance of the proposed method has been evaluated on speech
signals taken from the CMU-Arctic database. The proposed method has provided
excellent results in terms of low mean absolute identification error which enables
accurate epoch detection.
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