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Recurrent Fuzzy-Neural MIMO Channel Modeling

Kandarpa Kumar Sarma and Abhijit Mitra

Abstract. Fuzzy systems and artificial neural networks (ANN), as important components
of soft-computation, can be applied together to model uncertainty. A composite block of
the fuzzy system and the ANN shares a mutually beneficial association resulting in en-
hanced performance with smaller networks. It makes them suitable for application with
time-varying multi-input multi-output (MIMO) channel modeling enabling such a system
to track minute variations in propagation conditions. Here we propose a fuzzy neural
system (FNS) using a fuzzy time delay fully recurrent neural network (FTDFRNN) that
has the capability to tackle time-varying inputs in fuzzified form and is used to model
MIMO channels. The inference engine is constituted by novel FTDFRNN blocks which
determine the decision boundaries and tracks in-phase and quadrature components of in-
put signals encompassing stochastic behavior of the MIMO channel. The system shows
significant improvement in performance compared to statistical and ANN approaches in
terms of faster processing time, lower bit error rate (BER) margins and better precision
while carrying out symbol recovery of transmitted data through severely faded MIMO
channels.
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1 Introduction

Although the multiple-input multiple-output (MIMO) wireless technology is one
of the options likely to meet the demands of ever expanding mobile communi-
cation networks, its channel estimation continues to be a challenging area. A
very common form of uncertainty and stochastic behavior is observed in MIMO
wireless communication due to interference and correlation among channel coef-
ficients. There are several statistical and other methods that have provided satis-
factory performance while modeling the MIMO wireless channel [6, 8]. MIMO
systems and related aspects including channel modeling are treated extensively
in [3, 12]. Among soft-computational approaches, a few recent works have con-
sidered certain aspects beyond the training-testing realm. A work dealing with
the application of artificial neural network (ANN) in form of multi layer percep-
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tron (MLP) and its temporal variants for static and slowly varying MIMO chan-
nels has been reported in [15]. The performance constraints observed in this ap-
proach are overcome, to a large extent, by the use of a class of recurrent neural
network (RNN) structures and have been appropriately configured to deal with
time-varying MIMO channels [16]. These works lay stress on certain architectural
challenges through which lower bit error rate (BER), better precision and faster
processing time are obtained while modeling the stochastic nature of the MIMO
channels. However, in certain practical cases like VOIP based using such wireless
channels, the performance of RNN-based methods needs to be improved further
especially in connection with the accuracy of the recovered content. In such sit-
uations, in order to enhance the system precision, the natural option that emerges
as the suitable addition along with the RNN is either fuzzy system or the genetic
algorithm (GA). The primary limitation associated with GA, however, is the un-
derlying computational complexity and therefore the time constraint. Hence, the
fuzzy based system integrated with RNN block turns out to be the only viable op-
tion to attain the desired precision performance. Further, fuzzy systems possess
an integral ability to deal with uncertainty, discern minute variations, attach prob-
abilistic linkages to finely varying changes [9, 13] and facilitate the formation of
a mechanism for near error-free decision making using ANN. Also, the unique-
ness associated with these soft-computational tools enables a smooth blending of
fuzzy system with ANN in a supplementary-complementary arrangement which
enhancement performances in terms of lower processing time and reduced system
complexity, increase in precision, better adaptability and an unmatched capabil-
ity to track and model random behavior of stochastic MIMO channels. The end
result is a mechanism which shares a symbiotic association with each other that en-
hances respective and cumulative performances. The ANN provides process data
extracted from non-parametric sources executing the task with model-free pro-
cessing such that the fuzzy system uses the neural response to provide expert-level
decision with the aim to achieve better overall performance. This is in addition to
the stability of the set-up and the capability to process minutely varying contextual
and relevant information due to the presence of feedback loops in the RNN [16]
components encapsulated in the system with fuzzy-related modifications. In terms
of implementation aspects, the advantage of such a composite architecture is a set-
up which can make better discrimination between the significant and correlated
coefficients of time-varying channels such that the correct class-wise grouping of
the system improves and misclassification reduces with less processing time and
lower design complexity. For its inherent capability to derive expert level knowl-
edge and decision making [9, 13] fuzzy based systems have already been used in
wireless communication in areas like equalization etc. A few important works
are cited in [1, 4, 10, 11, 14, 17–19]. All of these works emphasize applications of
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fuzzy-based systems for wireless communication areas with nearly no stress on
architectural challenges and spin-offs that can be derived using such systems with
modifications. An attempt is made here to configure a fuzzy-based system using a
time delay fully recurrent neural network (TDFRNN) with the ability to deal with
time-varying inputs in fuzzified form to model MIMO channels. The fuzzified
TDFRNN blocks are designed to generate a set of input conditioning norms and
inference logic which captures finer variations in the signals transmitted by the
MIMO set-up. The fuzzification process is automated using an ANN-aided ap-
proach while two distinct TDFRNN blocks generate the classification boundaries
in terms of in-phase and quadrature components combined and optimized using a
self organizing map (SOM) unit. The training process is accelerated by constantly
changing fuzzy samples generated by dissimilar processing blocks. The results
show significant improvement in processing time and accuracy as compared to
ANN based approaches. The fuzzy systems, on an average, provide at least 5%
improvement in accuracy as compared to the RNN-based estimation which has
already been established to be a better alternative to statistical and ANN based ap-
proaches [16]. This is in addition to the processing time advantage that the fuzzy
systems provide. The rest of the paper is organized as follows: Section 2 provides
the details related to MIMO channel modeling using FNS. There are several sub-
sections of Section 2 giving the related details of the system model proposed using
a fuzzified time delay fully recurrent neural network (FTDFRNN) for capturing
finite variations in time-varying signals propagating through a MIMO arrange-
ment. The experimental details are included in Section 3. The content includes
certain results derived from different subsections and stages. The description is
concluded by Section 4.

2 The Proposal: Modeling MIMO Channels using Recurrent
Fuzzy-Neural System

Fuzzy systems are rule driven tools that provide expert-level knowledge for de-
cision making [9, 13]. ANNs, on the other hand, are adaptive, robust and non-
parametric prediction techniques that demonstrate cognitive behavior [5]. Fuzzy
systems alone, however, find it difficult to tackle uncertainty hence require sup-
port from other tools like ANN. Integration of a fuzzy system with ANN enables
the former to acquire capabilities of implementing a framework of processing
modalities like signal conditioning rules, inference norms etc., so that the com-
posite systems acquire the ability of better learning, retentivity of knowledge and
expert-level decision making with the ability to capture finite variations in the in-
put. Hence, hybrid forms, like the fuzzy-neural system (FNS) or the neuro-fuzzy
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Figure 1. Fuzzy system based channel estimation.

system (NFS), are popular in a diverse range of applications. However, experi-
mental results derived for VOIP based transmissions show that the FNS approach
is better suited for time-varying MIMO channels and hence is adopted for model-
ing such a highly volatile propagation environment. The FNS is an implementation
of a fuzzy system within the ANN architecture. In this approach, both numerical
(measurement based) data and perception based information represented as fuzzy
numbers are handled. Therefore, FNS captures more relevant content from an
input, hence is better suited for real world situations [2]. The FNS allows automa-
tion of fuzzy rule generation and has the ability to perform combined learning of
numerical data as well as expert-knowledge expressed as fuzzy if-then-else rules.
Moreover, FNS has smaller networks and faster process times compared to ANNs
and NFS [2], hence it is more suitable for applications like adaptive receiver design
for high data rate mobile communication.

The FNS approach is explored here with appropriate modifications for making
it compatible with MIMO channel modeling as depicted in Figure 1.

Using an orthogonal frequency division multiplexing (OFDM) signal for a 4�4
MIMO set-up, the input-output relation may be written as

xi .k C 1/ D
�
si .k/C si .k � �/

�
H.i; k/C v.k/; (1)

where xi .k C 1/ is the received signal at time k C 1 with i taking values of 1
to 4 for a 4 � 4 channel set-up, si .k/ is the transmitted signal state at time k,
si .k � �/ is the transmitted signal at time k � � , v.k/ is the background noise, �
is the delay associated with multipath fading and the channel coefficients for i th
input and kth time constituting the channel matrix H.i; k/. Expression (1) shows
the contribution of direct and delayed versions of the signal components while
propagating through the MIMO channel. In general, the received signal state at
time k C n can be expressed as

xi .k C n/ D F
�
si .k; �/; si .k/;H.i; k/

�
C v.k/: (2)
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The mapping function F.�/ represents the transformation which the signal suffers
during transmission through the MIMO channel. It relates present and delayed
versions of the signal s along with the channel matrix H for formulating a genera-
tion mechanism of the received signal sequences which also includes considerable
amount of co-channel interference (CCI). The proposed fuzzy-based system for
modeling the MIMO channel is configured to track the time varying transforma-
tion which the signal undergoes while it propagates through the channel repre-
sented by a mapping process F.�/. The mapping F.�/ is dependent on si .k; �/,
si .k/ and H.i; k/ as represented by expression (2) which is different to that shown
in equation (1). In another form, the expression of the received signal in a MIMO
set-up may be expressed showing dependence of delayed outputs and other param-
eters as

Qy.n/ D FMG

�
Qy.n � 1/; : : : ; Qx.n � 1/; : : : ; QŒH�; : : :

�
; (3)

where FMG is a fuzzy mapping process to be generated by an ANN-based process.
The expression Qy.n/ becomes the target pattern which should be given to a soft-
computational tool during training. The requirement is to design another ANN-
based process such that its output is given by

QyG.n/ D FMG

�
Qy.n � 1/; : : : ; Qx.n � 1/; QŒH�; QŒW �; QŒV �; Q�

�
; (4)

so that QyG.n/ tends to Qy.n/ in terms of a cost function. Here QŒW �, QŒV � and Q� are
forward and backward connectionist weights and biases, respectively. Therefore,
the training of a fuzzy process is related to the minimization of a cost function
expressed as

CF D
1

TN�VD

XX
d.ydi ; yai /; (5)

where TN is the number of training samples, VD is the dimension of the samples,
d.�/ is a distance measure, ydi is the desired output and yai is the actual output.
The channel matrix H represents the wireless medium through which the propa-
gation takes place. This channel is considered to be a time variant system with an
impulse response given by

h.t; �/ D

Np�1X
gD0

˛g.t; �/ exp
�
j.2�fc�g.t/C �.t; �//

�
ı.� � �g.t//; (6)

where Np is the number of multipath components, ˛g.t; �/ is the amplitude com-
ponent and �g.t/ is the excess delay component caused by the gth multipath
component at time t and ı is the delta function. The inverse dynamics allows a
definition �

OH.i; k/
�
D G

�
xi .k/; xi .k � �/

�
(7)
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and �
Osi .k/

�
D G

�
xi .k/; xi .k � �/

�
: (8)

The received signal states xi .k/ and xi .k � �/ can be obtained from expressions
(1) and (2). The mapping GŒ�� represents a trained soft-computational tool which
can apply its learning to estimate the channel coefficients and recover the signal
symbols. It signifies a modeling mechanism related to the MIMO channel from
which the significant and CCI coefficients can be determined from the received and
transmitted signal components. The inverse dynamics resembles a control process.
Its outcome, denoted by H, is regulated by factors like the received signal xi .k/,
the transmitted signal si .k/ and the pathdelay � . It indicates that some a priori
knowledge about the transmitted content is required which enables the system to
learn the patterns and then use the learning for estimating the channel coefficients
and recovering the symbol bits from the received content. The channel matrix H

can be determined from the inverse dynamics GŒ�� obtained from the following
sets of data: �

xi .k/; si .k/; si .k � �/
�
: (9)

The learning of the soft-computational network is oriented to achieve the following
objectives:

ke1.i; k/k
2
D kH.i; k/ � OH.i; k/k; (10)

ke2.i; k/k
2
D ksi .k/ � Osi .k/k (11)

from which

ke1.i; k/k
2
D
H.i; k/ �G

�
xi .k/; xi .k; �/

�; (12)

ke2.i; k/k
2
D
si .k/ �G�xi .k/; xi .k; �/�: (13)

These considerations are followed while designing the MIMO channel modeling
approaches described in the subsequent sections. The FNS structure deviates con-
siderably from the traditional ANN and has the following attributes [13]: fuzzy in-
puts, weights, outputs and aggregation operation instead of summation as observed
in ANNs. For the present work a FN MIMO channel estimator is formulated and
is shown in Figure 2.

The MIMO channel matrix (MCM) is formed using a representation given as

Hi;j .z/ D
X
i;j

¹ai;j z
�j
º (14)

and the co-channel interference (CCI) responses are expressed as

Cm;n.z/ D
X
m;n

¹cm;nz
�n
º; (15)
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Figure 2. Fuzzy system based channel estimation.

so that the complete signal content at the receiver is expressed as

YR.z/ D Xi;j

�X
i;j

¹ai;j z
�j
º C

X
m;n

¹cm;nz
�n
º

�
CN; (16)

where X is the OFDM matrix generated using the parameters given in Table 1.
Before applying these symbols to the fuzzy system, they are all fuzzified.

A set of characteristics of the channel model developed using the Clarke–Gans
formulation considers the parameters as given in Table 2.

2.1 Input Conditioning

The primary input to the system comes from a MIMO transmitter during train-
ing. The inputs in the in-phase and quadrature forms are fuzzified and member-
ship grades assigned. The fuzzy inputs next go to the inference engine which
decides upon the class decisions as per the assigned inference logic. The output
is de-fuzzified and obtained from real and imaginary sections and combined. The
outputs are trimmed using a self organizing map (SOM) optimizer.

The training samples are normalized and confined within a few linguistic steps
(Table 3); see [13].
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Sl. no. Parameter Specification

1 Baseband modulation 16-QAM, BPSK
2 FFT length 512
3 Number of carriers 128
4 Cyclic prefix 16

Table 1. Parameters used for generating the OFDM signal.

Sl. no. Parameter Value

1 Frequency, fc 900 MHz
2 Mobile speed, V 3–100 kmph
3 Number of paths 16
4 Wavelength, � .3 � 108/=fc

5 Doppler shift, fm V=�

6 Sampling freq., fs 10 � fm

7 Number of samples, N 103 to 106

8 Number of retransmissions 10
9 Sampling Period, Ts 1=fs

10 Antenna configuration 2 � 2, 4 � 4, 8 � 8

Table 2. Parameters used for simulating channel using Clarke–Gans model.

Sl. no. State Notation

1 Negative Large NL
2 Negative Medium NM
3 Negative Small NS
4 Close to Zero CZ
5 Positive Large PL
6 Positive Medium PM
7 Positive Small PS

Table 3. Linguistic steps used to condition the inputs.
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The inputs are also constrained by the following norms:

f1.x/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

NL; �0:99 � x < �0:66;

NM; �0:66 � x < �0:33;
NS; �0:33 � x < 0;

Z; x D 0;

PL; 0:66 � x < 0:99;

PM; 0:33 � x < 0:66;

PS; 0 < x < 0:33:

(17)

2.2 Fuzzification

The inputs are divided into in-phase and quadrature components to allow the FNS
to learn the individual signal segments separately. The fuzzy sets of the respective
inputs are generated using a SOM to create clusters for each of the samples form-
ing the input matrix. This clustering is used to train a MLP to act as an automated
membership generator. The fuzzy sets of the respective inputs are generated fol-
lowing two ways. In the first method, a Bell-shaped membership function is used
to generate the member-grades of each input. A one-to-one correspondence is es-
tablished between input and fuzzy sets. This association is taken to train an MLP
to generate the membership function. At the end of the training, the MLP becomes
an automatic membership generator (Figure 3 (a)). The second method is to use
a SOM to create clusters for each of the samples forming the input matrix. This
clustering is used to train an MLP to act as an automated membership generator
(Figure 3 (b)).

Let xT be the input to the MLP (Figure 3) while yEMG is the expected set of
membership grades given by the Bell-shaped function. The output of the 3-layered
MLP is given as

yAMG D
X
k

fk

�X
i

fi

�X
j

fj .xTjWjm C bj /Win

��
; (18)

where the f .�/ are activation functions, W Œ�; �� are connectionist weights and b are
biases related to specific layers of the MLP. The instantaneous error is given as

Ep D
X
k

�
y
p
EMGk

� y
p
AMGk

�
; (19)

such that the weight adaptation can be continued till the goal is reached with
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(a) Bell-shape function and trained MLP (b) SOM and trained MLP

Figure 3. Membership grade generation using.

gradient given as

�Wkj D ��
ıEp

ıWkj
(20)

for use in the training process. Here � is the learning rate.
In case of the SOM-MLP approach, the membership grades are generated as

yEMG D xT ŒWj �; (21)

where Wj are the random weights of the competitive layer of the SOM. The
‘winners take all’ competition starts [5] in this layer such that the winning neu-
ron index, J , satisfies

yJ D max
j

®
yT0j ; Wj

¯
: (22)

For a 4� 4MIMO set-up, four training signals are transmitted with three different
AWGN values viz. �3 dB, 1 dB and 3 dB for Gaussian, Rayleigh and Rician faded
channels. The channel has h11; h22; h33 and h44 as primary direct channel im-
pulse responses while h12; h21; h31; h41; : : : are cross-channel impulse responses
between the specific transmitter and the receiver. The input training sequences
x1; x2; x3; x4 are transmitted in data blocks with each block constituted by NI in-
formation andNT training symbols. For different time slots the training sequences
provide

hi1 D
YT i;1

x
; hi2 D

YT i;2

x
; hi3 D

YT i;3

x
; h14 D

YT i;4

x
; (23)

where i D 1; 2; 3; 4. Let the above knowledge be considered to be a priori. So
if during training Œ Qh11; Qh12; : : : ; Qh21; Qh22; : : : ; Qh31; Qh32; Qh33; : : : ; Qh41; : : : ; Qh44� are
the estimates of channel coefficients, the fuzzy inference can be developed from
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the risk functional d.hij ; Qhij / where d.�/ represents the distance measure between
actual and expected responses. The fuzzified inputs form a fuzzy set QA given as

QA D
®
Œx; �A.x/ j x 2 X�

¯
; (24)

where �A.x/ is called the membership function or grade of membership and is
generated by the fuzzification process as described in Section 2.1. The fuzzi-
fied inputs thus obtained are next passed on to the inference engine which is a
multi-layered set-up designed by the following two approaches based on fuzzy
multi layer perceptron (FMLP) and fuzzy time delay fully recurrent neural net-
work (FTDFRNN).

Fuzzy Multi Layer Perceptron (FMLP) based Inference Engine

The FMLP is formed by multiple layers of fuzzy perceptrons (Figure 4 (a)). The
inputs (Xkj ), weights (Wj ) and outputs are all fuzzified [7]. The output of such a
set of perceptrons can be expressed as

Yk D
X
k

Sˇ;k

� nX
jD0

WjXkj

�
; (25)

where Sˇ is a sigmoid function for a certain steepness parameter ˇ. The calcu-
lation covered by the summation sign in (25) is done using principles of fuzzy
arithmetic. The output thus obtained is next passed on to the hidden and output
layers such that the final response is expressed as

Ym D
X
m

Sˇ;m

²�X
l

Sˇ;l

�X
k

YkWkl

�
Wlm

�³
: (26)

For separate real and imaginary inputs the respective outputs are combined so that
the final response is found as

YmF D
X
m

Sˇ;m

²X
l

�
YR C jYI

�³
; (27)

where

YR D
X²

Sˇ;l
X
k

YkRWkl

³
; (28)

YI D
X²

Sˇ;l
X
k

YkIWkl

³
: (29)
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(a) Fuzzy artificial perceptron (b) Fuzzy recurrent neuron (FRN)

Figure 4. Fuzzified neural processing units.

For determining the channel coefficients

Œ Qh11; Qh12; : : : ; Qh21; Qh22; : : : ; Qh31; Qh32; Qh33; : : : ; Qh41; : : : ; Qh44�;

the expression given by (27) is used after completing the training using the back-
propagation (BP) algorithm with Levenberg–Marquardt (LM) optimization.

Fuzzy Time Delay Fully Recurrent Neural Network (FTDFRNN) based
Inference Engine

The FMLP based inference system is effective in case of static, slowly varying
channels. The training and estimation time required, however, is much less than
the pure ANN based systems as described in [15, 16]. It can also deal with time-
varying channels but there is always a scope for further improvement. However, as
RNNs are known to be suitable for time-varying inputs, hence an option emerges
for experimenting with these systems to explore if their abilities are expanded
when fuzzy attributes are incorporated. Such a combination called fuzzy RNN
(FRNN) is specially configured to form a fuzzy inference system. The core of a
FRNN is a fuzzy recurrent neuron (FRN) shown in Figure 4 (b). The MLP block
of a FMLP is replaced by a TDFRNN [16] with split-activation so that the com-
bination can use de-coupled in-phase and quadrature components of input signals
and use a SOM to combine the outputs in an optimized form. The output of such
a set of neurons for a set of inputs Xj and state vectors uN;j is expressed as

Yrk.n/ D
X
k

Sˇ;k

� nX
jD0

.Yff C Yf b/

�
; (30)
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where

Yff D WjXj CWj�1Xj�1 CWj;yYk�1; (31)

Yf b D WjNuN;j CWjNuN�1;j : (32)

After the input propagates through the hidden and the output layers, for a real input
XRj , the response shall be

YrmR D
X
m

Sˇ;m

²X
l

Sˇ;l.YrmRtemp/

³
; (33)

YrmRtemp D
X
k

.YrkRWkl C uM�i;jWjM /Wlm: (34)

A similar expression for imaginary inputs can also be obtained:

YrmI D
X
m

Sˇ;m

²X
l

Sˇ;l

�X
k

YrmItemp

�³
; (35)

where
YrmItemp D .YrkIWkl C uM�i;jWjM /Wlm: (36)

If the training samples are presented to the inference engine for some duration of
time, the output matrix generated is optimized by a SOM such that the final result
obtained has a form given by

YrF D Opt
®
YrmR.n/C jYrmI.n/

¯
; (37)

where Opt.�/ is an optimization process carried out followed by a ‘winners take
all’ competition such that the winning neuron index, J , satisfies

YJ .n/ D max
j

®
Y TrFj ; Wj

¯
: (38)

2.3 Defuzzification

After the fuzzified outputs are generated, a mapping is performed to convert each
conclusion into a single real number. This mapping process provides the required
estimation of the channel coefficients obtained from a fuzzy inference. There are
several defuzzification methods but the ‘center of arc’ or ‘centroid method’ pro-
posed by Sugeno (1985) and Lee (1990) is the most acceptable of all (see [7]).
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3 Experimental Results

While performing the experiments, the channel model as described by expres-
sions (1)–(16) and the system model represented by expressions (17)–(38) are
used. During the membership generation process, the SOM-MLP combination
is found to be less accurate by about 4% but it is faster by at least 21% compared
to the Bell-shape function-MLP method, hence the former is more acceptable for
speed critical applications. For time-varying cases including fast fading, a better
option is the use of TDFRNN blocks in place of the MLP. This is because RNNs
are known to have the capacity to deal with time-varying inputs [5], hence in fuzzi-
fied form it is also likely to have such capability. The inference engine of the FNS
for MIMO channel estimation is formed by a FTDFRNN with fuzzy inputs, con-
nectionist weights and outputs. The FTDFRNN structures are trained with DEKF
algorithm modified with fuzzy considerations.

These channel coefficients are generated using the standard Clarke–Gans model
with parameters given in Table 2 and as described in [15, 16] and are combined
with OFDM symbols generated using the parameters shown in Table 1. While
the signal propagates through the channels, significant and CCI coefficients get
involved. As a result, a composite signal form is generated which covers the sig-
nificant signal segments with CCI from which the fuzzy based system recovers the
required portion for modeling the MIMO channels. It involves certain sessions of
training the fuzzy system during which it learns the patterns applied to it. Table 4
shows a truncated data set used to generate the significant and CCI channel com-
ponents for four different path delays and four different frequency selective paths
with Rayleigh fading generated using the Clarke–Gans model.

A training window of a few seconds is given to the two FTDFRNN structures
during which several estimates of the signal samples are generated. The SOM
placed at the end of the two FTDFRNN structures is used to combine the out-
puts and provides an optimized estimate of the response. From the estimates of
the signal, the channel coefficients are derived. Training performance is judged
using the mean square error (MSE) convergence rate and the precision derived.
Figure 5 presents the normalized processing time of the fuzzy methods against
statistical methods (LS, MMSE), ANN based standard methods (MLP [15], 3L-
FF [8], Temporal-MLP [15]) and RNN based approaches (CTDFRNN-MNSOM
[16]). The fuzzy approaches generate minimum 2–6% difference in processing
time while providing better precision performance consistently over at least fifteen
trails. Time is provided in normalized form because, with processors and other re-
lated system variations, the time taken varies. The present work is performed using
an Intel Core 2 Duo CPU T7250 at 2 GHz and 2 GB RAM with 1024 MHz FSB.
Table 5 shows the precision of FMLP and FTDFRFRNN based MIMO estimators
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Figure 5. Relative time taken by estimation process carried out with (i) statistical
methods (LS, MMSE), (ii) ANN based standard methods (MLP [15], 3L-FF [8],
Temporal-MLP [15]), (iii) RNN based approaches (CTDFRNN-MNSOM [16]) and
(iv) the proposed architecture (FTDFRNN).

Case 1 2 3 4

Delays 1 � 10�5 1:5 � 10�5 2 � 10�5 2:5 � 10�5

Path gain 1 0:467 0:353 0:555 0:036

Path gain 2 0:281 0:031 0:815 0:732

Path gain 3 0:367 0:893 0:462 0:381

Path gain 4 0:212 0:691 0:021 0:811

Table 4. Truncated data set used to generate significant and CCI channel components
for four different delays and frequency selective paths of a Rayleigh faded channel.

Item TDFRNN-
MNSOM

FMLP FTDFRNN

Data size 500–1000 500–1000 500–1000
Precision in % 97.4 98.2 98.8

Table 5. Precision of FMLP and FTDFRNN with respect to CTDFRNN-MNSOM.
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Model Number of
additions

Number of
multiplications

CTDFRNN-MNSOM .P CR/34+2+l .P CR/24+2l
FTDFRNN 12N+2+l 11N+2+l

Table 6. Computational complexity of FNS based design compared to temporal-
MLP and RNN-based architectures with N length filter (for temporal MLP struc-
tures) or delay blocks (for RNN-based structures), n number of parallel structures, l
size competitive layer and .P CR/ length of the signal.

as compared to CTDFRNN-MNSOM method generated for a VOIP based trans-
mission in different blocks of sizes between 500 and 1000. The shown results are
average values of ten trials carried out by training the two FNS estimators with at
least ten repetitions of the transmissions between the source and destination hav-
ing a four path Rayleigh fading. The precision values shown by the CTDFRNN-
MNSOM approach are marginally lower, but in such critical applications, little
improvement in accuracy is always desirable.

The estimation of the channel coefficients carried out by the FTDFRNN ap-
proach always oscillates around a small value close to the 10�6 mark but never
reaches zero which makes it a bias estimator. Hence, Cramer–Rao (CR) bound is
not applied to the MSE convergence limits with SNR variation during training, val-
idation and testing of the system. With N delay blocks for RNN-based structures
(CTDFRNN-MNSOM) [16], n number of parallel structures, l size competitive
layer and .P C R/ length of the signal, the computational complexity shown by
the FTRFRNN based method is provided in Table 6.

The CTDFRNN-MNSOM [16] is taken as the comparative model in Table 6
since it generates the best performance in terms of BER and precision among the
proposed RNN-based architectures. The FTDFRNN approach has an RNN-based
structure followed by a competitive layer which for each input generates sizable
amount of computation which is fast and converges to the desired level within a
few number of training epochs. The fuzzy approach not only shows fall in compu-
tational complexity but also demonstrates better performance in terms of precision
and BER values while performing modeling of the MIMO channels. This is out-
lined in the subsequent description. The performance of the system is dependent
on the inference rule set adopted for carnying out the estimation process. A stan-
dard set of six rules gives optimal performance but experiments are carried out to
see the effect of variation of the inference stage. Table 7 summarizes the results
obtained.
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Case Network
structure

Number
of rules

MSE
�10�5

Epochs Precision
in %

1 20-24-12-4 6 0.3 34 96.5
.N1/ 9 0.06 102 97.3

2 20-30-15-4 6 0.26 34 96.8
.N2/ 9 0.045 96 97.0

3 20-40-20-4 6 0.33 39 96.0
.N3/ 9 0.05 101 97.0

4 20-50-25-4 6 0.24 44 96.0
.N4/ 9 0.038 101 97.0

5 20-50-30-4 6 0.25 47 95.4
.N5/ 9 0.039 103 96.1

Table 7. Effect in performance due to variation in network structure adopted for
implementation of inference engine.

Table 7 also summarizes the variation in performance of the FNS with change
in the network structure adopted for the implementation of the inference engine.
The inference network structure is considered to be formed by an input, two hid-
den and one output layers. Four different FNS structures are used to implement
the inference rules. While all the four networks using six inference rules gener-
ate an MSE convergence between 0:24 � 10�5 and 0:33 � 10�5, the value comes
down significantly to a range of 0:038 � 10�5 to 0:05 � 10�5 with nine inference
rules. It indicates that the MSE convergence rate improves and falls to lower limits
with more inference stages. With more inference rules, the networks learn better
and approach the level of optimality with greater closeness. It amounts to an im-
provement between 84 to 87% in MSE convergence rates. But this happens at the
cost of greater processing time. The number of epochs increases by about 1.32
to 1.7 times when twelve inference rules are used compared to the case when the
system is designed with a set of six such sets. However, this increase in process-
ing time and lowering of the MSE values results in an improvement of precision
marginally between 1.04 to 1.5%. Hence, the six inference rule format is adopted
to carry out the FNS based MIMO channel estimation. The network named N4
with a structure of 20-50-25-4 gives the best performance. MSE value converges,
on an average, to about 0:24 � 10�5 during the stipulated training slots below 50
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Figure 6. BER generated by FMLP and FTDFRNN in comparison to an estimator
with perfect CSI.

epochs with the data set taken. This network has an input layer of 20 FRNs in the
input layer. This value is derived from the fact that the signal block is formed by
8-data bits and three parity prefixes with a channel length of ten. After convolution
between the signal block and the channel coefficients, the composite sample input
has a sequence length of twenty. Similarly, there are 50 and 25 FRNs in the two
hidden layers. The output layer has four FRNs as it needs to retain only four sets of
data for a 4� 4MIMO set-up designed for the purpose. The significant part of the
data set is retained, interpretation derived after de-fuzzification and BER values
calculated. The channel matrix has four numbers of channels with twenty taps of
which four are significant for the estimation process. Figure 6 shows the average
BER vs SNR provides by FMLP and FTDFRNN systems compared to an estima-
tor with perfect CSI. The fuzzy systems, on an average, differ by about 3–8% with
the BER values generated by the estimator with perfect CSI. This is at least 5%
improvement in accuracy compared to the CTDFRNN-MNSOM based estimation
of which the BER values are shown as well. This is in addition to the processing
time advantage that the fuzzy systems provide. The FNS based MIMO estimator
is also subjected to perform phase tracking of the signal samples received. During
training, the FNS is initially given 50 samples to learn the phase pattern within the
first 10–20 iterations. Once it attains a desired precision, it is subjected to track
phase of data sequences of length 100 which it performs well.

The performance difference in terms of BER due to the variation of MIMO
transmitter and receiver numbers as stated above is summarized in Table 8.

Figure 7 shows comparative BER plots obtained using (i) statistical methods
(LS, MMSE), (ii) ANN based standard methods (MLP [15]), (iii) RNN based ap-
proaches (CTDFRNN-MNSOM [16]) and (iv) the proposed architecture (FTD-
FRNN) in 2 � 2 and 4 � 4 set-ups in severely faded channels. The proposed
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MIMO Set-up Average
difference (%)

2 � 2 �11:2

3 � 3 �9:3

3 � 4 �4:1

5 � 4 C11:6

5 � 5 C26:2

8 � 8 C38:3

Table 8. BER performance variation of different MIMO blocks compared to a 4� 4
set-up.
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Figure 7. Comparative BER plot generated by FTDFRNN in comparison to (i) sta-
tistical methods (LS, MMSE), (ii) ANN based standard methods (MLP [15]), (iii)
RNN based approaches (CTDFRNN-MNSOM [16]) and (iv) the proposed architec-
ture (FTDFRNN) in 2 � 2 and 4 � 4 set-ups in severely faded channels.

fuzzy-based approach clearly shows improvement in the values obtained for both
2 � 2 and 4 � 4 systems.

A CCI pattern of the channels is also generated and is depicted in Figure 8. The
plot shows the normalized correlation of the CCI on significant estimated chan-
nel coefficients. It indicates that though the significant channel coefficients are
estimated with adequate path gains, yet significant interference exists. This stems
from the fact that the FNS learns CCI patterns as well along with the significant
channel coefficients. The effect of CCI can be minimized by training the FNS es-
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Figure 8. CCI plot generated by channel coefficients with estimated path gains.

timator with signal content that has higher significant channel coefficients which
is done usually. But the depiction of Figure 8 represents a worst case scenario of
certain CCI being captured significantly by the FTDFRNN blocks. Moreover de-
spite the presence of significant co-channel interference, the FTDFRNN inference
engine provides significant improvement in decision making and thereby improves
the overall performance of the system. The fuzzy-based methods, thus, clearly pro-
vide advantages of faster processing time, lower BERs and better precision while
carrying out symbol recovery.

4 Conclusion

We explored certain attributes of fuzzy-based composite systems with stress on
architectural expansion in order to improve performance and precision compared
to conventional methods while modeling the stochastic nature of the MIMO chan-
nels. We found that in the fuzzified form the inputs provide the fuzzy-based system
ample of finer variations including the stochastic nature of the MIMO system to
learn and thereby generate appropriate decision states. An FTDFRNN based FNS
has been proposed here for MIMO channel estimation which shows significant
improvement in performance compared to statistical, ANN and RNN approaches
in terms of faster processing time, lower BERs and better precision while carrying
out symbol recovery. The proposed method yields around 46% less computational
complexity, on an average, and at least 5% improvement in accuracy compared to
the best RNN-based method, namely, the CTDFRNN-MNSOM. This represents
a significant improvement in performance compared to statistical and ANN based
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methods configured for modeling MIMO channel. Moreover, despite the presence
of CCI, the FTDFRNN based MIMO modeling method proposed here provides
significant improvement in decision making and thereby improves the overall per-
formance of the system. Such a system is well suited for the design of adaptive
receivers configured to tackle high data rate communication carried out using the
MIMO wireless channels.
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