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1  Introduction
With the fast development of market economy and the ever-increasing updating speed of products, customer 
demands are developing constantly into the direction of diversification and individuation, which challenges 
enterprises with extremely fierce competitions [10]. To pursue their favorable positions and development 
goals in the market, enterprises are keen to further shorten the product development cycle, reduce R&D cost, 
and improve production efficiency to obtain competitive advantages in terms of time, quality, and cost. All 
these require companies to come up with an innovative product design approach. Collaborative customized 
product development, serving as an innovative and potential design mode, combines the advantages of tradi-
tional design patterns and advanced design techniques. Under the premise of maximizing the economic ben-
efits of enterprises and with the characteristics of modular design and parts standard, this mode ensures that 
enterprises can adapt to the market and to customer-oriented requirements more flexibly, and task allocation 
is one of the most important parts of the collaborative customized product development process. Reasonable 
task allocation can optimize the allocation of various development resources and make full use of them, 
leading to a smooth process of collaborative customized product development.

In terms of task allocation, there are many methods introduced by different scholars. Dianxun et al. [1] 
introduced a new kind of generalized particle model for the parallel optimization of enterprise resources and 
task allocation problem. Wunhwa and Chinshien [15] introduced a hybrid method combining tabu search 
algorithm with the noising method to solve the task allocation problems. Fernandez and Lamari [2] studied 
and discussed the processor number for continuous communication task allocation problem and introduced 
two kinds of accurate polynomial time algorithms. Min-Hyuk et al. [8] proposed a distributed task allocation 
algorithm for a team of robots with constraints on energy resources and operates in an unknown dynamic 
environment, with the objective of maximizing the task completion ratio while minimizing resource usage. 
Yin et al. [17] presented a multiobjective task allocation algorithm based on particle swarm optimization (PSO) 
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in the presence of system constraints to achieve throughput maximization, reliability maximization, and cost 
minimization in a distributed computing system. Yung-Cheng et al. [18] proposed a task allocation algorithm 
for any parallel programs on a given machine configuration by traversing a state–space tree that enumerates 
all the possible task assignments and applying a pruning rule on each traversed state. Son et al. [11] proposed 
an efficient workflow task allocation method based on the locality principle in a distributed workflow system 
that used the concept of graph partitioning to improve the performance of workflow processing by minimiz-
ing remote processing costs. Tripathi et al. [13] presented a multiagent-based approach for the part allocation 
problems in flexible manufacturing systems to cope with the dynamic environment where four agents (com-
municator, machine, part, and material handling device) were involved in carrying out the tasks of allocating 
parts on different machines. Zhang et al. [19] designed the PSO algorithm for task optimization allocation 
in the suppliers’ participation in collaborative product development. Jing et al. [4] constructed a task allo-
cation bi-level programming model for suppliers’ involvement in product collaborative development. In a 
comprehensive consideration of product quality, cost, information, and other factors of suppliers, Hou et al. 
[3] constructed a design task allocation optimization model for interfirm product collaborative development. 
Most of the above-mentioned literatures constructed task allocation models and introduced corresponding 
algorithms based on the analysis of the goals of task allocation, whereas the number of researches and dis-
cussions related to the relationship between personnel and tasks to optimize the task allocation process is 
relatively small. However, in the current mode, where customers and suppliers collaboratively participate in 
customized product development, the fitness of suppliers to the development tasks and the coordination effi-
ciency between suppliers and other factors greatly influence customized product task allocation. Therefore, 
fitness and coordination efficiency in the customized product development model are very important in task 
allocation optimization research.

Based on the analysis of related research results of domestic and international task allocation, this article 
introduces the definitions and calculation methods of task fitness and task coordination efficiency. Based 
on these, a multiobjective optimization mathematical model of customized product task allocation is con-
structed. Finally, an adaptive genetic algorithm (AGA) for solving the model is proposed.

The rest of this article is organized as follows. The process and task allocation strategy of collabora-
tive customized product development is analyzed in Section 2. The task allocation mathematics model in 
collaborative customized product development is established in Section 3. The multiobjective optimization 
algorithm for task allocation in collaborative customized product development is proposed in Section 4. In 
Section 5, a 5-MW wind turbine R&D project example is introduced to verify the feasibility and the efficiency 
of the task allocation algorithm. Finally, Section 6 concludes the paper.

2   Analysis of Collaborative Customized Product Development 
Process and Task Allocation Strategy

2.1   Analysis of Collaborative Customized Product Development Process

With the increasing degree of product customization, the scope and degree of collaboration among enter-
prises, suppliers, and the customers is also increasing. An increasing number of enterprises, suppliers, and 
customers participate in the customized product development design process of core enterprises, relying on 
customized product collaborative design platform and making full use of all kinds of customized product col-
laborative tools such as custom products integrated visualization, customized process information communi-
cation collaboration, information integration and conflict resolution technology, sharing server, customized 
system knowledge base, etc. to analyze and map customer needs and perform scientific decomposition and 
reasonable allocation for customized product parts design tasks, ultimately completing the customized 
product design [16], which is shown in Figure 1.
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Figure 1 shows that the relationship among suppliers, customers, and enterprises who participate in the 
collaborative customized product development chain is no longer the simple cooperative relationship of the 
material supply type or the supply-and-demand relations type. They are fully involved in the whole product 
development and designing phase. The collaborative relationship between them changes due to different 
task decomposition and allocation results.

2.2  Analysis of Task Allocation Strategy

In the process of collaborative customized product development, the purpose of task decomposition is to get 
a number of executable design subtasks with appropriate granularity, whereas that of task allocation is to 
allocate these subtasks to the enterprise’s development team and the most suitable suppliers to ensure that 
the task allocation scheme meets technical requirements, time constraint, and other conditions in order to 
obtain the maximum profit at the same time. In a collaborative customized product development task alloca-
tion, apart from taking the traditional influence factors such as task lead time, cost, etc., into consideration, 
the matching degree between the tasks and the enterprise’s development team and that between the tasks 
and the suppliers, the mutual coordination efficiency between the enterprise’s development team and the 
suppliers, and that between the suppliers will also have a significant impact on task allocation; therefore, 
influencing factors such as task matching degree and task coordination efficiency should be also considered 
in task allocation.

The participants of collaborative customized product development task allocation are mainly the enter-
prise’s own development team and suppliers. When the enterprise’s grasp for the customer demand is 
relatively vague or the customer’s demand cannot be accurately expressed using general customization col-
laborative tools, the customers are required to collaboratively participate in the customized product develop-
ment process. Due to the limitations of the customers’ own professional knowledge and technical skills, the 
customers cannot finish a design task independently, and they collaborate with the enterprise’s development 
team or suppliers to complete a design task. At this time, the main role of the customers’ participation is to 
verify their own customization demands and give feedback to the designers. Compared with the mode where 
only the suppliers participate in the collaborative development or with the networked customization devel-
opment mode, which only uses the customers’ knowledge, this mode, which directly involves the customers 
in the customized product development, has the outstanding advantage of obtaining direct and immediate 
feedback from the customers for a functional unit or a part during the process of customization trial produc-
tion, not for product samples, when all the design tasks are already finished. This reduces the product-rework 
design rate to a certain extent, ensures that the manufactured product’s standards match the customization 
demands, and shortens the design trial production time.

During task allocation, the task allocation strategy needs to be considered first, i.e., the basic strategy 
that the task allocation process should follow. Second, task fitness and coordination efficiency should be 
considered.

Based on the analysis above, the task allocation strategy is given as follows:
1. Subtasks including function parts with the customers’ fuzzy customization demands must be allocated 

to the suppliers or the enterprise’s development team with the collaborative participation of customers.
2. Subtasks including product core technology must be allocated to the enterprise’s development team.
3. Subtasks without product core technology can be allocated to suppliers.
4. The task allocation scheme should meet the constraints of time, cost, quality, and so on.
5. The optimal task allocation scheme should maximize the total task fitness and the total task coordination 

efficiency as far as possible.

Allocating the product customization collaborative development task according to the task allocation strategy 
above can provide support for the construction of scientific and reasonable collaborative customized product 
development chain organization structure and the optimal use of resource in product development process.
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3   Establishment of Task Allocation Mathematics Model  
in Collaborative Customized Product Development

3.1  Description of the Problem

Suppose a product customization development project can be decomposed into n design subtasks, namely 
T  =  {T1, . . . , Tn}, and it needs to select corresponding suppliers from l sets of suppliers with the enterprise’s 
development team and customers to finish the subtasks collaboratively. The l sets can be represented as P1, . . . ,  
Pi, . . . , Pl, and the numbers of the suppliers contained in each set are k1, . . . , ki, . . . , kl, respectively, and the 
suppliers in set i can be represented as the set  Pi  =  {Pi1, . . . , Piki

}. The n design subtasks are allocated to the 
most suitable suppliers selected from the 

1

l
ii

m k
=

=∑  suppliers, the enterprise’s own development team, and 

the customers to finish collaboratively. The allocation relationship can be shown by the following mapping 
diagram in Figure 2.

3.2  Definition and Calculation Formula of Task Fitness

Definition 1: Task fitness. Task fitness is the quantitative level of the fitting degree of design personnel 
(including suppliers, enterprise’s development team, etc.) to design tasks. Factors such as the geographical 
position of suppliers, the experience and number of times the suppliers’ and the enterprise’s development 
team have performed similar development tasks, software and hardware infrastructure conditions, interest in 
the task, and so on will have an influence on the fitness of the suppliers’ and enterprise’s development team 
to design tasks [9], and the detailed description is as follows:
1. Geographical factors: Introduce the geographical position coefficient d(i, j) to describe the geographical 

position relationship between suppliers and places of task execution. If the supplier is in another place, 
d(i, j)  =  1; otherwise, d(i, j)  =  2.

2. Ability factors: Introduce the ability matrix B  =  (bij)(m + 1)  ×  n to describe the design ability that the enter-
prise’s development team and m suppliers have for all tasks, where b1j represents the task design ability 
that the enterprise’s development team has for design task j and bij(2   ≤   i    ≤   m + 1) represents the design 
ability that supplier (i – 1) has for design task j. The value of bij is represented by a six-dimensional level 
vector bv  =  [0, 0.2, 0.4, 0.6, 0.8, 1], and the division is mainly according to the professional title, perfor-
mance, experience, and the number of times that similar tasks have been performed, etc.

3. Equipment factors: Introduce the equipped level coefficient p(i, j) of the software and hardware infra-
structure to describe the software and hardware level of the suppliers and the enterprise’s development 
team. This is divided into international advanced level, domestic advanced level, and general equipped 
level, represented as p(i, j)  =  3, 2, and 1, respectively.

4. Interest factors: Use a number cij (0  <  cij  <  1) to describe the level of interest that each supplier has in task 
j; the interest matrix C  =  (cij)(m + 1)  ×  n can then be constructed, where cij represents the measure of the level 
of interest that the enterprise’s development team has in design task j and cij(2   ≤   i   ≤   m + 1) represents the 
measure of the level of interest that supplier (i – 1) has in design task j.

T1
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Tn
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P1 = P11, P12 ··· P1k1
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Figure 2. The Mapping Relationship Diagram of Product Customization Development Task Allocation.
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Based on the analysis above, the task fitness matrix is as follows:
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Among them, fij  =  α·d(i, j)+β⋅bij+δ⋅q(i, j) + ε·cij; α, β, δ, and ε are the corresponding weighted coefficients; 
f1j represents the fitness between the enterprise’s development team and task j; fij(2   ≤   i   ≤   m + 1) represents the 
fitness between supplier (i – 1) and task j.

3.3   Definition and Calculation Formula of Task Coordination Efficiency

Definition 2: Task coordination efficiency. Task coordination efficiency is the quantitative level of coordina-
tion degree between the enterprise’s development team and the supplier or between the suppliers [7]. Here, 
task coordination efficiency is calculated based on the task execution time. For example, the coordination 
efficiency between suppliers (or between the supplier and the enterprise’s development team) who execute 

subtasks Ti and Tj is 
,

.i j
ij

i j

t t
s

t
+

=  Among them, ti and tj represent the separate execution time of tasks Ti and 

Tj, respectively, and tij represents the total execution time of the two tasks. According to formula (1), the total 

execution time is , 
, 
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j i i j
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i j j i
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t t

d d
+ ×
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− ×  

and di, j and dj, i are the interaction coupling coefficients of task Ti and Tj, 

and the value mainly depends on the convenience of information interaction, experience, and the number of 
times of cooperation, as is shown in Table 1.

Basing on the above analysis, the task coordination efficiency matrix is
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3.4   Multiobjective Optimization Mathematics Model of Task Allocation

From the task allocation strategy of collaborative customized product development in Section 2.2, it can be 
seen that collaborative customized product development task allocation aims to allocate the design sub-
tasks to the most suitable suppliers or enterprise’s development team, maximize the coordination efficiency 
between them, and meet the constraints of time, cost, quality, and others. Based on this, the following equa-
tions show the mathematical model of collaborative customized product development task allocation:

Table 1. The Value of Interaction Coupling Coefficients and Base of Judgment.

Values of coefficients Base of judgment

0.1 Interaction between Ti and Tj is far from convenient, no cooperation ever
0.3 Interaction between Ti and Tj is not convenient, less cooperation ever
0.5 Interaction between Ti and Tj is less convenient, few cooperation ever
0.7 Interaction between Ti and Tj is convenient, much cooperation ever
0.9 Interaction between Ti and Tj is very convenient, much more cooperation ever
0.2, 0.4, 0.6, and 0.8 Intermediate value
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Among them, xij is a 0, 1 selection variable, and its value is as follows:

 

1 task  allocated to supplier ;
,0 task  not allocated to supplier ;ij

j i
x j i

=
  

(10)

where tij represents the time that supplier i needs to complete task j, eij represents the cost per unit time that 
supplier i needs to perform task j, qij represents the relative quality that supplier i achieves when performing 
task j. The value of qij can be obtained through the comprehensive evaluation of product quality offered by 
suppliers. The evaluation sets V  =  {unqualified (0), qualified (0–0.2), general (0.2–0.4), medium (0.4–0.6), 
good (0.6–0.8), excellent (0.8–1.0)}.

The objective function expression (3) represents the total task fitness maximum, and expression (4) rep-
resents the total coordination efficiency between task maxima. Constraint function expression (5) represents 
the execution time of tasks, which should be in the stipulated time T. Expression (6) represents the total 
execution cost of n tasks, which should be in range of allowing cost C. Expression (7) represents the total 
relative quality of n tasks, which should not be less than Q. Expression (8) stipulates that each task needs to 
be allocated to at least one supplier or enterprise itself. Expression (9) stipulates that each supplier and the 
enterprise itself can get no more than n tasks.

4   Multiobjective Optimization Algorithm of Task Allocation  
in Collaborative Customized Product Development

Task allocation in collaborative customized product development is a multiobjective combinatorial optimi-
zation NP-hard problem. It is difficult to obtain the optimal results quickly by traditional methods. Genetic 
algorithm is a kind of search optimization algorithm simulating the process of biological evolution. It has a 
strong global searching capability, but with a poor partial searching capability, and it is easy to fall into local 
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optimum and lead to the premature phenomenon [6]. In view of the limitation of the nonlinear multiobjective 
combinatorial optimization characteristic of collaborative customized product development mathematical 
model, AGA is chosen to solve the task allocation model of collaborative customized product development.

The specific descriptions of the AGA operation process follow.

4.1  Coding and Decoding

Here, the binary coding method is adopted. The length of each chromosome is m + n. Each chromosome is 
divided into n gene segments, and each gene segment represents a task. All suppliers that can finish cus-
tomization task i are ranged in a sequence according to serial number sequence of supplier sets. Assume that 
there are mi suppliers, the number of optional allocated objects for customization task i is mi + 1, and the first 
represents the enterprise itself. The sum of all suppliers that can complete n customized tasks is m, namely 

1
.n

ii
m m

=
=∑  In chromosome coding, a gene value of 0 means that the corresponding task of the gene segment 

is not allocated to the supplier or the enterprise itself. A gene value of 1 means the task that is assigned to 
this supplier or enterprise itself. In addition, the chromosome can be decoded according to the chromosome 
coding method.

A feasible chromosome coding schemes is shown in Figure 3. In this coding scheme, task 1 represents 
allocation to the first supplier of supplier set 1. Its gene value is 1, and the values of the rest of the genes are 
0. For the same reason, task n is allocated to the second supplier of supplier set m.

4.2  The Establishment of Fitness Function

Collaborative customized product development task allocation is a nonlinear multiobjective optimiza-
tion problem, and there are some implicative relationships between multiple targets; thus, it is difficult 
to give specific and accurate values for each target at the same time. However, the positive ideal point 
(the value most expect to achieve) and negative ideal point (the value least expect to achieve) of each 
target can be given. Thus, it is appropriate to choose the ideal point method to construct fitness function 
in the AGA.

The ideal point method evaluates the quality of the scheme according to the distance between the objec-
tive function value and the ideal point. The smaller the distance, the more optimal the scheme [6, 12]. An 
ideal point consists of the ideal value of each objective function, which is decided by decision makers or 
made up of a single objective optimal value. Accordingly, the evaluation function of collaborative customized 
product development task allocation problem is

 
* 2 * 2

1 1 2 2min ( ) ( ) ,Z Z Z Z Z= − + −
 

(11)

where * *
1 2( , )Z Z  is the ideal point, which consists of the optimal value of two objective functions, (Z1, Z2) is the 

objective function value of collaborative customized product development task allocation schemes, and Z is 
the distance between the allocation scheme and the ideal point.

1 00 0

Supplier set 2

0

Task  1

m1+1

… …

… …

0 00 0

Supplier set m

1

Supplier set m–1

Task n

mn+1

… …
… …

0 0

Enterprise … …Enterprise Supplier set1

Figure 3. A feasible Chromosome Coding Scheme.
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Because the magnitudes of the objective function Z1 and Z2 are different, and they are not equally impor-
tant, it is necessary to deal with dimensionless correction and give the weight coefficient to distinguish. The 
evaluation function can be modified as

 

2 2* *
1 1 2 2

1 2* *
1 2

min ,
Z Z Z Z

Z w w
Z Z

   − −
= +        

(12)

where w1 and w2 are the weights of the objective functions whose value can be determined by the expert evalu-
ation method and other and w1 + w2  =  1.

According to the analysis above, the fitness function of AGA is constructed as follows:

 

1 2

2 2* *
1 2

1 2* *
1 2

( ) .
i iZ Z Z Z

f i M w w
Z Z

   − −
= − +        

(13)

The function above represents the fitness function value of the ith chromosome, where 
1

iZ  and 2
iZ  are 

two corresponding objective function value of the chromosome and M is a sufficiently large positive number.

4.3  Selecting Operation

Use the roulette wheel selection method. Each generation determines the probability of copying to the next 
generation according to the size of individual fitness value. Assume that the population size is popsize, the 
fitness value of individual i is f (i), then the selection probability pi is

 1

( ) .
( )

i popsize

i

f ip
f i

=

=

∑
 

(14)

4.4  Adaptive Crossover and Mutation Operation

Here, a two-point crossover is used to perform the crossover operation, and a double-point mutation method 
was used to perform the mutation operation. The probability of crossover and mutation is determined by the 
adaptive selection strategy. In a standard genetic algorithm (SGA), the probability of crossover and mutation 
is a fixed value, which leads to the premature pheno menon and local convergence. To avoid the defects, AGA 
uses the adaptive selection strategy for the probability of crossover and mutation: when the bigger fitness 
value of the two chromosomes performing crossover operation is less than or equal to the average fitness 
value, the probability of adaptive crossover increases; otherwise, it decreases. When the fitness value of the 
chromosomes performing mutation operation is less than or equal to the average fitness value, the probabil-
ity of adaptive mutation increases; otherwise, it decreases [6, 12].

Assume fmax, fmin, f  are the largest, minimum, and average fitness values of group, respectively. f repre-
sents the larger one of the fitness values of the two crossover individuals; f ′ represents the fitness value of 
the mutation individual; Pc max and Pc min represent the maximum and minimum crossover probability of the 
group, respectively; Pm max and Pm min represent the maximum and minimum mutation probability of the group, 
respectively. The crossover probability value of AGA is as follows:

 

max
min max min

max min

max
min max min

max min

( ), 

( ), .

c c c

c

c c c

f f
P P P f f

f f
P

f f
P P P f f

f f

−
− − > −= − + − ≤ −  

(15)
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The mutation probability value of AGA is as follows:

 

max
min max min

max min

max
min max min

max min

( ),  

( ),  .

m m m

m

m m m

f f
P P P f f

f f
P

f f
P P P f f

f f

− ′
− − >′ −= − ′ + − ≤′ −  

(16)

In the same generation, different individuals are endowed with different crossover and mutation prob-
abilities. The protection for individuals with higher fitness value should be undertaken, and the probabilities 
of crossover and mutation are correspondingly reduced, but the probabilities of crossover and mutation of 
individuals with lower fitness value should increase. Each individual in each generation group has a different 
crossover and mutation probability so as to realize adaptive crossover and mutation.

5  Case Study
Take a customized development design project of 5-MW variable-speed, constant-frequency wind turbine 
generator in a wind power generation company as an example to apply the product customization collabora-
tive development task allocation optimization algorithm proposed above.

The collaborative development project of 5-MW wind turbine can be divided into 10 subtasks, namely, 
A, spindle design; B, yaw system design; C, gear box design; D, transmission chain system design; E, electri-
cal system design; F, generator set system design; G, control cabinet system design; H, cabin design; I, pitch 
system design; G, wheel design. According to the task allocation algorithm proposed in this article, the 10 
subtasks are allocated.

Tasks A, B, C, D, E, F, G, H, I, and J can be allocated to suppliers set P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, respec-
tively. The numbers of suppliers contained in each set are 4, 2, 5, 3, 3, 3, 2, 3, 2, and 2, respectively. Among 
these, task E can also be designed by the enterprise itself. Let the enterprise itself be the first one in set P5. The 
first supplier in P1 can simultaneously participate in tasks A and C; thus, the supplier is also included in set 
P3 as its first supplier. The first supplier in P4 can simultaneously participate in tasks D and E; thus, the sup-
plier is also included in set P5 as its second supplier. The first supplier in P6 can simultaneously participate in 
tasks F and G; thus, the supplier is also included in set P7 as its first supplier. Ten tasks (A–J) are allocated to 
29 suppliers and the enterprise itself.

Here, all the suppliers and enterprise itself are arranged in a sequence according to the serial number of 
design tasks. According to the definition of task fitness, the geographical factor vector formed by d(i, j) can 
be obtained as follows:

d  =  [2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1].

The ability factor vector formed by bij is

b  =   [0.2, 0.4, 0.2, 0.4, 0.6, 0.8, 0.4, 0.6, 0.8, 0.6, 0.2, 0.6, 0.4, 0.6, 0.8, 0.4, 0.6, 0.4, 0.4, 0.6, 0.8, 0.4, 0.6, 0.2, 
0.6, 0.8, 0.8, 0.6, 0.4, 0.6].

The equipment factor vector formed by p(i, j) is

p  =  [2, 3, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 1, 3, 1, 1, 2].

The interest factor vector formed by cij is

c  =   [0.6, 0.7, 0.6, 0.8, 0.6, 0.5, 0.8, 0.6, 0.5, 0.3, 0.7, 0.6, 0.6, 0.8, 0.8, 0.6, 0.7, 0.6, 0.5, 0.3, 0.6, 0.4, 0.5, 0.6, 0.8, 
0.7, 0.2, 0.3, 0.5, 0.6].
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Setting α  =  0.2, β  =  0.4. δ  =  0.2, ε  =  0.2, the fitness vector can be obtained as follows:

F  =   [1, 1.1, 1, 0.72, 0.96, 1.02, 0.92, 0.96, 1.02, 1.1, 0.62, 0.96, 0.88, 1.2, 1.48, 0.68, 1.18, 1.08, 1.06, 0.9, 1.24, 0.84, 
1.34, 0.6, 1.2, 0.86, 1.36, 0.7, 0.66, 0.96].
The task execution time of 29 suppliers and the enterprise itself can be expressed with vector as follows:

t  =   [215, 210, 200, 220, 160, 140, 360, 345, 350, 355, 360, 200, 180, 210, 262, 270, 268, 156, 220, 216, 210, 180, 
196, 160, 146, 180, 160, 172, 130, 120].

The cost per unit time can be expressed with vector as follows:

e  =   [2.1, 3.3, 2.6, 1.4, 2.2, 1.9, 3, 2.8, 2.9, 3.6, 3.2, 2.4, 3.1, 2.6, 3, 3.2, 3.2, 2.8, 1.8, 1.6, 2.2, 2.2, 2.4, 2.3, 2.3, 1.9, 3.2, 
2.6, 2.3, 2.4].

The relative quality can be expressed with vector as follows:

q  =   [0.5, 0.6, 0.7, 0.8, 0.5, 0.6, 0.3, 0.4, 0.6, 0.8, 0.7, 0.65, 0.72, 0.56, 0.8, 0.7, 0.64, 0.53, 0.6, 0.42, 0.46, 0.6, 0.8, 
0.6, 0.4, 0.2, 0.6, 0.4, 0.5, 0.8].

According to the definition of task coordination efficiency, the task coordination efficiency matrix can 
be obtained:

11 12 13 14 15 16 17 18 19 1, 10

21 22 23 24 25 26 27 28 29 2, 10

31 32 33 34 35 36 37 38 39 3, 10

41 42 43 44 45 46 47 48 49 4, 10

51 52 53 54 55 56 57 58 59 5 , 10

61 62 63

A S S S S S S S S S S
B S S S S S S S S S S
C S S S S S S S S S S
D S S S S S S S S S S
E S S S S S S S S S S

S F S S S
G
H
I
J

=
64 65 66 67 68 69 6, 10

71 72 73 74 75 76 77 78 79 7 , 10

81 82 83 84 85 86 87 88 89 8 , 10

91 92 93 94 95 96 97 98 99 9, 10

10, 1 10, 2 10, 3 10, 4 10, 5 10, 6 10, 7 10, 8 10, 9 10, 10  

S S S S S S S
S S S S S S S S S S
S S S S S S S S S S
S S S S S S S S S S
S S S S S S S S S S































 
 

A B C D E F G H I J

The matrix is a symmetric matrix, and the diagonal elements are zero. For example, s12 represents the 
coordination efficiency between four candidate suppliers of task A and 2 candidate suppliers of task B, and 
it is a 4  ×  2 matrix as follows:

12

0.67 0.78
0.62 0.56
0.64 0.62
0.78 0.72

s

 
 
 = 
 
  

The rest of the elements are similar. Although there are 
2
10 45C =  matrix elements, because of space limita-

tions, only s12 is listed above. The rest of the data is listed in the task coordination efficiency matrix as follows:
The delivery time constraint is 2100, the cost constraint is 5500, and the quality constraint is 6.5, namely,

Σt   ≤   2100; Σc   ≤   5500; Σq   ≥   6.5.
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According to the literatures [5], the population size directly affects the convergence of the algorithm and 
computational efficiency. If the population size is too small, it is easy to converge to a local optimal solution. 
If the population size is too large, the calculation speed will be reduced. The general population size is often 
set to 10–200, according to the actual situation. The crossover pro bability controls the use frequency of the 
crossover operation. A greater crossover probability can enable future generations to fully cross, whereas a 
small crossover probability may cause the evolutionary speed to relatively slow down. The generally recom-
mended value of the crossover probability is set to 0.4–0.99. The mutation probability controls the mutation 
operation. If the mutation pro bability is too small, it is easy to lead to premature convergence. If the mutation 
probability becomes larger, it will enable the solution that jumped out from the local extreme point to obtain 
the global optimal solution. The mutation probabi lity is set to 0.0001–0.1. Here, set the initial population 
size as 50, the maximum number of iteration as 500, M  =  100, Pc max   =  0.45, Pc min  =  0.25, Pm max  =  0.004, and  
Pm min  =  0.002; weights of the two objective functions are w1  =  0.5 and w2  =  0.5, respectively, and the ideal point 
consists of two single-goal optimal function values (12.00, 34.19). Use Matlab R2010a for programming cal-
culation. Obtain the chromosome coding of the optimum scheme 1000 10 01000 001 1000 100 01 010 10 10, 
with the best fitness value of 99.9145, distance between the corresponding optimal objective function value 
point and ideal point of 0.0755, and the following chromosome coding: task A is assigned to the first supplier 
in supplier set P1, task B is assigned to the first supplier in supplier set P2, task C is assigned to the second 
supplier in supplier set P3, task D is assigned to the third supplier in supplier set P4, task E is assigned to the 
enterprise itself, task F is assigned to the first supplier in supplier set P6, task G is assigned to the second sup-
plier in supplier set P7 , task H is assigned to the second supplier in supplier set P8, task I is assigned to the first 
supplier in supplier set P9, and task J is assigned to the first supplier in supplier set P10.
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Figure 4. The Final Optimal Allocation Results of Design Tasks of 5-MW Wind Turbine Products.
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Figure 6. The Convergence Curve when the Population Size is Set to 50.
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Figure 7. The Convergence Curve when the Population Size is Set to 100.

Table 3. Comparison of Running Results of Different Population Sizes.

Population size Optimal solution Run time (s) Iteration number

50 99.9104 19.63 169
100 99.9141 12.36 88
200 99.9145 10.88 60

Table 2. Comparison of Different Algorithms’ Optimized Results.

Algorithm Optimal solution Run time (s) Iteration number

AGA 99.9145 17.61 131
PSO 99.9037 21.33 153
SGA 99.8607 35.43 302
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Because of the relative fuzzy grasp on the customization demands of the electrical system of the owners, 
task E should be completed with the owner’s collaboration. To sum up, the final optimal allocation results of 
all design tasks of 5-MW wind turbine product are shown in Figure 4.

Under the circumstances that the population size and the maximum number of iterations are equal, 
AGA, PSO, and SGA are used for solving the problem, respectively. The parameters of PSO were set as 
follows according to the literatures [14]: set the initial inertia weight as 0.9 and the acceleration coefficient 
as c1  =  c2  =  2. The results are shown in Figure 5. Run independently 50 times, and the best statistical results 
are shown in Table 2.
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Figure 8. The Convergence Curve when the Population Size is Set to 200.

Table 4. Comparison of Running Results of Different Crossover Probability.

Crossover probability Optimal solution Run time (s) Iteration number

(0.4, 0.2) 99.9104 20.36 183
(0.6, 0.4) 99.9141 16.59 168
(0.8, 0.6) 99.9145 11.67 82
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Figure 9. The Convergence Curve when the Crossover Probability is Set to (0.4, 0.2).
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Figure 5 and Table 2 show that AGA converges to the optimal solution after 131 generations, PSO con-
verges to the optimal solution after 153 generations, and SGA converges to the optimal solution after 302 
generations. When run on the computer with a dual-core I5-430M CPU, basic frequency of 2.27 GHZ, and 1 GB 
of memory, the time obtained is 17.61 s for AGA, 21.33 s for PSO, and 35.43 s for SGA.

Thus, it can be seen that AGA converges faster than PSO and SGA, has a greater stability, and has a 
shorter the running time. Moreover, the optimal value found by AGA is better than those by PSO and SGA. 
When solving task assignment problems, AGA is superior to PSO and SGA.
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Figure 10. The Convergence Curve when the Crossover Probability is Set to (0.6, 0.4).
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Figure 11. The Convergence Curve when the Crossover Probability is Set to (0.8, 0.6). The Results are Shown in Table 4.

Table 5. Comparison of Running Results of Different Mutation Probability.

Mutation probability Optimal solution Run time (s) Iteration number

(0.004, 0.002) 99.9104 18.67 167
(0.006, 0.004) 99.9141 15.66 102
(0.008, 0.006) 99.9145 9.78 49
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When the crossover probability, mutation probability, and other parameters remain the same, the popu-
lation size was set to 50, 100, and 200. The results are shown in Table 3.

Figures 6–8 and Table 3 show that the larger the population size, the quicker the AGA algorithm con-
verges and the shorter the time needed to find the optimal solution. The number of iterations needed to 
achieve the optimal solution also decreases.

When the population size, mutation probability, and other parameters remain the same, the maximum 
and minimum crossover probability was set to (0.4, 0.2), (0.6, 0.4), and (0.8, 0.6). The results are shown in 
Table 4.

Figures 9–11 and Table 4 show that with the crossover probability increases, the convergence rate 
increases and the global optimization capability increases. In addition, it can obtain the optimal solution in 
a shorter time.

When the population size, crossover probability, and other parameters remain the same, the maximum 
and minimum mutation probability was set to (0.004, 0.002), (0.006, 0.004), and (0.008, 0.006). The results 
are shown in Table 5.
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Figure 12. The Convergence Curve when the Mutation Probability is Set to (0.004, 0.002).
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Figure 13. The Convergence Curve when the Mutation Probability is Set to (0.006, 0.004).
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Figures 12–14 and Table 5 show that with the mutation probability increases, the convergence enhances 
and the local searching ability increases. The time required to achieve the optimal solution decreases. It can 
approximate the optimal value faster.

6  Conclusion
Problem of task allocation in collaborative customized product development was studied based on artificial 
intelligence technology. Theoretical guidance was provided for optimizing the allocation of development 
resources, which shortens the product development cycle and improves the efficiency of product collabora-
tive design. The main contributions of this article as the following:
1. The definitions and calculation methods of task fitness and task coordination efficiency were given, and 

a multiobjective optimization mathematical model of collaborative customized product development 
task allocation was constructed.

2. The AGA for solving the model was introduced, and a new solution for collaborative customized product 
development task allocation optimization problems was provided.

3. A 5-MW wind turbine product development project of a wind power generation company was used as 
an example. The results verified the feasibility and the effectiveness of AGAs in solving task allocation 
optimization problems compared with methods such as SGA.

Task allocation in a collaborative customized product development process is a complex problem. There are 
many factors that influence task allocation, and there are relatively more algorithms. In this article, only two 
dimensions of fitness and coordination efficiency of cooperative tasks are studied. The factors considered 
are relatively few, and they need to be further studied and expounded. Further enriching and improving the 
objective function and the constraints and its algorithm of task allocation will be the next research focus.
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