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Abstract: This article describes research to build an embodied conversational 
agent (ECA) as an interface to a question-and-answer (Q/A) system about a 
National Science Foundation (NSF) program. We call this ECA the LifeLike 
Avatar, and it can interact with its users in spoken natural language to answer 
general as well as specific questions about specific topics. In an idealized case, 
the LifeLike Avatar could conceivably provide a user with a level of interaction 
such that he or she would not be certain as to whether he or she is talking to 
the actual person via video teleconference. This could be considered a (vastly) 
extended version of the seminal Turing test. Although passing such a test is 
still far off, our work moves the science in that direction. The Uncanny Valley 
notwithstanding, applications of such lifelike interfaces could include those 
where specific instructors/caregivers could be represented as stand-ins for the 
actual person in situations where personal representation is important. Possi-
ble areas that come to mind that might benefit from these lifelike ECAs include 
health-care support for elderly/disabled patients in extended home care, educa-
tion/training, and knowledge preservation. Another more personal application 
would be to posthumously preserve elements of the persona of a loved one by 
family members. We apply this approach to a Q/A system for knowledge preser-
vation and dissemination, where the specific individual who had this knowledge 
was to retire from the US National Science Foundation. The system is described 
in detail, and evaluations were performed to determine how well the system was 
perceived by users.
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1  Introduction
Humans are a highly social species that readily communicate with one another. 
Brief communications have been historically done best via the spoken word, 
whereas longer, deeper, and more complex communications have been done 
via the written word. Newly emerging trends toward electronic communica-
tion notwithstanding (emails, SMS, online chats, etc.), most people still prefer 
to communicate via spoken speech to maintain a high degree of personal 
interaction. Face-to-face communication via spoken words and accompanied 
by appropriate gestures and expressions is often preferred in order to convey 
information not as effectively expressed via the more impersonal written 
communications.

We are particularly interested in extending the normal interactive commu-
nication between two humans to one that is between a human and a computer. 
The notion of such interactive agents has existed since the inception of the com-
puting age. Idealistic visions of these agents are often endowed with extraordi-
nary capabilities. Yet, state-of-the-art technology is only capable of delivering a 
small fraction of these expectations. The popular media is full of such notional 
conversational characters, some embodied, others not. The Star Wars robotic 
characters R2D2 and C3PO became cultural icons in the 1970s, even though R2D2 
was not particularly articulate. HAL, the intelligent but disembodied computer 
character in 2001: A Space Odyssey, hails back to 1984. Another disembodied 
but highly articulate conversational agent was KIT, the talking Pontiac Trans Am 
from the early to mid-1980s TV series Knight Rider. Yet another popular embod-
ied agent from the same era was the talking computer-generated British talk 
show host Max Headroom. More recently, movies such as D.A.R.Y.L. (1985) and 
AI Artificial Intelligence (2001) likewise presented the concept of robotic enti-
ties that could communicate with humans in a natural and lifelike manner. The 
ultimate lifelike machine in the popular media, however, was Commander Data 
from Star Trek: The New Generation, a TV series that ran in the USA between 
1987 and 1994. Of course, some of these characters were played by human 
actors, whereas for others, humans acted in the background, lending only their 
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voices. In any case, these were certainly not true entities capable of intelligent, 
computer-generated conversations. Nevertheless, these figments of the popular 
imagination provide glimpses of our fascination with intelligent and conversa-
tional nonliving agents. They also provide us with notional models to emulate, 
if only in small parts.

We base our research on the concept that interpersonal communications is 
best done via the spoken word in a face-to-face interchange. Furthermore, we 
assert that such communication is most effectively done when the interlocutor 
is an entity that is someone known to us – preferably someone trusted and/or 
loved or at least someone known and/or respected. Therefore, when communi-
cating with a computer, it would follow that having a computer representation 
of a specific individual with whom the conversation could take place would be 
more effective than with an embodied but generic entity and certainly much more 
effective than with a disembodied entity such as Hal or KIT. If computer interac-
tion is to be optimized for effectiveness, we believe that it must simulate such 
personal, face-to-face conversation with a familiar entity via spoken speech. This 
is particularly important for applications where knowing the individual being 
represented adds value to the communication exchange.

Embodied conversational agents (ECAs) have been the main research disci-
pline in pursuing such objectives. Other commonly used names for ECAs have 
been virtual humans and avatars (our preferred name). If done sufficiently well, 
an avatar that was able to speak in, and understand natural spoken speech, and 
looked very much like its human counterpart, would be able to pass a (greatly) 
enhanced version of the Turing test [57]. In this conceptual extension of the 
classic Turing test, one would converse through spoken speech with an image of 
a known individual about a deep subject and then be asked to pass judgment on 
whether one was conversing with the person him/herself via a videoconference 
medium or merely interacting with his/her avatar. Such a test has been already 
suggested in the literature – Barberi’s ultimate Turing test [2], although with 
somewhat different objectives and in different format. Clearly, we are very far 
from achieving that at this point, and we certainly do not claim that our LifeLike 
Avatar passes this test. Nevertheless, our research described here clearly takes us 
in that direction.

Our work is not the first or the only one on such avatars; we discuss the state 
of the art in Section 2. Nevertheless, our work is an attempt to put together a syn-
ergistic set of components that has passing the above-defined Enhanced Turing 
Test as an ultimate objective. This article describes our work, our accomplish-
ments, our evaluations, and a discussion of the extensive future research that yet 
remains to be done to accomplish this goal.
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2  State of the Art in ECAs
Chatbots (or chatterbots) are the evolutionary ancestors of ECAs. The original of 
these, of course, was the seminal ELIZA [61], a disembodied conversational rep-
resentation of a Rogerian therapist that started this research area in earnest. In 
1972, Colby [13] created the most well-noted successor to ELIZA, a chatbot named 
PARRY, which simulated conversations that one might hold with a paranoid 
schizophrenic individual [25].

In 1990, Mauldin [38, 39] created a bot named Julia, the first of what would 
be called verbots, as described by Foner [22]. Verbots have the ability to process 
natural language as well as some behavioral rules that guide their responses  
[38, 39].

Cassell et al. [11] provided some insights into human – computer interaction 
in a physically immersive environment with their conversational playmate Sam. 
Sam was not an autonomous avatar, but its creators were able to show that a child 
could interact with an artificial being in a reasonably effective manner. Bickmore 
and Picard [5] created Laura, a personal trainer agent that also is able to commu-
nicate via typed text to answer questions from a human user. Laura’s interactions 
with the user were one-sided, where Laura controlled the dialogue at all times.

Wallace’s [60] ALICE and ALICE’s Program D implemented sentence-based 
template matching, an expansion of Eliza’s keyword matching concept. Lee et al. 
[33] created an animatronics penguin named Mel to study the use of robots as 
conversational agents. Lee et  al. [33] reported that humans were able to effec-
tively interact with a physical and conversationally interactive robot. Kenny et al. 
[32] furthered the concept of interacting with ECAs with their Sergeant Blackwell 
conversational agent, which provided the user with a more natural human –  
computer interaction. Two other ECAs – Sergeant Star [1] and Hassan [56] –  
followed and were based upon SGT Blackwell’s architecture.

Composite bots emerged also in the 2000s. These bots consist of a combina-
tion of techniques, such as pattern matching, machine learning, Markov models, 
and probabilistic modeling. One of the most notable achievements in composite 
chatterbots follows the Jabberwacky approach [10], which differs from other chat-
bots in that it learns to talk by exploiting the context of previous conversations it 
has stored in a large database.

In the midst of all these advances, Mori’s [44] Uncanny Valley introduced 
some perspective into how humans perceive lifelike agents. Mori found that if the 
avatar is human-like but not too much so, then it is viewed as positive. However, if 
a lifelike avatar is too human-like, then a feeling of revulsion arises in the human 
interlocutor. The Uncanny Valley has produced much discussion, controversy, 
and follow-up research. Nevertheless, our work hopes to move past the Uncanny 
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Valley – to the point where the agent is so real and lifelike that a user would not 
know for certain that it is artificial.

Although the above discussion is far from being exhaustive and we have left 
out many important achievements in chatbots and avatars, it is fair to say that no 
chatbot/avatar described in the literature combines a lifelike appearance along 
with intelligent spoken dialogue in a deep subject matter. These are some of the 
required features in an avatar that would pass the enhanced Turing test. We do 
not pretend to have a solution at the moment. We only report here what we have 
done toward that end. We call the results of our work the LifeLike system, and it 
is described below.

3  The LifeLike System
To successfully fool a human user into thinking that an ECA is in fact a human, 
first and foremost requires a lifelike visual appearance, preferably one that 
strongly resembles a known individual. Without that, the avatar has no hope 
of ever passing the Extended Turing Test as defined here. The specific vehicle 
that we use for imposing such subterfuge on a human user is an avatar that we 
call the LifeLike Avatar. In its first implementation as part of the sponsoring 
grant from NSF, it used the image of Dr. Alex Schwarzkopf, a long-time program 
manager at the NSF (see Figure 1 for a look at the latest version of the LifeLike 
Avatar).

Figure 2 depicts the LifeLike avatar in its “office,” ready to field questions 
from the users. The whiteboard on the left of the screen serves to display answers 
that are long or that have graphics and therefore cannot be easily articulated 
orally. The avatar in Figure 2 is the next-to-the-last version of the avatar. Note 

Figure 1. The LifeLike Avatar.
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how its facial features appear significantly more artificial than the latest version 
shown in Figure 1.

Compare the avatar in Figure 1 with a photo of the real Alex Schwarzkopf as 
shown in Figure 3. Although no sane person would confuse them at this time, our 
anecdotal evidence reports that students who had worked with the avatar but 
neither met Dr. Schwarzkopf in person nor had seen actual photos of him recog-
nized him right away in a crowd of people when seeing him for the first time. The 
process of creating the LifeLike Avatar is covered in Section 4 of this article.

Also essential for passing the Enhanced Turing Test is an intelligent dialogue 
that is both natural and knowledgeable – to the same extent as the person being 
represented. Furthermore, it should sound like him/her and show the same ges-
tures and emotions. Therefore, we posit that there are three specific characteris-
tics that can make an advanced avatar seem natural to humans. These are

Figure 3. Comparison of the LifeLike Avatar to its Human Counterpart.

Figure 2. The LifeLike Avatar in its Environment, Ready to Talk to the Users.
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–– A visually lifelike virtual embodiment of a specific human being that has a 
strong resemblance to that person.

–– Communication in spoken natural language – input and output – combined 
with generation of nonverbal gestural expressions. This requires at the very least 
an automated speech recognition (ASR) system and a dialogue manager (DM) 
capable of understanding the words spoken and able to compose a response.

–– A knowledgeable backend that can respond intelligently to questions on 
a specific topic. Ideally, the avatar would also be able to remember details 
about the conversation and learn about that topic through the interaction.

Our LifeLike system, therefore, has two basic components: The visual avatar 
framework component that encompasses the first item above (discussed and 
described in Section 4) and the intelligent communication system component 
that encompasses the last two items (discussed in Sections 5 and 6). This article 
describes the entire project in a capstone sense, with the deep details left for 
some of our other publications that are referenced here.

4  The Visual Avatar Framework
Currently, the most extensive use of avatars has been in computer/video games. 
The current state of the art in gaming technology for creating realistic responsive 
avatars follows the model of a finite-state system that responds to menu-based 
dialogue selections by initiating a prerecorded narrative that is synchronized 
with a specific motion-captured sequence. This section of the article describes 
the graphical/visual aspect of the LifeLike avatar. We begin with describing the 
avatar framework.

4.1  LifeLike Responsive Avatar Framework

The LifeLike Responsive Avatar Framework (LRAF) is essentially the main system 
by which all the components that drive the avatar are tied together to create a 
realistic representation capable of receiving speech input and providing an 
emotive response and a vocal response. The key goals are to understand what 
are the essential main components of this framework and to then develop such a 
framework for creating a realistically behaving avatar.

Figure 4 illustrates the LRAF functional architecture. The LRAF has two sepa-
rate input sources. One is the LifeLike Dialogue Manager (see Section 5), which 
provides sentences that are intended to be spoken by the avatar. The other is the 
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user’s behavioral information, such as eye gaze. The most significant component 
of the LRAF is the Expression Synthesizer, which is responsible for taking the 3D 
facial models and applying the motion-capture data to produce a sequence of 
facial and body animations that fit the context of what has been spoken. Three 
major components of the Expression Synthesizer are (1) the Skeletal Animation 
Synthesizer, (2) the Facial Expression Synthesizer, and (3) the Lip Synchronizer.

The scene of our prototype system was displayed on a large 50-in. screen so 
that the avatar would appear close to life-sized (see Figure 5). It consists of the 
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Figure 4. LifeLike Responsive Avatar Framework.

Figure 5. LifeLike Responsive Avatar Framework Displayed on a 50-in. Screen for a Life-Sized 
Appearance.
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avatar sitting behind a desk in a typical office setting. To interact with the avatar, 
a user wears a headset microphone or uses a directional desktop microphone to 
speak to the avatar, then the avatar will respond to the user’s request via speech, 
with auxiliary information on the display above its right shoulder, along with 
natural nonverbal gestures including body motion and facial expressions.

The development of the Graphical Asset Production Pipeline (GAPP) and of 
the LRAF lays a foundation for methodically investigating two issues: (1) What is 
necessary to create a believable avatar? (2) For what types of tasks are human–
avatar interactions most suited. We discuss these issues next.

4.2  Modeling the Human Subject

A GAPP was developed that encapsulates the tasks needed to create a visual 
representation of a human character. Investigations were conducted to identify 
and test the interoperability of tools for facial modeling, rendering the real-time 
graphics, motion-capture, and text-to-speech (TTS) synthesis. Furthermore, we 
examined and evaluated the options and best practices for recording vocal man-
nerisms and nonverbal mannerisms. We conducted observation and recordings 
of our subject (Alex Schwarzkopf).

Before developing the method, we surveyed and evaluated several exist-
ing open-source and commercial software and hardware tools that could form 
the foundation of our work. Software tools included libraries for realistic digital 
facial modeling, motion-capture data reconstruction, real-time graphics render-
ing, and speech synthesis. Hardware tools included a motion-capture system and 
display configurations for representing the avatar. We discuss these next.

4.2.1  Facial Modeling

FaceGen Modeller [20] is a tool for generating 3D head and face models using 
front and side photographic images. The technique was used to develop the 
highly acclaimed video game, Oblivion [49]. Figure 3 shows the resulting 3D head 
of Alex Schwarzkopf generated by FaceGen. FaceGen provides a neutral face 
model that can be parametrically controlled to emulate facial expression (Figure 
6). In addition, FaceGen enables the user to control the gender, age, and race of 
the model. Although this is a good initial prototype, much can still be done to 
improve the visual realism by improving skin texture and developing high-qual-
ity skin-rendering techniques such as the subsurface light scattering properties 
of skin tissue.
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Figure 6. Facial Expression Morph Model.

4.2.2  Texturing

Visual improvements to the avatar’s head model were created by more accurately 
mirroring the key facial poses of the avatar with video and photographic images 
of the real Alex rather than using the default poses provided by the FaceGen soft-
ware. In addition, texture blending was improved to enable more of the captured 
photographic imagery of Alex’s skin to show through, rather than relying on a 
computer-generated skin texture. However, there is still a “waxy” quality to Alex’s 
skin tone and a general lack of visible depth from imperfections such as pores and 
scars. We can improve this rendering result even further with advanced rendering 
techniques such as bump mapping, subsurface scattering, and displacement map.

Diffuse mapping typically provides the base color for a 3D object in a scene. 
Our Alex avatar’s prior diffuse map was automatically generated by FaceGen 
using a front and side photograph of the actual person. Two severe limitations 
of this software were that the resulting resolution is relatively low and the color 
blending was biased toward more cartoon-like or video game depictions (see 
Figure 7, left, and Figure 8, left). By reconstructing a high-resolution diffuse 
texture from numerous photographs of the subject by projecting 2D photos onto 
a 3D face model, we were able to obtain significantly enhanced depiction of vari-
ations in skin tone (see Figure 7, right, and Figure 8, right).

After the generation of head model, it is exported into a modeling tool as 
static shapes. The LifeLike visualizer uses these models to create weighted facial 
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morphing animation in real time. Shape animation is similar to the bone con-
trolled parametric model that is common in many studies about virtual characters 
or avatars. In general, morph animation based on shape results in better quality 
because all target meshes are well designed and precise in real-time control.

4.2.3  Body Modeling

Even with off-the-shelf tools at our disposal, the process of creating a virtual 
human is still a very time-consuming task. We formalized the process in terms 
of a GAPP (Figure 9). The first part of pipeline is to design a polygonal model 
of the character consisting of the head/face and body. The second part of the 
pipeline is to acquire and edit recorded motions of the character. In the film and 
video gaming industries, motion capture is still much preferred over algorithmic  

Figure 7. Comparison of FaceGen Low Diffuse Map (Left) vs. our Custom Map (Right).

Figure 8. Comparison of FaceGen Diffuse Map (Left) vs. our Custom Map (Right) When Applied 
to the Avatar Model.
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creation of motion because it is still extremely difficult to codify naturalistic, and 
especially subtle, human gestures.

Tools such as Autodesk Maya [40] and MotionBuilder [45] form the middle 
portion of the pipeline where the motion-captured animations are attached (or 
“rigged”) to the 3D character models. Once completed, the resulting model is 
ready for application-based control using the LRAF. The most important aspect of 
full production pipeline is that data had to be easily exchanged among different 
tools. The FBX file format is used to solve this compatibility issue [21]. FBX sup-
ports all polygonal mesh models including material properties (color and texture) 
and skeleton animation without any data loss.

The correct dimensions of Alex Schwarzkopf were gathered from photo-
graphs and measurements taken. Schwarzkopf’s body model consisted of 30,000 
triangles (including the head) with 72 bones rigged (Figure 10). During the design 
of the full-body model, we developed a custom Maya Mel script to automate the 
integration of FaceGen head models with full-body models. The script exchanges 
the current head model with any new head design and automatically updates 
skeleton and morph shapes so that the designer can use the new head model 
immediately without any manual work.

4.3  Animation

We now discuss the animation of the LifeLike Avatar.

4.3.1  Motion Capture

Motion capture is the most widely used approach for acquiring realistic human 
figure animation for the film and video game industries. The focus in the project 

Figure 9. Graphical Asset Production Pipeline.
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is to capture a series of simple motions and enable our avatar to “re-enact” them. 
In December 2007, Dr. Schwarzkopf participated in a motion-capture session. We 
used Vicon motion-capture system with eight high-resolution (MX-F40, 4 mega
pixels) infrared tracking cameras (Figure 11) [58].

After the modeling phase, the animated avatar is created by a combination of 
motion-capture and manual fine-tuning using the Maya and MotionBuilder tools. 
Motion-capture data can be converted into either marker transformation data or 
kinematic fitted bone transformation data. When using marker data (Figure 12, 

Figure 10. Full-Body Model with Skeleton Rigging (T-Pose of Full-Body Model).

Figure 11. Performance Capture: Dr. Schwarzkopf in Motion-Capture Session (Left) and Motion-
Capture Data Retargeting (Right).
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left), one can map markers onto a dummy character template (Figure 12, center). 
This then enables the creation of a character that can re-enact the motion-cap-
tured movements. (Figure 12, right).

4.3.2  Motion Composition and Blending

One of the key challenges to creating realistic motion animation for an avatar 
is ensuring that the transitions between the individual motion-captured 
sequences appear smooth. We realized that many of the sequences that we 
captured of Alex were very dissimilar, making motion interpolation difficult. A 
well-known approach to overcoming this problem is to exhaustively evaluate 
the similarity of a given pose to the next in a large motion database [35]. Using 
lengthy motion clips from a variety of behaviors such as walking, running, and 
jumping, one can construct a comprehensive motion graph from which any 
natural motion can be synthesized [54]. Although this approach is suitable for 
non-real-time applications, it is not suitable for real-time applications because 
as the database grows, the search space of possible animations leading to the 
final goal state grows dramatically. In LRAF, we took the approach used by 
many video games. That is, the avatar’s motions are classified into several 
major categories such as sitting, turning, pointing, etc., and within each cat-
egory, a similarity measure (e.g., based on distance between morph points) is 
computed whenever one motion from one category (such as sitting) needs to 
transition to the next (such as pointing). This helps to dramatically prune the 
search space, making it possible to compute in real time (at least 60 frames per 
second).

Figure 12. Motion-Capture Performance (Left), Character Template Data (Center), and Charac-
ter Retargeting Data (Right).
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Avatars intended to mimic human behavior need to behave somewhat nonde-
terministically, or else they will appear unnatural and mechanistic. To accommo-
date this, we devised the concept of a semi-deterministic hierarchical finite-state 
machine (SDHFSM). An SDHFSM is a hierarchical finite-state machine where a 
substate is chosen either based on a set of constraints or randomly given multiple 
possible options. For example, the highest level of hierarchy of an SDHFSM to 
model avatar behavior may consist of states for speaking, idling, or body motion. 
Within the body motion substate, there are multiple substates that consist of a 
variety of behaviors such as pointing left or pointing right. When an avatar tran-
sitions from an idle state to a body motion state, it must select a state whose 
motion-capture information is kinematically compatible with the avatar’s current 
motion state (Figure 13). By kinematically compatible, we mean that an avatar 
can transition from one sequence of motions to another in a way that appears to 
be within the capabilities of physics. As each kinematically compatible substate 
may have multiple possible motions (there are many different ways to point to 
the left, for example), the choice is made randomly and nonrepetitively to avoid 
appearing robotic or mechanistic.

4.3.3  Facial Expression

Autonomous facial expressions (AFEs) were implemented in LRAF as a means for 
the avatar to alter its facial expressions to control lip synchronization or emotion. 
The AFE works by either receiving explicit events from the context-based dia-
logue manager (DM) or through randomly generated expressions when the avatar 
is in an idle state. The latter is used to create involuntary actions such as blinking 
and small movements of the mouth.

 

Figure 13. Semideterministic Hierarchical Finite-State Machine.



380      A.J. Gonzalez et al.

Through an avatar’s XML definition file, the developer can customize a 
neutral facial expression as well as any desired random expressions (including 
mouth movements) that may be idiosyncratic to the character being mimicked. 
Furthermore, multiple individual expressions can be grouped into hierarchies to 
simplify the creation of combined expressions. The following XML snippet illus-
trates one example of idle mouth animation that includes three different unit 
shapes in one group (“Mouth0”).

 < IdleExpression > 
  < IEGroup name = “Mouth0” initialOffset = “2.0” frequencymin = "4.0”
         frequencymax = “10.0” durationmin = “0.4” durationmax = “1.0” > 
   < Shape name = “Phoneme__aah” wmin = “0.2” wmax = “0.4” offset = “0.0”/ > 
   < Shape name = “Phoneme__R” wmin = “0.1” wmax = “0.45” offset = “0.5”/ > 
   < Shape name = “Phoneme__oh” wmin = “0.1” wmax = “0.35” offset = “0.7”/ > 
  < /IEGroup > 
 < /IdleExpression > 

In addition to autonomous random generation of facial expression for involun-
tary motion, a human expresses emotions in terms of facial feature movement 
upon its mental status. Profound researches on this subject have been conducted 
in multiple literatures. One well-established study about emotional facial expres-
sion is Ekman’s categorical expressions [16]. Ekman proposed six basic emotion 
categories – anger, disgust, fear, happiness, sadness, and surprise. These defini-
tions of human emotion have been adopted in the vast amount of research that 
followed it. Our Facial Expression Synthesizer implementation is also relying on 
this work.

Our first prototype framework used these six basic emotions tied with cor-
responding facial expressions generated by FaceGen software. One drawback in 
this approach is that facial expression mechanism always uses the same morph 
shape for the given emotion, which makes our avatar not as natural as a real 
person. The advanced emotional expression generator in LRAF incorporates 
empirical facial expression database to solve this unnaturalness. LRAF uses the 
CK+ facial expression database [30, 36] to decompose lower-level facial feature 
sets for each expression with over 100 different subject data found in the data-
base. Figure 14 shows one example from the database. Facial features in CK+ 
database are encoded in Facial Action Coding System (FACS) [17] to describe each 
expression. Extended LRAF facial animation data includes individual action unit 
(AU) as separate morph shape to realize this variation in facial animation. When 
the Facial Expression Synthesizer receives an elicited emotion for the avatar, 
the synthesizer samples the database and recomposes the corresponding facial 
expression with the retrieved AU information.
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4.3.4  Lip Synchronization

Lip synchronization with voice is a crucial aspect of facial animation. The LRAF 
supports two methods to control lip shape. The first model uses Microsoft Speech 
API (SAPI) [42] TTS and its visual lip shape (viseme) events that are synchronized 
with the TTS engine to select the appropriate mouth shapes to depict. The second 
model uses a recorded audio file and its amplitude and frequency information 
to drive lip shapes. This enables the avatar to use both computer-synthesized 
speech as well as directly recorded speech.

Microsoft’s SAPI was chosen as the API for enabling text-to-speech (TTS) synthe-
sis. It provides an event-generation mechanism to report the status of the phoneme 
and its corresponding viseme during the synthesis of voice. These events can be 
used to create realistic phoneme-based lip animations. Furthermore, a number 
of commercial speech systems provide an interface to SAPI so that an application 
can transparently leverage a multitude of speech systems. As phoneme informa-
tion is a type of discreet event, Lip Synchronizer interpolates it to co-articulate lip 
shape-morphing values in between events. For example, when one phoneme event 
arrives, it starts the fade-in phase by increasing the related shape value; then, it 
initiates the face-out phase upon receiving the next one. This simple yet effective 
linear interpolation of individual lip shape animation gives natural and smooth 
transition for the synchronous lip animation for a given speech synthesis.

Lip synchronization for prerecorded speech is designed to modulate main 
speech amplitude together with subdivided frequency bands. Our approach 
continuously monitors 28 frequency bands of an audio stream and uses them to 

Figure 14. Cohn–Kanade Facial Expression Database (Subject 132 ©Jeffrey Cohn).
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select different lip shapes. This per-frequency band mapping method is based on 
the premise that certain frequencies of a speech can only be produced with spe-
cific mouth shapes. However, since a perfect one-to-one mapping is not possible 
and likely to be unrealistic, we use multiple group mappings between frequency 
bands and mouth shapes, e.g., many bands to single mouth shape; single band to 
many shapes; many bands to many shapes depending on programmable criteria, 
such as which band(s) came before (Figure 15).

In October 2009, three members of the team visited Alex Schwarzkopf for a 
day to record a large bulk of corpus materials for the new lip synchronization 
technique. By recording Dr. Schwarzkopf’s voice, we are able to make the avatar 
more closely resemble the real person and create a more realistic interface users 
will associate with a human. Six hours of recording based on a script derived from 
the knowledge system was cleaned, manipulated, and produced into a database 
of utterances that can be combined to create a number of phrases determined by 
the dialogue system.

4.4  Rendering

We evaluated two open-source graphics engines for real-time rendering imple-
mentation (Blender3D and OGRE (Object-oriented Graphics Rendering Engine)). 
Although Blender3D [6] provides a rich set of development capabilities, includ-
ing a 3D modeling, animation, and scripting system, it did not have sufficient 
data exchange support to enable the loading of motion-captured data sets from 
commercial tools such as Maya and MotionBuilder. Furthermore, Blender3D does 
not allow applications to manually control bone-level animation, which is neces-
sary to enable the avatar to do more than simply play back a prerecorded motion- 

Waveform
FFT analysis

Shape mapping

Frequency bands

Blend
lip shape

Figure 15. Recorded Voice Lip Synchronization Model.
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capture sequence. OGRE [51] proved to be a better fit. Its plug-in-based architecture 
provides greater ability to interoperate with other software tools. OGRE provides 
both a high-level interface for interacting with graphical objects and a low-level 
Shader control to create specialized visual effects to create more realistic avatars.

Even when watching the most sophisticated computer-generated humans 
today (such as in the recent film, Beowulf [3]), many in the media have commented 
on the apparent “hollowness” in the digital character’s eyes. Furthermore, others 
have noted that an older avatar appears to look more realistic than a younger 
avatar, perhaps because younger avatars have fewer blemishes that would tend to 
make it resemble the traditional smoothly polished computer-generated image. 
We noticed this phenomenon in the creation of our Schwarzkopf avatar where, 
because of a limitation in the commercial FaceGen software, the exported head 
had considerably less pronounced skin texturing than the real person, which 
tended to make the avatar look plastic and doll-like.

Investigations in high-quality rendering included the development of an 
improved skin rendering method, in particular one that was better able to capture 
the appearance of more elderly subjects; the image space normal mapping to 
enhance skin details; the development of reflection and refraction techniques for 
depicting realistic eyeglasses; the creation of soft shadows to heighten the illusion 
of spatiality/depth of the depicted avatar; and the stereoscopic rendering tech-
niques for the 3D display system to create immersive lifelike avatar representation.

4.4.1  Realistic Skin Rendering – Subsurface Scattering

The realistic rendering of skin is an active area of research, largely motivated by Hol-
lywood and the video game industry. Prior work has shown that precise modeling 
of translucent multilayered human skin (subsurface scattering, or SSS) can produce 
very realistic results [15, 29]. Recent approaches have taken advantage of graphics 
processing units (GPU) to enable them to run in real time [19]. By implementing a 
prototype of these algorithms, we discovered a limitation of existing algorithms –  
namely that current GPU-based approaches to SSS only work for static faces, not 
animated ones. Figure 16–18 show the result of our implementation of GPU-based 
SSS shader (intermediate screen space rendering result during shading pipeline).

The reason for the limitation on static mesh rendering is that the SSS approach 
uses texture-based computation to create the complex surface geometry. Because 
animated faces are created by morphing between geometric shapes, one must 
recompute the vertex normal whenever there is a change in the vertex position 
of the geometric control points of the face. This problem is solvable by applying 
additional computation in the geometry shader and providing new vertex data to 
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the next shading stages (vertex and fragment shader). In addition, the UV stretch 
map also needs an update at each frame as correlation between the UV coordi-
nate and vertex position changes as the mesh deforms on the fly.

A second major challenge arises at the seams between two geometric objects –  
for example, the face and the neck – which are often depicted as two separate 
geometries with their own texture material information. Because the two geo
metries have discrete textures to begin with, there is often a visible seam between 
them during convolution filtering. To solve this issue, we extended neighboring 
texture boundaries so that resulting rendering minimize these texture seams.

4.4.2  Skin Normal Map

Normal mapping is one of the most common rendering techniques for enriching 
polygonal surface-rendered images with fine-grained details without incurring 

Figure 17. UV Stretch Map: Used to Adjust Texture Map Stretching Effect: UV Stretch Map in 
Four-Component Color Space (Left), U Coordinate Values (Center), and V Coordinate Stretch 
(Right).

Figure 16. Predefined Map Source for SSS Rendering: Color Texture Map (Left), UV Coordinate 
Snapshot (Center), and Object Space Normal Map (Right).
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the cost of increased geometry complexity. This therefore allows for an image to 
appear to have much greater visual detail and yet can operate in real-time on 
modest computing hardware. Pixel-based (image-based) lighting from normal 
maps contribute greatly to the reduction of polygon complexity without losing 
detail. In particular, the parallax normal mapping algorithm supports view-
dependent surface unevenness in addition to per-pixel bumpy lighting effects 
[31].

In our prototype application, a high-resolution tangent space normal map 
texture was extracted from a diffuse color map by analyzing the gray-scale height 
map [47]. Figure 19 shows partial maps from a 4096 × 4096 full-sized normal map 
of Alex Schwarzkopf’s skin. This technique is an excellent method for estimating 
the “bumpiness” of skin, in particular older skin, without the need to use expen-
sive imaging hardware.

Figure 18. Multiple Gaussian Convolution Filtering: SSS Requires Six Separate Convolution 
Filter Operation on Texture Space Render Result to Compute Skin Diffuse Profile. Three Pictures 
Show the First, Third, and Sixth Filtering Result.

Figure 19. Tangent Space Normal Map Extracted from Diffuse Color Texture: Region Near the 
Eye (Left) and Region Near the Lip (Right). In a Normal Map, the Red, Green, and Blue Compo-
nents of an Image Correspond to the x, y, and z Vectors of a Normal to the Surface of the Skin.
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Figure 20 shows the result of the application of the parallax normal map 
rendering method. Note that the result without normal mapping lacks natural-
ness at the wrinkles and skin pores even though skin tone is properly depicted. 
Normal mapping enables both heavy wrinkles and pores to be more realistically 
visualized.

4.4.3  Wrinkle Map

The normal map technique in the previous section is a good low-bust method to 
improve skin details. It is mostly suitable for the static model; however, it lacks 
the ability to show dynamic wrinkles during facial muscle movement because the 
static skin normal map stays same regardless of facial animation status. This is 
especially an issue in areas of heavy wrinkles such as nose wrinkle and mouth 
furrow. Therefore, it is necessary to decompose the skin normal map into two or 
more maps to support dynamic wrinkle generation for real-time facial expression 
changes.

The method in the dynamic wrinkle texturing is to split the normal map into 
one for more permanent fine details such as pores and scars and another for 
heavy wrinkles such as nose wrinkle, mouth furrow, and eye corner wrinkles. The 
latter ones can be controlled by the facial muscle contraction caused by the facial 
morphing for various expressions. For example, as an avatar moves the upper lip 
up, it is likely showing deepened mouth furrow. This will activate a wrinkle map 
region for mouth furrow to tell the wrinkle shader to increase blending factor 
for the given wrinkle normal map. Figure 21 shows our wrinkle map rendering 
result for an anger expression. Applied wrinkle map shader in Figure 21 (center) 
presents improved facial details over nonwrinkle map rendering (Figure 21, left).

Figure 20. A Comparison of the Avatar with (Right) and without (Left) a High-Resolution Paral-
lax Normal Mapping.
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There are a few recent studies that deployed this method to depict more 
natural dynamics of facial wrinkle generation. Dutreve proposed a dynamic 
wrinkle control via skeletal animation poses as it controls facial animation with 
bones [14]. Another example is a region-based mask to activate a certain area of 
the wrinkle map when an application triggers an expression associated with the 
wrinkle region [48]. The latter approach is more appropriate to our framework 
because we use the morph target method instead of the skeleton to animate an 
avatar face.

We further devised the wrinkle map region masks for AUs in FACS so that the 
wrinkle map shader properly activates each region upon individual facial feature 
on the fly. This method saves texture memory space by using a low-resolution 
mask map with a high-resolution single wrinkle map. The blending factor for the 
wrinkle map is determined by the weight values for each AU. The assignment to 
connect an AU and a wrinkle region is defined in the avatar XML specification file.

4.4.4  Soft-Edged Shadow

The depiction of dynamic real-time shadows is another important technique 
for enhancing the illusion of depth of a scene or a 3D object in a scene. Recent 
advances in GPU enable the generation of high-quality soft-edged shadows. Soft 
shadow techniques [62] were investigated into our avatar-rendering framework 
producing the final version of the avatar (Figure 22).

The depiction of reflective materials in 3D objects requires complex and mul-
tiple rendering pipelines to draw the reflected image on a mapped surface (in this 
case, the lenses of the avatar’s eyeglasses and eyeballs).

Figure 21. Wrinkle Map Example: Simple Shading Model (Left), Wrinkle Map Applied (Center), 
and Used Tangent Space Wrinkle Normal Map (Right).
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4.4.5  Reflective Material

Techniques such as environment mapping have been frequently used to mini-
mize rendering overhead. In this technique, a predefined reflection image is 
taken and mapped to vertex coordinates, providing a suitably realistic simula-
tion of a reflection. This technique also works well for dynamic objects, as it uses 
camera position, reflection point, and an inverse ray to the scene to determine the 
appropriate mapping coordinates. Our avatar rendering system supports these 
shading methods. However, we have also enhanced these methods using various 
texture blending techniques to provide a more accurate depiction of the reflec-
tion material itself.

Figure 23A shows the first test results to investigate refractions on a nonflat 
surface. Utilizing a grid texture, we can see non-uniform light reflections upon 
each normal vector at the vertices.

After computing the proper UV coordinates for a reflection map, a single 
opaque texture is applied to the object’s surface. Figure 23B shows a sample 
texture taken in common office environment to capture the florescent lights on a 
ceiling (Figure 23B, left).

Because our avatar’s glasses are not heavily coated sunglasses, a second 
texture layer was incorporated to increase transparency. The advantage of using 
a transparency texture instead of traditional parameter-based fixed transparency 
is that it provides the possibility for varying transparency over an area. In this 
particular example, a gray-scale image (Figure 23C, left) controls the intensity of 
the transparency – darker areas are considered more transparent.

Once implemented, the results were impressive; however, the image appeared 
too “perfect.” To incorporate imperfections, such as fingerprints or dust on the 
eyeglasses, a dust texture created from random noise filter was also blended with 
the previous series of textures. This dust texture multiplies the intensity of the 

Figure 22. Result of Real-Time Soft-Edged Shadow Rendering.
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Figure 23. Iterative Design of Reflective Material Rendering Technique.
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computed color with the previous two textures, resulting in subtle highlights that 
appear like dust specs on the lenses surface Figure 23D.

The last improvement made to the model was to use a real-time image 
captured of the environment rather than a presampled image (such as the one 
depicted by the florescent lights). This enables the person actually speaking with 
the avatar to appear directly in the reflection of the eyeglasses as well as the ava-
tar’s eyeballs. To achieve this, the live image from a web camera in gray scale was 
used to produce the dynamic reflection map (Figure 23E).

4.4.6  Stereoscopic Rendering

In the past, the stereo display system had been a specialized system for a certain 
applications; however, it is becoming more prevalent in various domains. Most 
of recent commercial TV is now capable of 3D display. As the popularity of 3D 
display increases, it is necessary for our framework to accommodate such capa-
bility with appropriate stereoscopic rendering techniques. This will therefore 
allow our avatar to participate in fully 3D immersive environments.

The LRAF implementation of stereoscopic rendering supports various stereo-
scopic separation schemes such as anaglyphic, side-by-side, and interlaced pair 
of images for different types of display system. Asymmetric frustum parallel axis 
(off-axis) projection method is implemented in the LRAF-rendering pipeline to 
generate a user-centric stereo images (Figure 24).

The LRAF rendering engine draws the scene twice at each frame by alternat-
ing camera position and view frustum for each eye. Then, the two images are 
merged at the final composition stage to generate frame buffer to display. The 
composition method is specified upon the stereo display system type. Figure 25 
shows one example of this composition result using interlaced method that is 

Figure 24. Head-Tracked View Frustum for Off-axis Stereoscopic Rendering. View Frustum for 
Stereo Rendering is Computed Based on User’s Head Position so that Application Perspective 
Corresponds to the Through the Window Style Immersive Environments.
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supported by the passive 3D display monitor (the stereo separation is exaggerated 
to demonstrate composed stereo effect in the figure).

4.5  Synchronous Event Generator and Handler

An avatar’s behavior is based on a programmable state machine. Transitions 
between states are effected by events that trigger multiple actions synchronously 
such as speech generation or movement of mouth and limbs. Synchronization is 
therefore important because without it, the avatar’s spoken words and actions 
will appear uncoordinated.

LRAF provides two different methods to implement this synchronous event 
trigger mechanism. One is the animation-driven event (ADE) trigger and the other 
is the speech-driven event (SDE) trigger. We can encode all necessary common 
LRAF events in those two types.

The ADE is defined as any common LRAF event that needs to synchronously 
trigger a long avatar animation playback. For instance, effect sound “A” plays for 2 s 
after starting motion “B”. We can specify such an event in an animation specification 
file (external XML file). Each animation clip includes all those events and its timing 
information in addition to its own animation description. The following shows one 
example of such an event encoding. This example of animation (idle animation) has 
two event embedded with “ADE” tag. The first one triggers effect sound id “0” when 
animation reaches 0.5 s. The second one triggers the next action change event at 6.3 s.

 < Anim id = “0” name =  “idle” blend =  “1.0” > 
  < ADE type =  “AE_SOUND” time =  “0.5” param =  “0”/ > 
  < ADE type =  “AE_ACTION” time =  “6.3” param =  “CAT_IDLE”/ > 
 < /Anim > 

Figure 25. Stereoscopic Rendering Image Using Interlaced Scheme.
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The SDE has two difference types because LRAF supports two speech-generation 
methods, TTS synthesis and recorded voice. A TTS-driven event consists of a 
“bookmark” that can be embedded within real-time voice synthesis. When LRAF 
encounters a bookmark event during speech synthesis, it will immediately trigger 
the corresponding event. In the following example, the speech-synthesized utter-
ance of “hey, look to your right” will trigger the avatar to point to its right.

“Hey, Look to your  < bookmark mark = "SE_ACTION][POINT_RIGHT]"/ >  
right.”

A recoded voice-driven event is similar to an animation-driven method. 
Within a definition for recorded voice file specification, we can encode generic 
LARF event with the “SDE” tag. The example XML code fragment below describes 
one instance of recorded speech definition and will trigger “POINT_RIGHT” 
action in 1.0 s once the speech wave file starts to play.

 < FFT speech = ”Hey, Look to your right.” file = ”lookright.wav”/ > 
  < SDE type = ”SE_ACTION” time = ”1.0” param = ”POINT_RIGHT”/ > 
 < /FFT > 

5  The Intelligent Communication System
The LifeLike Avatar’s intelligent communication system is founded on the concept 
of context. The idea behind this is that communication among humans is closely 
tied to the perceived context of the communicants. Knowing and accepting a 
common context by all participants in a conversation permits them to dispense 
with the need to define all terms by making some reasonable assumptions about 
the topic of conversation. For example, the word “skiing” has vastly different con-
notations in winter than in summer – in the mountains of Colorado than in Miami 
Beach. Knowing the context in which the word “skiing” is used eliminates the 
need to further define it as alpine or water-skiing.

Context-based methods refer to the techniques to drive behavior based on 
the current context. Although it has been used successfully to direct the behavior 
of agents performing a task in an environment, we use it here to help the avatar 
understand the query it is being presented.

Resolving semantic ambiguity remains a classic problem in natural language 
processing (NLP). One particular research avenue involves reducing the word (or 
phrase) identification search space by incorporating clues from the ambient con-
versational contexts. Contextualization effectively adds an extra layer of know
ledge to a reasoning system. Semantic analysis methods have been enhanced by 
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introducing contextual information into their training routines [43]. In general, 
NLP problems can be enhanced with contextually driven methods [52], such as 
those found in spoken language translation [34] and knowledge modeling [53].

Perhaps, the subdiscipline within NLP that has benefited the most from con-
textualization is the ASR community. Much work has been done in this area that 
deserves to be mentioned here; however, a detailed and exhaustive discussion of 
these remains outside the scope of this article, and the reader is referred to Hung 
[27]. Although most of the published work uses context as supplemental and 
often peripheral knowledge to disambiguate utterances, our work uses context as 
the basis of the communication process. We describe this further in the following 
subsections.

The intelligent communication system is itself subdivided into two major 
components: the speech recognizer and the dialogue manager. A third, albeit less 
important, component is the interrupt system, and it is also described.

The objective of the DM used in our LifeLike Avatar is to promote open dia-
logue, that is, manage an unscripted dialogue that could be initiated by either 
the avatar or the human. The direction that the dialogue is to take is assumed 
unknown a priori and the DM is designed to handle any enunciations by the 
human interlocutor as long as they are in the domain of interest. The speech rec-
ognizer provides the inputs to the DM, and we discuss that first.

5.1  The Speech Recognizer

The function of the speech recognizer is to listen and convert audio inputs from the 
human user through the microphone into text. The LifeLike speech recognizer uses 
the commercially available Chant [12] and Microsoft SAPI [42] systems. Figure 26  
describes the speech recognizer within the overall LifeLike system. The video 
feed at the bottom comes from a web camera and is used to detect movement in 
the user’s mouth and his/her gaze directed onto the avatar (or the microphone) to 
enable the user to interrupt the avatar in the middle of its talk. The interruption 
feature is described in Section 5.2. The output of the speech recognizer is passed 
to the DM via a network connection.

The original speech recognizer used in our work was grammar-based. It pro-
vided good performance for heavily scripted inputs, such as were the dialogues 
used in the early stages of our research. However, in our subsequent pursuit, 
to open the dialogue to initiative from the human user, as mentioned above, 
required dictation-based speech recognition. Both versions used the same com-
mercially available tools mentioned above. Unfortunately, as we will see later, 
this also resulted in a significant decrease in proficiency in recognizing spoken 
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input and led to the DM being redesigned to better tolerate the high word error 
rates (WER) faced.

This latest version of the speech recognizer presented many challenges in 
all development areas. Furthermore, the new changes affected the areas where 
grammar was used as the principal lexicon for recognition. This was so that 
speech recognition can respond to the user’s natural language based on SAPI 
dictation mode, where the capability to convert the audio input into the correct 
words becomes constrained by the Microsoft SAPI lexicon. The ability to perform 
user-independent speech recognition is diminished because of the uncertainty 
inherent in the larger lexicon search space and speech recognition engine while 
selecting similar word sounds.

In particular, this was addressed using the Speech Recognition Grammar 
Specification (SRGS), which is a W3C standard for how speech recognition gram-
mars are specified [28]. A speech recognition grammar is a set of word patterns 
that are used primarily to indicate to the speech recognizer what to expect from 
the user; specifically, this includes words that may be spoken, patterns in which 
those words occur, and the spoken language surrounding each word. The syntax 
of the grammar format can be specified in two forms:

–– ABNF (augmented Backus–Naur form) – this is a non-XML plain-text repre-
sentation similar to traditional BNF grammar [28].

–– XML (extensible markup language) – this syntax uses XML elements to repre-
sent the grammar constructs [28].

Both the ABNF and XML forms have the expressive power of a context-free 
grammar (CFG) and are specified to ensure that the two representations are 
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Figure 26. LifeLike Speech Recognition Architecture.
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semantically mappable to each other. It is possible to convert from one form to 
the other and achieve identical semantic performance of the grammars.

As the research originally focuses on the use of the XML-based grammar 
format, it was influenced by the use of SAPI version 5 SRE. Thus, Microsoft SAPI 
5 specifies a CFG structure and grammar rule format using XML. A grammar com-
piler transforms the XML grammar into a SAPI 5 binary format for the SAPI 5-com-
pliant SRE. A SAPI 5 grammar text file is composed of XML grammar elements and 
attributes that express one or more rules, i.e., recognizable utterances. Speaker-
independent audio input from a microphone headset is passed to the speech rec-
ognizer where it is processed by an SRE. There are two forms of recognized speech 
data. The first form uses the grammar XML file, where a context-specific rule is 
made active and the speech utterance is matched against the phrases in that rule. 
This narrow scope of words allows for a more precise match and better recogni-
tion results. If the recognizer did not find a match of high confidence within the 
grammar, the second form is used. In this form, the SR uses a generic noncustom-
ized grammar-free lexicon against which the utterance is matched.

Because the grammar XML file allows for better recognition rates, our focus 
was on this option. Initially, a small prototype grammar file was built and tested 
with much success. However, as the knowledge base grew, building and testing 
the file manually proved futile and lacked ingenuity. The need for an autono-
mous audio regression testing system resulted. Many tests performed with the 
original LifeLike speech recognizer executing under the Windows XP operating 
system and SAPI 5.3 failed to provide a specific lexicon that supported the topics 
of interest to our application (NSF program management). The Windows 7 oper-
ating system integrated a different lexicon training method using documents as 
well as an improved SAPI engine. After providing the NSF-based ontology [46] as 
the basis for speech recognition training, the results were positive and encour-
aging. Recognition rates improved dramatically to a WER of 12.4% while using 
NSF-related sample text to test speech recognition. WER is defined as the addi-
tion of the word substitutions, deletions, and insertions divided by the number of 
words in the reference document [63]. The following equation [41] describes the 
relationship:

,S D IWER
N

+ +=

where S is the number of substitutions, D is the number of the deletions, I is the 
number of the insertions, and N is the number of words in the reference.

However, the out-of-vocabulary word recognition did not perform as well, 
even after the system was trained with common language responses. The overall 
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speech recognition decreased considerably, as noted in user testing, to some-
where near 50% (see the exact test results in Table 7, Section 6). As might be 
expected, the recognition sweet spot was NSF lexicon training with less common 
speech language. This combination proved to be suitable for the needs of the 
system but only after nontrivial compensation in the design of the DM.

Three users were given three sets of grammar phrases, G1, G2, and G3, from the 
LifeLike domain to conduct a series of recognition tests. The first set of phrases, 
G1, comprises 15 randomly chosen names from different universities that receive 
funding from NSF. The recognition rates using the users’ natural voice was com-
pared with the recognition rates when their recorded voice was used. The recog-
nition observed with recorded voice was obtained using the regression testing 
abilities of ART to see how well the system could use a recorded voice sample to 
do speech-to-text. Table 1 shows the raw data collected from the three users for 
G1. A checkmark in the table indicates that the name was correctly recognized.

Table 2 shows the recognition data for 15 randomly chosen university names. 
Table 3 contains the data accumulated after the users were asked to test the 
system with the sets G1 and G2 as well as the acronyms of 15 different university 
names (set G3).

Another improvement was the addition of different profiles for women 
and men because the ASR engine can recognize the different pitches that exist 
between the genders. The speech recognition favors speech input within average 
tones. Consequently, low-frequency tones in deep male voices and high-pitched 

Table 1. Recognition Data for Directors’ Names (G1).

Director name (G1) User 1 User 2 User 3

Betty Cheng 0 0
Charles Petty 0 0 0
David Goodman 0 0 0
Frank Allen 0 0 0
Jay Lee 0 0
Shah Jahan 0
Balakrishna Haridas 0 0
Don Taylor 0 0
Samuel Oren 0
Ram Mohan 0 0 0
Nikos Papanikolopoulos
Richard Muller 0 0
Rahmat Shoureshi 0 0 0
Steven Liang 0 0
Sami Rizkalla 0
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tones in women and children will not fare well with our speech recognizer unless 
a speech profile is created for each group and the system is trained accordingly. 
The solution may seem easy, but it is against our objective to make the system 
speaker independent. Furthermore, it would be rather complex and cumbersome 
because it would be necessary to automatically detect the interlocutor’s gender 
before he or she speaks to enable the speech recognizer to switch to the appropri-
ate speech profile and grammar.

5.2  The Interrupt System

One early complaint in our testing was that once the avatar began to enunciate 
its response, often a somewhat lengthy one, it was impossible to interrupt it if 

Table 2. Recognition Data for University Names (G2).

University name (G2) User 1 User 2 User 3

University of Central Florida 0 0
University of Texas at Austin 0 0
North Carolina State University 0 0
Oregon State University 0 0
Purdue University 0 0
University of Utah 0
Ohio State University 0 0 0
Michigan State University 0 0
Clemson University 0 0 0
Iowa State University 0 0 0
University of Maryland 0 0 0
University of New Mexico 0
George Washington University 0 0
Carnegie Mellon University 0 0
University of Houston 0 0 0

Table 3. Recognition Rates for Three Different Grammar Sets.

Grammar set Recognition rate (%)

User 1 User 2 User 3

G1 80 46.7 73.3
G2 93.3 46.7 80
G3 100 86.7 80
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the answer was out of context or otherwise irrelevant. Therefore, to add natural-
ness as well as efficiency to the dialogue, the ability of the human speaker to 
interrupt the LifeLike Avatar in the midst of its response was deemed necessary. 
The interrupt system developed for our LifeLike system consists of two parts. The 
first uses a microphone to detect any audio that might be spoken by the human 
user when attempting to interrupt the avatar. The second involves a web camera 
to visually determine whether the user is purposely trying to interrupt the avatar 
or whether the verbal inputs are the result of background noise or the user 
speaking to a third party. This visual input detects movements of the mouth of 
the human speaker. It does not, of course, read lips – it merely recognizes when 
the human interlocutor appears to be addressing the avatar, thereby making the 
interrupting words credible, as opposed to the speaker turning around to speak 
to someone else.

For the first part, a separate speech recognition engine becomes activated to 
only detect interrupts. This feature permits the recognizer engine to have its micro-
phone activated permanently to detect interruptions. In the second part of the 
interrupt system, the web camera monitors the user while the avatar is speaking to 
the user because this is the only time an interruption is relevant. The user closest 
to the web camera is assumed to be the primary speaker. The user with the largest 
face in the image is assumed to be the one sitting closest to the camera and thereby 
the interlocutor. All others in the image are ignored to reduce the processing time 
and permit real-time operation. Once the primary interlocutor has been identified, 
the web camera subsystem processes the image to first determine whether the 
interlocutor is paying attention to the avatar by observing certain facial features. 
The most important of these features is the mouth. Using weak classifiers and a 
blob tracker, we can determine the location and state of the mouth. Mouth and 
face information is used to estimate the orientation of the user with respect to the 
camera. An assumption is made here that the camera is located near the avatar. If 
the interlocutor is paying attention to the avatar, the web camera subsystem then 
attempts to determine whether the user’s mouth is open or closed. If the micro-
phone subsystem detects a noise and the web camera subsystem detects the user’s 
mouth as open, then it confirms that the user is trying to interrupt the avatar.

The detection stage of the interrupt is done in six steps.
1.	 The web camera is turned on. This is done with the EMGU libraries because 

they support C# manipulation of OpenCV functions [18]. OpenCV, an image-
processing library created by Intel, provides the image classification func-
tionality [7].

2.	 An image from the camera is processed. To save processing time, the image is 
reduced to 320 × 240 gray scale as shown in Figure 27A. This means the system 
need not waste processing time on a full-resolution color image.
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3.	 The blob tracker locates the closest human to the web camera. The use of the 
blob tracker limits the search space in the image, giving faster performance 
(see Figure 27B).

4.	 An attempt is made to find a face in the search space marked by the blob 
tracker. To detect the face, common face models are compared with every 
area of the search space. A face may not always be detected because a user 
may not be looking into the camera at all times (see Figure 27D).

5.	 If a face can be identified, the mouth is located using weak classifiers. 
These classifiers work with the basic knowledge that the mouth is in the 
lower part of the face, below the nose, and can be open, closed, or partially 
opened.

6.	 A determination is made as to whether the mouth is open or closed. This is done 
using a new set of weak classifiers. A final image can be seen in Figure 27B.  
For our purpose, there are only two states for the mouth (open and closed).

One problem with using a web camera to detect a face is the available lighting. 
An object that is poorly lit looks different from an object overexposed to light. To 
eliminate this problem, a threshold value was introduced. The threshold value 
determines how close a match must be made in order to classify if there is a face 
and the state of the mouth. In other words, the threshold value serves to normal-
ize the differences in lighting and skin tone variations. Other problems can occur 
when there is a bright light in the background or when there is too bright a light 
in the foreground. When the threshold value is not properly set, this scenario can 

Figure 27. Image of Human Interlocutor for Interruption Detection.
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cause the incorrect recognition of the face in the image, as seen in Figure 27E.  
If there is an object blocking the face or mouth, like a microphone, then the face 
models and/or classifiers have trouble locating the face and/or mouth, as in 
Figure 27C.

The interrupt recognizer was dramatically improved by adding features from 
the open-source library OpenCV [50] to include computer vision detection of 
mouth positioning to sense human distractions as part of the interrupt detection. 
The latest version of the interrupt recognizer not only has the capability to detect 
interruptions while the avatar is speaking, but it also can perceive when the user 
is distracted.

5.3  Dialogue Manager

The DM parses the incoming speech converted into text to understand its meaning 
and composes and controls the messages passed back to the interlocutor in 
response. It directs intelligent responses to the Avatar Framework for the TTS 
operations. The operation of the DM, called CONCUR (for CONtext-centric Corpus-
based Utterance Robustness), was inspired by how humans communicate rea-
sonably effectively when one of the communicants speaks the common language 
very poorly. Understanding is typically enabled by recognizing keywords in the 
conversation that might identify the context of the conversation. Unlike in ELIZA 
and ELIZA-based chatbots, CONCUR seeks to understand the context of the con-
versation by recognizing only a few words. This is approach taken in CONCUR 
to compensate for the poor WER observed in the dictation-only version of the 
speech recognition module. Once a context is recognized, the descriptions associ-
ated with that context contain the information requested by the human user and 
the avatar enunciates it via a TTS system.

LifeLike tries to capture an open-domain feel, with special regard to robust-
ness. This latter requirement was the result of preliminary testing that revealed 
the need to provide a proper safety net for errant user inputs. To provide a 
more stable, open-domain conversation style, a greater grasp of context-based 
methods was emphasized for the second version of the prototype’s DM develop-
ment. By embracing context-based reasoning (CxBR) techniques [24], the DM can 
attain a more complex state-transition infrastructure, a benefit enjoyed by more 
traditional CxBR-based behavioral modeling efforts.

For the LifeLike system, two major DM components were created: the goal 
manager and the knowledge manager. Both components were developed under 
the tenets of the CxBR paradigm. The next sections describe each component in 
detail.
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5.3.1  Goal Manager

Goal management in a dialogue system involves processes that recognize and 
satisfy an interlocutor’s needs as conveyed by his or her utterances. Within any 
conversation, regardless of the presence of machine agents, there exists some 
sense of goal-oriented activity on the part of all participants. Often, these activi-
ties are characterized as some form of knowledge transfer, such as requesting or 
delivering information. Every participant contributes utterances, or speech acts, 
to drive the conversation toward purposefulness. In a two-party conversation, 
both sides go into the conversation with the intention of getting something out of 
the interaction. The participants begin talking to one another in an initial state, 
only to end in a different state, a goal state. This model of conversation assumes 
that its conclusion occurs when both participants are satisfied with how much 
they have achieved from the session. Hence, under normal conditions, the goals 
of both speakers are accomplished when their conversation ends.

Figure 28 depicts the general architecture of the goal management system. To 
provide a goal management system is to offer a general approach to creating the 
effect of a natural, open-dialogue interaction experience. Open dialogue refers 
to a loose set of conversational input constraints, allowing the agent to handle 
a wide range of user utterances [26]. Additionally, one or more user goals can 
exist at any time during an open-dialogue interaction. This contrasts with the 
closed, highly constrained, and unnatural multiple-choice style of input expecta-
tion found in automated airline booking agents and telephone-based credit card 
payment systems. Moreover, these types of interactions can only accommodate 
one user task at a time. The open-dialogue style allows for a more natural flow of 
language.

Figure 28. Goal Management Block Diagram.
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To realistically accomplish the illusion of open dialogue through goal man-
agement, the following assumptions were made for the LifeLike Avatar dialogue 
system:

–– The dialogue system is limited to an expert domain and the user is cognizant 
of the dialogue system’s role as an expert entity. This constrains the user to 
a topical context with which the LifeLike Avatar is deeply familiar, without 
jeopardizing the open-dialogue style.

–– The user’s goals are limited to those related to the avatar’s expertise. This 
assumption dictates that the user understands the agent’s limitations as a 
domain-specific entity.

Goal management in the LifeLike Avatar DM involves three parts: (1) goal recogni-
tion, (2) goal bookkeeping, and (3) context topology. Goal recognition refers to 
the process of analyzing user utterances to determine the proper conversational 
goal to be addressed. This is analogous to the context activation process in CxBR 
methods, where production rules determine the active context according to the 
state of the agent and of the environment. The difference with the goal recognizer, 
however, is that the latter identifies the proper context to activate using keywords 
and phrases that are extracted from a parts-of-speech parsing of input responses. 
Armed with the knowledge manager, the user utterance is interpreted and the 
context associated with this understanding is activated.

Goal bookkeeping is the process of servicing every identified goal in the order 
that it is presented. Immediately after recognizing a goal, it is placed in a goal book-
keeping stack, a similar structure to that of the discourse stack model [8]. In the 
LifeLike Avatar, complex interruptions may occur, including switching to entirely 
different contexts. Thus, the goal stack was especially designed to handle conversa-
tion paths that experience drastic shifts between context changes. Furthermore, a 
transitional speech act must be executed to smooth over these context shifts.

Context topology refers to the entire set of spoken behaviors of the chat-
ting avatar. This structure also includes the transitional actions when moving 
between contexts when a goal shift is detected. The context topology carries out 
the responses needed to clear out the goal bookkeeping stack. Upon receiving 
the activated goal to be addressed from the goal stack, the context topology oper-
ates on this signal to provide the proper agent response. Each context within 
the context topology corresponds to a certain conversational task, whether user 
motivated (external) or agent motivated (internal). Most of these conversational 
tasks adhere to a specific user task goal. These are known as user goal-centered 
contexts. The remaining conversational tasks constitute the agent goal-driven 
contexts. The inclusion of all user goal-centered contexts and agent goal-driven 
contexts constitutes the entire LifeLike Avatar context topology.
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5.3.2  Knowledge Manager

In conjunction with LifeLike’s goal manager, a strong knowledge base must be 
in place for proper goal recognition. The information in this knowledge base 
is analogous to the rote knowledge that a human learns and manipulates to 
make decisions. For this project, three knowledge models were built: domain-
specific knowledge, conversational knowledge, and user-profile knowledge 
(see Figure 29).

5.3.2.1  Domain-Specific Knowledge
The scope and depth of domain-specific knowledge were modeled after a tradi-
tional expert system, where a domain specialist meticulously adds information 
to a machine by hand. The relevant domain of the LifeLike Avatar is information 
about the NSF I/UCRC program.

In most expert systems, knowledge exists as a set of if–then statements 
to make decisions [23]. For the LifeLike Avatar, however, the domain-specific 
knowledge was organized in a linear, encyclopedia-style corpus. A knowledge 
parser was developed to fetch these data and organize them in a context-layered 
fashion. For each piece of knowledge, the parser also generates a key phrase list 
to assist in the context identification process needed for the context topology 
infrastructure. This key phrase generation employs the heavy use of an NLP-
based toolkit.

Figure 29. Knowledge Manager Block Diagram.
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5.3.2.2  Conversational Knowledge
Alongside expert knowledge, conversational knowledge is needed to deploy the 
unique behaviors of the LifeLike Avatar. The conversational knowledge data-
base only relates to the transitional speech actions to be interspersed among the 
domain knowledge deployments, such as sentences like “hi,” “keep the peace,” 
or “what else would you like to know?”

5.3.2.3  User-Profile Knowledge
MacWhinney et al. [37] describe the importance of memory during a conversation. 
They claim that memory structure is key when dealing with natural dialogues, as 
it provides an extra layer of interactive immersion. In addition to domain-specific 
and conversational knowledge, the user-profile knowledge database addresses 
the concept of memory, albeit in a limited fashion. All that the agent knows about 
the human with whom it is communicating exists in this body of information. 
Once the user has identified himself or herself, the knowledge manager can 
immediately retrieve his or her individual profile. This is particularly important 
in providing an HCI experience that escalates the level of realism and conveys an 
effect of personalization.

5.3.2.4  Contextualized Knowledge
Contextualized knowledge refers to a cross section of all three knowledge sources 
that is relevant for the active context of the conversation. Each piece of informa-
tion within the knowledge manager is annotated with a context tag. Once the 
dialogue system determines the context of the conversation, knowledge that is 
labeled with the current context is elicited as valid information for the conversa-
tion and funneled into the contextualized knowledge database. Once this infor-
mation is established, the DM can then work with a manageable portion of the 
entire knowledge base. This is especially useful when performing goal manage-
ment, which may require memory-intensive processes.

The concept of contextualized knowledge is a novel feature of the LifeLike Avatar 
DM. The idea that only a portion of an agent’s entire knowledge is needed at any given 
time reflects how a human makes decisions, that is, he or she relies on a small subset 
of its knowledge base to make the decision. The contextualization of the knowledge 
base makes identifying this appropriate subset of knowledge feasible and practical 
based on matching the context being experienced by the agent with the appropri-
ate contextualized portion of the knowledge base. A CxBR-based architecture lends 
itself to this concept because the determination of an active context, and therefore an 
active set of contextualized knowledge, is a built-in function of CxBR.
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(01/14/10 18:36:56) Avatar to User: I’m Alex Schwarzkopf. What’s your name?
(01/14/10 18:37:02) User to Avatar: harm run the legal (HI I’M RODNEY KWICKO)
(01/14/10 18:37:05) Avatar to User: It’s good to see you. I don’t think we’ve met. I 
am the Project LifeLike Avatar, a 3-year collaborative effort sponsored by the NSF 
between the University of Central Florida and the University of Illinois at Chicago. 
What do you want to talk about?
(01/14/10 18:37:28) User to Avatar: of a letter of interest
(01/14/10 18:37:28) Avatar to User: A letter of interest is one in which company 
states it is interested in joining the center if it is created. This is not to be confused 
with a letter of commitment or a letter of support. Do you have questions about 
that information?
(01/14/10 18:37:47) User to Avatar: no
(01/14/10 18:37:47) Avatar to User: How else can I help you out?
(01/14/10 18:37:53) User to Avatar: know what about the marketing plan (UM, 
WHAT ABOUT THE MARKETING PLAN)
(01/14/10 18:37:53) Avatar to User: The marketing plan explains how the center 
shall make itself attractive to potential industrial members. See the current solic-
itation for guidelines to preparing the marketing plan. Do you have questions 
about that information?
(01/14/10 18:38:11) User to Avatar: no
(01/14/10 18:38:11) Avatar to User: I guess we’re done now. Keep the peace.

The dialogue displayed above is an example of how the LifeLike Avatar DM 
(CONCUR) interacts with a human user. The capitalized letters following some of 
the user responses are the actual utterances that were transcribed from a voice 
recording, whereas the lowercased text represents the actual ASR output. This 
particular example lasted just over a minute. It suffered a WER of 29%, yet scored 
100% in both conversational accuracy and goal completion accuracy. Although 
this particular dialogue uses keywords to define the context, the DM system can 
use more complex inputs that simply keywords to identify the context.

5.4  Summary of Intelligent Dialogue

The large WERs encountered were a significant problem in this project that required 
innovative means to overcome and still provide a useful and satisfying conversation 
to the human user. The approach taken was to mimic the situation when a person 
who is not fluent in a language attempts to communicate with a native speaker. 
Generally, the conversation involves short, badly pronounced words from which the 
native speaker must extract the intended context. Once this context is discovered 
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(correctly), then he or she can more easily respond to the request. The LifeLike 
Avatar compensates for large WERs by contextualizing the conversation. This means 
that the context of the conversation, once identified, is matched to a part of the con-
versational knowledge base that is relevant to this conversation, thereby reducing 
the effort in finding and providing an appropriate response to the user.

6  Evaluation
A prototype of the LifeLike Avatar that encompasses the above components was 
built. The resulting prototype was evaluated quantitatively and qualitatively 
with human test subjects. This section summarizes this extensive set of tests and 
reaches a conclusion about the viability of our research efforts. Full details can be 
found in Hung [27]. Note that we only discuss the evaluation of the Avatar Intel-
ligent Communication System.

6.1  �Assessment of the Avatar Intelligent Communication 
System

We sought to collect data supporting the hypothesis that the presented LifeLike 
Avatar with the CONCUR DM provides an HCI experience that is natural and 
useful.

In Experiment 1, a fully animated, speech-based lifelike avatar used a search-
based system as its backend knowledge to answer questions about the NSF I/
UCRC program domain. The search-based backend for this avatar was the result 
of a prior NSF-sponsored research called AskAlex, which approximated a tradi-
tional expert system-based question-and-answer (Q/A) system, except it did not 
use productions to represent its knowledge, but rather, contextual graphs (CxG) 
[9]. The data for this experiment were collected at the 2009 Annual I/UCRC Direc-
tor’s Meeting as well as at the Intelligent Systems lab at the University of Central 
Florida (UCF) in 2010. Manual transcription of all the 20 speech recordings were 
performed, whereas 30 user surveys were collected.

Experiment 2 assessed the ultimate version of our LifeLike Avatar and the 
specific combination of technologies developed as part of this project. This was 
the ultimate objective of our project. It is the performance of this version that we 
sought to validate by comparing it with other versions reflected in Experiments 1, 
3, and 4. In Experiment 2, the fully animated, speech-based LifeLike Avatar was 
combined with the CONCUR DM and the NSF I/UCRC knowledge base to obtain 
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the data for Experiment 2. The collection of these data took place at the 2010 
Annual I/UCRC Director’s Meeting as well as at the Intelligent Systems Labora-
tory (ISL) at the University of Central Florida in 2010. This use of dual testing sites 
allowed for a wider distribution of user demographics. Thirty data points were 
collected. Additionally, 30 user surveys were included in this set.

Experiment 3 used a text-based, disembodied chatbot in lieu of the LifeLike 
Avatar used in Experiment 2. In this experiment, text inputted from the keyboard 
was used to interact with the chatbot using CONCUR. The objective was to elimi-
nate the ASR WER by inputting text from the keyboard and thereby gauging the 
effect of the high WER on performance. A Google Chat chatbot was developed 
using the JABBER middleware. The transcribed responses from Experiment 1 
were fed into the chatbot of Experiment 3. The resulting 30 responses from this 
CONCUR-based chatbot were then recorded.

Experiment 4 used this same text-based CONCUR Chatbot interaction model 
as in Experiment 3 but instead coupled with a “current events” knowledge 
domain, rather than the NSF I/UCRC. This was done to determine how easily the 
domain knowledge could be replaced in the CONCUR DM while still providing 
appropriate performance. This new domain was constructed from various news 
articles pertaining to the United States, world affairs, sports, science, and health. 
Collecting data points for this set was conducted online using a set of 20 Google 
Chat participants, who ranged in levels of education and types of profession. 
Twenty user surveys were obtained in this experiment.

Table 4 summarizes the data sets resulting from the four experiments 
described. The evaluation process featured in this work is derived from the PARA-
digm for Dialogue System Evaluation (PARADISE) [59]. A multimodal version of 
this system exists in PROMISE [4], but our work references PARADISE for simplic-
ity’s sake. Sanders and Scholtz [55] affirm that ECA and chatbot goals for interac-
tion are essentially the same.

Table 4. Dialogue System Data Set Collection Setup.

Experiment

1 2 3 4

Dialogue system AskAlex CONCUR CONCUR CONCUR
Interface type LifeLike Avatar LifeLike Avatar Chatbot Chatbot
Input method Speech Speech Text Text
Speech action engine Search-driven CxBR CxBR CxBR
Domain corpus NSF I/UCRC NSF I/UCRC NSF I/UCRC Current Events
Number of trials 20 30 30 20
User surveys collected 30 30 n/a 20
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6.2  Evaluation Metrics

The primary objective of this work was to provide a balance between dialogue 
performance (naturalness) and task success (usefulness) during a human–com-
puter interaction. To determine usefulness, two types of metrics were used, effi-
ciency and quality metrics. Efficiency metrics pertain to those interaction traits 
that can be empirically observed with no need for qualitative interjection. For 
the most part, the prototype software internally monitors these metrics. The ASR-
related metric, WER, was measured by comparing the textual chat log from the 
agent with an audio recording transcript of the exchange. Quality metrics use 
both quantitative analysis and survey-based data and include metrics such as 
total number of out-of-corpus misunderstandings, total number of general mis-
understandings, total number of inappropriate responses, total number of user 
goals, total number of user goals fulfilled, out-of-corpus misunderstanding 
rate, general misunderstanding rate, error rate (percentage of system turns that 
resulted in inappropriate response), awkwardness rate (percentage of system 
turns that resulted in general misunderstanding or inappropriate response), goal 
completion accuracy, and conversational accuracy (percentage of non-awkward 
responses from avatar).

To measure naturalness as well as further evaluate usefulness, each test 
subject was given an exit survey at the conclusion of his/her interaction with 
the avatar. This questionnaire directly addressed the remaining quality metrics 
that are impossible to assess without the user’s personal input. The following list 
describes survey statements, which are answered using a Likert scale response 
system with a range of 1–7.

–– Naturalness
–– Statement 1: If I told someone the character in this tool was real, they 

would believe me.
–– Statement 2: The character on the screen seemed smart.
–– Statement 3: I felt like I was having a conversation with a real person.
–– Statement 4: This did not feel like a real interaction with another person.

–– Usefulness
–– Statement 5: I would be more productive if I had this system in my place 

of work.
–– Statement 6: The tool provided me with the information I was looking for.
–– Statement 7: I found this to be a useful way to get information.
–– Statement 8: This tool made it harder to get information than talking to a 

person or using a website.
–– Statement 9: This does not seem like a reliable way to retrieve informa-

tion from a database.
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Because of the way they are worded, Statements 4, 8, and 9 are negatively pre-
sented. This means that a score of 7 is the worst score that can be assigned. Hence, 
when aggregating the results, the assessments from these survey statements must 
be translated in a positive manner, such that the scores are reversed – a score of 1 
becomes a score of 7, 2 becomes 6, 3 becomes 5, and 4 remains the same.

6.3  Summary of Results

This section provides a summary of results for all the experiments in the groups of 
metrics described above. We begin with the naturalness and usefulness surveys.

6.3.1  Summary of Naturalness and Usefulness

Table 5 displays the aggregate survey results for the survey parts of Experiments 
1, 2, and 4 (there was no questionnaire in Experiment 3). Each column is labeled 
with an individual survey statement. Table 6 depicts the naturalness and useful-
ness results from averaging the normalized results from Statements 1–4 for natu-
ralness and Statements 5 to 9 for usefulness.

From Table 6, we can conclude from the results of Experiments 1 and 2 that 
the LifeLike Avatars both obtained slightly positive responses from users in both 
naturalness and usefulness. A fairly poor rating of naturalness was given to the 

Table 5. Normalized Survey Results.

Experiment Statement

1 2 3 4 5 6 7 8 9

1. AskAlex Avatar 3.20 4.10 4.73 4.10 4.57 5.07 3.77 4.83 4.03
2. CONCUR Avatar 4.07 4.00 4.97 3.83 4.90 5.43 3.67 4.57 3.70
4. CONCUR Chatbot 2.20 2.45 3.00 2.35 4.10 3.70 3.20 3.45 2.05

Table 6. Survey Results for Naturalness and Usefulness.

Experiment Naturalness Usefulness

1. AskAlex LifeLike Avatar 4.02 4.47
2. CONCUR LifeLike Avatar 4.14 4.51
4. CONCUR text-based Chatbot 2.40 3.38
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lone text-based ECA from Experiment 4 while also achieving a slightly negative 
assessment of its usefulness.

6.3.2  Efficiency Metrics Results

Table 7 shows the aggregate efficiency metrics collected from the four experi-
ments. These metrics deal with the measurable, nonqualitative results recorded 
by each agent.

The WER results report how well the ASR performed for each agent. Note 
that Experiments 3 and 4 did not use speech-based input; thus, they yielded 
perfect recognition accuracy (WER = 0). These data reveal that each agent con-
versation was relatively similar in total elapsed times, ranging from nearly 
3 min to just over 4 min. The AskAlex agent in Experiment 1 resulted in a slightly 
higher average turn count for both the user and the agent over the rest of the 
field. This is most likely caused by the scripted discourse manner in AskAlex 
that forces users to completely exhaust a particular topic path to its end. The 
text-based CONCUR DM of Experiment 4 saw a longer amount of time between 
turns. The text-based nature of this data set probably contributed to the lack of 
urgency by the user to respond between system responses. Both speech-based 
agents in Experiments 1 and 2 were virtually equal in recognizing user utter-
ances at a 60% WER. This levels the playing field for any ASR-related metric 
comparison, as the agents from both experiments suffer from virtually identical 
WER.

6.3.3  Quantitative Analysis Metrics Results

Table 8 displays the aggregate results of the quantitative analysis of the quality 
metrics. In these metrics, each chat transcript was manually inspected for misun-

Table 7. Efficiency Metrics.

Experiment Total 
elapsed 

time (min:s)

Number 
of user 

turns

Number 
of system 

turns

Elapsed 
time per 

turn (s)

User 
words 

per turn

Agent 
words 

per turn

WER 
(%)

1 3:36 13.4 14.4 4.2 2.8 28.6 60.9
2 3:20 10.9 11.9 6.1 4.9 29.1 58.5
3 2:52 10.1 11.1 6.1 5.0 28.2 0
4 4:03 8.9 9.9 9.4 4.2 35.8 0
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derstandings, erroneous agent responses, and context goal satisfaction. The final 
two columns, goal completion accuracy and conversational accuracy, provide 
indication of each agent’s usefulness and naturalness, respectively.

Table 8 recounts how well each agent can handle the user input in terms of 
minimal conversational awkwardness and maximized assistive utility. The out-
of-corpus misunderstanding rate assesses the percentage of time the agent must 
spend to react to a user requesting information that cannot be found in its know
ledge base. In these results, it is shown that Experiment 4’s chatbot experienced 
a substantial number of out-of-corpus misunderstandings, whereas the AskAlex 
agent in Experiment 1 saw very little. The explanation of this phenomenon is the 
simple fact that AskAlex’s highly constrained input expectations from its menu-
driven discourse serves as a preventative measure for out-of-corpus information 
requests. The CONCUR agent, meanwhile, maintains a higher amount of input 
flexibility, causing users to ask more questions that could potentially be out of 
the knowledge domain.

The general misunderstanding rate addresses the percentage of turns in 
which the agent is presented with situations that it could not handle, most often 
because of garbled ASR inputs or erratic user speech, such as stalling. The con-
versation agent in Experiment 4 did not have to deal with these issues, hence its 
lack of general misunderstandings. The CONCUR Chatbot of Experiment 3 also 
lacked ASR-related errors, but it still fell victim to user input errors because of its 
use of Experiment 2 inputs.

Error rate describes the percentage of turns where the agent returns a non-
sensical response. The CONCUR agents all had similar error rates, whereas the 
AskAlex agent of Experiment 1 was the least error prone because of its menu-
driven nature. The dialogue openness of the CONCUR system plays a part in 
causing erroneous system responses because the presence of specific Q/A infor-
mation requests. This factor deals with the idea that users want very specific 
answers to questions, and it is discussed in further depth later.

Table 8. Quantitative Analysis of Quality Metrics.

Experiment Out-of-corpus 
misunder-

standing rate 
(%)

General 
misunder-

standing 
rate (%)

Misunder-
standing 
rate (%)

Error 
rate 
(%)

Awkward-
ness rate 

(%)

Goal 
completion 

accuracy 
(%)

Conver-
sational 

accuracy 
(%)

1 0.29 9.51 9.80 8.71 18.22 63.29 81.78
2 6.15 14.49 20.64 21.81 35.78 60.48 63.93
3 6.77 7.48 14.25 16.68 24.66 68.48 75.34
4 17.45 0.00 17.45 16.46 16.46 48.08 83.54
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In terms of usefulness, the goal completion accuracy metric indicates how 
effective an agent can service users’ information requests. Although all of the NSF 
I/UCRC corpus-based agents (Experiments 1, 2, and 3) were able to complete over 
60% of their users’ goals, the current events CONCUR Chatbot in Experiment 4 
was just under 50% for goal completion accuracy.

Awkwardness rate and conversational accuracy give a quantitative indica-
tion on the naturalness of the agent’s dialogue. Essentially, conversational accu-
racy tells what percentage of the time the conversation agent gave an answer that 
can be perceived as natural. The awkwardness rate is simply the percentage of 
unnatural responses. Although each agent was able to demonstrate better than 
60% conversational accuracy, the CONCUR ECA in Experiment 2 was far less con-
versationally accurate than the agents in Experiments 1, 2, and 4. 

7  Summary and Conclusions
In summary, we have presented a new avatar that appears lifelike visually as well 
as audibly. The avatar system, called LifeLike, shows a strong resemblance to a 
specific human being and can be used to communicate with humans via spoken 
language. Our work represents a small but definitive step in our goal of develop-
ing a virtual human that can pass the enhanced Turing test – one that can fool a 
human into thinking he or she is speaking with the actual person via computer-
based communication rather than a virtual representation of the person. We are 
still clearly far from reaching that goal, however. Nevertheless, there are many 
current applications for this type of interface; these include education, training, 
health-care support, and legacy creation.

The communication of our LifeLike Avatar takes place on an open-dialogue 
basis, where either the avatar or the human interlocutor can seize the initiative. 
The knowledge of the avatar in the domain of conversation is comparatively easy 
to create and set up. The avatar is also intolerant (to a degree) of high word recog-
nition errors introduced by the ASR system.

We have tested the intelligent communication aspect of the LifeLike Avatar 
and find that it generally succeeds in its objective. We do not report tests of the 
graphical aspects of the avatar but leave it to the reader to infer our success or 
failure by their inspection of the quality of the graphics we include in this article.

Received March 21, 2013; previously published online May 27, 2013.
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