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Abstract: Rainfall, being one of the most important components of the hydrological cycle, plays an extremely 
important role in agriculture-based economies like India. This paper presents a comparison between three 
soft computing techniques, namely Bayesian regression (BR), support vector regression (SVR), and wavelet 
regression (WR), for monthly rainfall forecast in Assam, India. A WR model is a combination of discrete 
wavelet transform and linear regression. Monthly rainfall data for 102 years from 1901 to 2002 at 21 stations 
were used for this study. The performances of different models were evaluated based on the mean abso-
lute error, root mean square error, correlation coefficient, and Nash-Sutcliffe efficiency coefficient. Based on 
model statistics, WR was found to be the most accurate followed by SVR and BR. The efficiencies for the BR, 
SVR, and WR models were found to be 32.8%, 52.9%, and 64.03%, respectively. From the spatial analysis of 
model performances, it was found that the models performed best for the upper Assam region followed by 
lower, southern, and middle regions, respectively.
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1  Introduction
Rainfall is one of the most important components of the hydrological cycle. It has an importance in many fields, 
including agriculture, irrigation, hydroelectric production, scientific research, etc. Many catastrophic events like 
flood and drought are directly linked to rainfall and, hence, it becomes extremely important to have an accurate 
forecast of rainfall. Rainfall is highly stochastic in nature and is dependent on many local and global atmospheric 
processes, which makes rainfall prediction one of the most challenging problems around the globe.

Generally, two different approaches are used for rainfall prediction: empirical and dynamical. In the 
empirical approach (e.g. regression, artificial neural networks, fuzzy logic and other machine learning and 
data mining techniques), the past records of rainfall, atmospheric parameters, and oceanic parameters are 
used to capture the trend of rainfall w.r.t. to governing parameters. In the dynamical approach, physical 
models based on some system of equations are used to predict the rainfall and other atmospheric parameters 
based on some initial condition provided [27]. The empirical approach has been widely used by researchers 
for rainfall prediction [19, 22].

For this study, we have used three different regression techniques, viz. Bayesian regression (BR), support 
vector regression (SVR), and wavelet regression (WR), for rainfall forecasting. BR tries to model the uncertainty 
in unknown parameters by assigning a probability distribution, and then Bayes’ theorem is used to find the 
posterior distribution. It intends to find a value for unknown parameters that maximizes the posterior distribu-
tion. Many applications of Bayesian methods in different fields of science and engineering are available in the 
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literature [4, 5, 8, 15, 23, 28, 32]. A Bayesian framework is used to analyze a daily rainfall series for estimation 
of extreme rainfall events, and it is shown that use of prior expert information can supplement data and can 
improve the estimate of extreme events [5]. A Bayesian network is used for modeling the spatial and temporal 
dependencies among the 100 stations, and the network is combined with the numerical atmospheric prediction 
to forecast the precipitation [4]. A multivariate relevance vector machine model can be used to forecast releases 
from a system of multiple reservoirs with good accuracy in learning the input-output patterns [32].

Support vector machine (SVM) was introduced by Vapnik [33] based on the statistical learning theory 
(SLT). It tries to find a decision rule that provides good generalization by selecting some data points in the 
training data called support vectors. SVM methods have been widely used in the field of hydrology [1, 2, 
7, 20, 25, 30, 38, 39]. Hong and Ping-Feng [12] made an assessment of the support vector regression (SVR) 
techniques in rainfall prediction, and showed that SVR could be a better alternative for rainfall forecasting. 
A hybrid support vector technique was used to forecast two hydrological time series [30]. Wei [37] used a 
coupled wavelet SVMs for hourly rainfall forecast during the tropical cyclones.

Wavelet transform has been used for investigating the variation, periodicity, and trends in data time series 
in many studies. Discrete wavelet transform (DWT) can effectively be utilized to classify distinct hydroclimatic 
categories [31]. The wavelet methods are used to model rainfall and runoff for daily and half-hourly sampling 
rates of karstic springs, and are found able to discriminate the karstic rapid response and recharge, from slower 
infiltration responses [18]. Chou and Wang [3] applied DWT to decompose unit hydrograph and utilized updated 
wavelet coefficients of unit hydrograph to accurately predict one-step-ahead runoff. Dai et al. [6] used wavelet 
analysis to study the decay in summer monsoon in north China over the interdecadal time scale. Zhou et al. [40] 
have shown that a wavelet predictor-corrector model performed more accurately compared to the ARMA model, 
seasonal ARIMA model, and BP artificial neural network for the prediction of discharge. Kisi [16] compared 
the performance of the WR model to the artificial neural network (ANN) and autoregressive (AR) models for 
streamflow prediction, and found that WR outperformed the ANN and AR models. The WR model was found 
superior to the ANN model for prediction of daily river stage [17]. A comparison of the WR model and ANN has 
shown that the WR model provided better monthly rainfall forecast [9]. Many studies have shown SVR models to 
be better than ANN models [1, 7, 20, 29]. The WR model decomposes the monthly rainfall time series into detail 
and approximation components using DWT, and a new time series is generated by adding an approximation 
component and effective detail components. This new time series is given as input to the linear regression (LR) 
model, keeping the original rainfall time series as output. Some hydrological applications of WR have revealed 
that WR can perform better than non-linear models like ANN, etc., in terms of accuracy [16, 17]. In the present 
research work, the accuracy of WR in rainfall prediction is compared with that of SVR and BR.

Assam is a northeastern state of India, where agriculture is the backbone of state economy. The north-
eastern region of India is one of the most rainfall-receiving regions in the world. Flood occurs in many parts 
of the state every year, causing huge loss in terms of infrastructure and human lives. An advance prediction 
of extreme rainfall events causing floods can help in reducing the impact of floods. The aforementioned 
three soft computing techniques are used in this paper for rainfall forecast at 21 stations in Assam, India. 
The BR approach finds the posterior distribution of regression coefficients and averages over a large number 
of samples. The Bayesian averaging is effective in avoiding the overfitting of the training data. Vapnik’s ε-
insensitive loss function is used for the SVR, and the Gaussian radial basis function is used for non-linear 
mapping of input data space. A coupled WR and LR approach is used for rainfall forecast. The present study 
compares six different models developed based on the aforementioned three soft computing techniques.

2  Study area and data

2.1  �Study Area

Assam is a northeastern state of India that is located between latitudes 24°8′N to 28°2′N and longitudes 
89°42′E to 96°E. The location of the state on the India map is shown in Figure 1. The state is located at the 
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foothills of the eastern Himalayas and receives an average annual rainfall of around 300 cm from the south-
west monsoon. There are around 51 forests and subforests in the states because of its topographical and 
climatic features. The state experiences heavy rainfall and floods every year, which cause riverbank erosions 
and landslides in many parts of the state. Rainfall and floods also affect agriculture, which accounts for more 
than a third of the state domestic product and is the principal occupation of the rural people, who constitute 
nearly 90% of the total population [41].

There is significant spatial and temporal variation in rainfall over the state due to topographic and geo-
graphic features. Southwest monsoon brings heavy rainfall during the June to August period and causes flood 
in many parts of the state. The state suffers huge monetary losses every year because of heavy rainfall and 
floods. The amount of rainfall received by some regions in monsoon months is >800 mm. During the non-
monsoon period, the monthly mean rainfall remains much smaller. A box plot showing the annual mean 
rainfall received by 21 stations in Assam between 1901 and 2002 for every month is presented in Figure 2. Due 
to this high temporal variability, prediction of rainfall becomes very difficult.

2.2  �Data

The monthly mean precipitation data of 21 stations spread over the whole state is used for this study. Data 
for precipitation were obtained from the India water portal website (http://www.indiawaterportal.org/met_
data/). The monthly mean rainfall is available for 102 years from January 1901 to December 2002. The dis-
tribution of rainfall is shown in Figure 1. The eastern part of the state receives less rainfall, compared to 
other parts of the state. The rainfall statistics of 21 stations for 102 years data are presented in Table 1. The 

Figure 1: Location of Assam and Stations on India Map, and Distribution of Monthly Mean Rainfall over Assam.
The numbers represent the stations.

http://www.indiawaterportal.org/met_data/
http://www.indiawaterportal.org/met_data/
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Table 1: Geographical Latitude, Longitude, and Rainfall Statistics of 21 Stations.

Station 
no.

  Station name   Latitude  Longitude 
 

Monthly mean rainfall

Minimum   Maximum   Mean   Standard 
deviation

  Skewness

1   Jorhat   26°45′N  94°13′E   0.19   677.06   179.26   162.86   0.7
2   Barpeta   26°19′N  91°00′E   0   1033.69   230.73   239.38   0.83
3   Cachar   25°05′N  92°55′E   0   1293.43   275.71   265.96   0.87
4   Darrang   26°45′N  92°30′E   0   1069.2   234.79   237.25   0.83
5   Dhemaji   27°29′N  94°35′E   0.2   685.51   180.44   160.98   0.69
6   Dhubri   26°02′N  89°58′E   0   1020.58   185.85   198.97   0.88
7   Dibrugarh   27°29′N  94°54′E   0.2   703.83   183.69   164.32   0.73
8   Goalpara   26°10′N  90°37′E   0   1108.47   222.13   231.72   0.83
9   Golaghat   26°31′N  93°58′E   0.06   705.11   186.69   170.58   0.69
10   Hailakandi   24°41′N  92°34′E   0   1323.74   261.82   256.93   0.92
11   Kamrup   26°11′N  91°44′E   0   1594.27   292.04   301.43   0.89
12   Karbi Anglong   26°00′N  93°30′E   0.03   1234.26   270.23   265.14   0.87
13   Karimganj   24°52′N  92°21′E   0   1197.53   233.98   230.07   0.91
14   Kokrajhar   26°24′N  90°16′E   0   997.85   208.74   221.32   0.83
15   Lakhimpur   27°14′N  94°6′E   0.13   674.85   178.1   162.08   0.67
16   Nagaon   26°21′N  92°41′E   0   1525.96   293.95   294.85   0.89
17   Nalbari   26°25′N  91°26′E   0   1055.19   231.85   239.49   0.85
18   North Cachar Hills   25.18°N  93.03°E   0   1233.48   294.86   280.44   0.8
19   Sibsagar   26°59′N  94°38′E   0.19   694.85   179.75   161.6   0.71
20   Sonitpur   26°38′N  92°48′E   0   784.22   192.8   185.47   0.71
21   Tinsukia   27°30′N  95°22′E   0.19   722.23   172.87   155.35   0.78

Figure 2: Box Plot Showing Annual Mean Rainfall at All Stations for Every Month Between 1901 and 2002.

maximum recorded monthly rainfall is 1594.27 mm at Kamrup station, which occurred in July 1974. The mean 
monthly rainfall varied between 172 and 294 mm. The standard deviation varied between 155.35 mm at station 
no. 21 (Tinsukia) and 301.43 mm at station no. 11 (Kamrup). The skewness varied between 0.67 at Lakhimpur 
station and 0.92 at Hailakandi station. Skewness is positive at all the stations, which shows that the frequency 
distribution of rainfall is asymmetric and it lies on the right side of the mean. The distribution of the data 
is less scattered as the values of skewness become lower. Out of 102 years data, the first 60 years data (from 
January 1901 to December 1960) were used for calibrating the models and the remaining 42 years data (from 
January 1961 to December 2002) were used for validation.
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3  �Methodology
A general LR problem can be described in the form of a target vector (t), a set of input vectors (xn), and a 
functional relationship (f) between t and x, which also includes some additive noise components. This can 
be represented as

	 ( , ,)n n nt f x β= + ε � (1)

where ε is an additive noise process in which εn are i.i.d. (independent identical distributions) and β is the 
vector of adjustable parameters. The main objective of all regression techniques is to set a selection criterion 
for the function f such that it fits the maximum data points in the training data set and gives a good generali-
zation for new data points. The widely used least square technique is based on error function minimization, 
in which it tries to minimize the sum-of-squares error and set β* for the least sum-of-square errors. Error func-
tion minimization techniques suffer from overfitting of training data and poor generalization. Limiting the 
model complexity can help in avoiding the overfitting; however, the model can still suffer from poor generali-
zation in case it is not flexible enough to capture the trend of the data. In the maximum likelihood technique, 
a normal distribution with zero mean and variance σ2 is assumed for the additive terms (εn) in Eq. (1) so that 
p(ε|σ2) = N(ε|0, σ2) and we select the value of β*, which maximizes the likelihood function.

3.1  �Bayesian LR

In BR, the uncertainty in β is represented by a probability distribution, p(β). Bayes’ theorem is used to express 
the posterior distribution for β as the product of prior distribution and likelihood function:

	 2 2( | ,  ,  ) ( | ) ( | ,  ).p t p p tβ α σ β α β σ∝ � (2)

The value of β is chosen, which maximizes the posterior distribution. We integrate over the distribution of 
β to make predictions. The integration over the distribution overcomes the problem of overfitting, as we are 
averaging over a large number of possible solutions. The maximization of the posterior distribution in Eq. (2) 
is equivalent to the minimization of the negative logarithm of the distribution. Different samples of the solu-
tion are generated using the mean and variance of the distribution. Solving the minimization problem, the 
posterior can be expressed in terms of mean and variance.

For this study, we have assumed a Gaussian prior on β (regression coefficients) with mean zero and 
covariance matrix Λ−1 so that β ~ N(0, Λ−1), where Λ is the inverse covariance or precision matrix that is used 
to make computation easier. The posterior distribution on β can be represented as

	 ( , ),N
β β

β µ Σ= � (3)

where
Posterior mean, μ

β
 = (XTX + σ2Λ)−1XTy,

Covariance matrix, Σ
β
 = σ2(XTX + σ2Λ)−1.

This model works in two steps. In the first step, the mean and covariance matrix for posterior distribution of 
β is calculated using Eq. (3). In the second step, β is approximated from this normal distribution by averaging 
over a large number of samples generated by using multivariate normal distribution:

	 ~ MVN( , ).
β β

β µ Σ � (4)

3.2  �Support Vector Regression

SVM is a method of supervised learning that is based on SLT. It was developed by Vapnik and his team, and 
is generally used for classification and regression analysis [33, 34]. The most important advantage of SVM is 
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the principle of structural risk minimization, which is shown to be better than traditional empirical risk mini-
mization [11, 24]. It tries to minimize the upper-bound generalization errors instead of minimizing the local 
training errors. It tries to find a decision rule that provides better generalization by selecting some subset of 
training data called support vectors. To take into account the non-linearity present in the data, the kernel 
functions are used for non-linearly mapping the input space to a higher-dimensional feature space.

In SVR, a loss function (Lε(t, f(x))) is used, which describes the deviation between the function f(xi) out-
comes and the actual target values ti, and allows some deviation between the target values ti and the function 
values f(xi). Vapnik’s ε-insensitive loss function is used, which has some algorithmic advantages like pro-
viding sparse decomposition and rendering the computation more amenable [35]. Figure 3 shows Vapnik’s 
ε-insensitive loss function. It is defined as
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The points that lie outside the ε-insensitive zone (outside red dotted lines) add to the cost. The deviations 
outside the ε-insensitive zone are penalized in a linear manner. The associated convex quadratic program-
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where ξi and iξ
∗  are slack variables. These variables represent the deviations for the training data points lying 

outside the ε-insensitive zone. The slack variables have zero value for all the data points lying inside the ε-
insensitive zone and increase progressively for the data points lying outside the zone. C is the regularization 
constant that assigns a penalty when a training error occurs. The current optimization problem can be easily 
optimized in the dual form.

A dual set of variables, αi and ,iα  is introduced to build the Lagrange function from the primal objective 
function [Eq. (6)] and the corresponding constraints [Eq. (7)]. The dual formation of the optimization problem is
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Figure 3: Vapnik’s ε-Insensitive Loss Function.
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After determining αi and ,iα  the Karush-Kuhn-Tucker method is utilized to find the parameters w and b. Pre-
diction in an LR function is expressed as

	 1
( ) . .

n

i i i j
i

f x x x bα α
=

= − 〈 〉 +∑
�

(9)

To make SVR deal with non-linear cases, a function φ is used to map the decision space variable (X) to a 
higher-dimensional space. The dual problem, after applying this transformation, becomes
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where k(xi, xj) = (φ(xi).φ(xj)) is called the kernel function. Any function can be used as kernel function if it 
satisfies Mercer’s theorem [34]. Gaussian radial basis function (GRBF) is used for this study, which can be 
defined as K(xi, xj) = exp(−γ||xi − xj||2).

The hyperparameters such as the SVR constant ε, regularization constant C, and σ (for radial basis func-
tion kernels) influence the performance of SVR. Parameter C allows a trade-off between training error and 
model complexity. If a model is not sufficiently complex, then it may fail to capture the underlying trend of 
the data and hence cause underfitting. On the other hand, if the model is too complex, then it may capture 
the noise of the data and, hence, can suffer from overfitting.

The magnitude of training error increases for the small values of C and hence tends to underfit the 
training data. However, a higher value of C will tend to a behavior as that of a hard-margin SVM and hence 
overfits the training data [13]. The parameter ε influences the number of support vectors by deciding the 
thickness of the ε-insensitive zone. Hence, its value affects both generalization capability and the com-
plexity of the approximation function. A lower value of ε leads to higher number of support vectors and 
increases the complexity. A higher value of ε leads to smaller number of support vectors and results in more 
flat estimates of the regression function. The performance of SVR is sensitive to these parameters; hence, it 
is important to find appropriate values for C and ε [14]. Determining the appropriate value of these parame-
ters is often a heuristic trial-and-error process [25]. It is shown that an exponentially growing sequence of 
parameters works better [29].

3.3  �Wavelet Regression

Wavelet analysis is an advanced signal processing technique that has been extensively used in communica-
tions, data compression, acoustics, signal processing, image processing, etc. It was introduced by Gross-
mann and Morlet [10] in the early 1980s. The signal or function is expressed as the combination of “little 
waves” called wavelets. Unlike Fourier transform, where the signal is divided into smooth sinusoids of 
unlimited duration, the wavelet transform splits the signal into wavelets of finite duration and zero mean 
[16]. Wavelets are localized both in frequency and time domains. This property of wavelets is called time-
frequency localization. Wavelet analysis features the analysis of temporal variations at different time scales, 
and can work on non-stationary signals as well. Fourier transform assumes infinite length signals and con-
centrates mainly on their frequencies only while wavelet transform can be applied to any kind and any size 
of the signal.
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The wavelet function ψ(t) is defined as ( ) 0.t dtψ
+∞

−∞

=∫  The term ψa,b(t) is obtained by compression and 
expansion of ψ(t):
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where R represents real numbers, ψa,b(t) is the successive wavelet, and a and b are the scale of frequency 
factor and time factor. When the term ψa,b(t) satisfies Eq. (12), for a finite energy signal [16, 26, 40], the succes-
sive wavelet transform of f(t) is
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where ( )tψ  represents the complex conjugate function of ψ(t). f(t) is decomposed at a different resolution level 
(scale) in Eq. (13). In real applications, the successive wavelets are generally discrete. Let 0 0 0, ,j ja a b kb a= =  
a0 > 1, b0 ∈ R, and k, j are integers. The DWT of function f(t) is defined as
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The widely used values for parameter a0 is 2 and for b0 is 1 time step. When a0 is 2 and b0 is 1, Eq. (14) 
changes into binary wavelet transform [16] as
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f(j, k) reflects the frequency characteristics (a or j) and time characteristics (b or k) of the origi-
nal time series. The parameter a decreases when the temporal resolution is high and the frequency resolution 
of the wavelet transform is low. On the other hand, a increases when the temporal resolution is low and the 
frequency resolution is high [36]. For discrete time series f(t) for different time steps (integral), the DWT is 
defined as [42]
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where W
ψ
f(j, k) is the wavelet coefficient for the discrete wavelet of scale a = 2j and b = 2jk.

The input signal (monthly rainfall time series) is decomposed into a certain number of sub-time series 
components (Ds) using the Mallat DWT algorithm [21]. Every component has an important role in the original 
time series, and all have distinct behavior. Thus, the contribution of different subcomponents to the original 
time series varies from each other [36]. The decomposition process consists of a number of successive filtering 
steps. The original signal is first decomposed into approximation and detail components. It is broken down 
into many lower-resolution components. The details are low-scale high-frequency components of the signal, 
while the approximations are the high-scale, low-frequency components (Figure 4). The higher scales consist 
of the extended version of a wavelet, and the coefficients refer to the slowly-changing coarse features of low-
frequency components. The lower scales present the condensed wavelet and follow the rapidly changing 
details (high-frequency components) of the signal [21].

The WR model used in the present study is a combination of DWT and LR. DWT is utilized for pre-
processing of the original monthly rainfall series before use in the LR model. The decomposed subcom-
ponents (detail and approximation) are utilized as inputs for LR, keeping the original rainfall series as 
input. The rainfall time series is processed using DWT separately for both calibration and validation 
period.
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3.4  Models

Using these three techniques and two different sets of input variables, six different models were developed. 
The details of these models are provided in Table 2. All the models were calibrated and validated for the same 
data, as specified in Section 2.2.

4  ��Results and Discussion
Monthly rainfall at 21 stations in Assam is forecasted using three different techniques, namely BR, SVR, and 
WR. Out of 102  years of available data, the first 60  years data were used to calibrate the models and the 
remaining data were used for validation. For SVR, Gaussian radial basis function kernel was used. The first 
60 years data were used for optimizing the value of SVM parameters, ε, C, and γ. A grid search was used for 
optimizing the values of parameters using 10-fold cross-validation. The values for the parameters have been 
varied in an exponentially growing sequence with C = 20, 22, …, 222, γ = 2−15, 2−13, …, 23 and epsilon = 2−1, 20, 
…, 24. The values of these parameters were selected separately for all the stations. The optimized values of 
these three parameters for different stations are presented in Table 3.

For WR, rainfall series was pre-processed using DWT for calibration and validation periods separately. 
In this study, Haar wavelet (db1) and five levels of decompositions were used. The WR model structure is 
shown in Figure 5. Using DWT, a lagged monthly rainfall time series was decomposed into subcomponents, 
i.e. approximation (Ai) and detail (Di) components. A new series was generated by adding the effective Di com-
ponents and the fifth approximation component (A5). The effective Di were chosen based on their correlations 

Figure 4: Signal Decomposition by DWT for Three Resolution Levels.
St denotes the original signal, Ai denotes the approximation components, and Di denotes the detail components.

Table 2: Different Models and Input Variables.

Model  Approach used   Input variables

WR1   Wavelet regression  
SVR1   Support vector regression  R(t) = f(R[t − 1])
BR1   Bayesian regression  

WR2   Wavelet regression  
SVR2   Support vector regression  R(t) = f(R[t − 1], R[t − 2])
BR2   Bayesian regression  
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Figure 5: Wavelet Regression Model Structure.

Table 3: Optimized Values of SVM Model Parameters for Different Stations.

Station 
 

SVR1  
 

SVR2

ε(2x)   C(2x)   γ(2x) ε(2x)   C(2x)   γ(2x)

1   −1   2   −13   1   2   −15
2   4   8   −13   1   6   −15
3   −1   10   −15   −1   4   −15
4   0   10   −13   0   4   −15
5   0   2   −13   −1   4   −13
6   4   10   −15   −1   6   −15
7   1   4   −11   1   6   −11
8   4   6   −9   0   6   −15
9   −1   2   −13   −1   2   −15
10   −1   10   −15   1   6   −15
11   −1   8   −15   0   8   −15
12   1   6   −9   −1   4   −15
13   −1   16   −15   0   4   −15
14   3   6   −15   1   6   −15
15   1   2   −13   −1   4   −13
16   2   4   −13   −1   4   −15
17   4   6   −13   0   4   −15
18   −1   6   −11   1   4   −15
19   0   2   −13   −1   4   −13
20   3   4   −13   3   4   −13
21   −1   2   −11   2   4   −13

with the original time series of rainfall. The newly generated time series was used as input to the LR model, 
and the original rainfall time series was used as output.

4.1  �Comparison of BR, SVR, and WR

Four different statistics, namely mean absolute error (MAE), root mean square error (RMSE), correlation 
coefficient (R), and Nash-Sutcliffe efficiency coefficient (NS) [43], were used to evaluate the performance of 
the three techniques. These statistics are defined as follows:
1.	 The MAE between the observed and the predicted outputs can be defined as

1

1MAE | |.
n

i i
i

f y
n =

= −∑
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2.	 The RMSE between the observed and the predicted outcomes can be defined as

2

1

1RMSE ( ) .
n

i i
i

f y
n =

= −∑

3.	 R is defined as
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4.	 NS is defined as
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where fi are the estimated values, f̅i is the average of estimated values, yi are the observed values, and yi̅ is the 
average of observed values.

Figure 6A–D shows the comparison of the performance of six models during the validation period. As 
observed from the figure, the WR2 model outperformed all other models for all 21 stations. The MAE for WR2 
was observed to lie between 62.89 mm at station no. 19 and 119.813 mm at station no. 11. The RMSE for WR2 
was found to lie between 93.06 mm (for station no. 15) and 185.79 mm (for station no. 11), while the RMSE for 
SVR2 model was observed between 106.15 and 214.08 mm. The average RMSEs for BR1, SVR1, WR1, BR2, SVR2, 
and WR2 were 172.84, 151.24, 142.58, 173.89, 145.42, and 127.06 mm, respectively. The WR2 model had the least 
RMSE compared to all other models.

Figure 6C shows the R for different models at all stations during the validation period. The value of R for 
WR2 was found to be between 0.794 at station no. 21 and 0.855 at station no. 8. The average values of R for 
BR1, SVR1, WR1, BR2, SVR2, and WR2 were 0.667, 0.702, 0.750, 0.643, 0.729, and 0.828, respectively. Figure 
6D shows the Nash-Sutcliffe efficiency index (NSE) for different models at all stations during the validation 
period. The maximum and minimum values of NSE for WR2 were 0.694 at station 8 and 0.578 at station 21. 
The average values of NSE for BR1, SVR1, WR1, BR2, SVR2, and WR2 were 0.334, 0.491, 0.547, 0.327, 0.529, and 
0.640, respectively. Considering R and NSE, it is clear that the WR2 model performed better than all other 
models.

Rainfall is one of the most complex and challenging hydrological processes to understand and to model 
because of the complexities involved with the associated atmospheric processes that generate rainfall. The 
rainfall time series is affected by many complex factors having different frequency components. Considering 
only one resolution component, the model is unable to capture the internal mechanism behind the rain-
fall process. Using DWT, the complex rainfall time series were decomposed into several simple time series, 
and the WR model was developed utilizing appropriate subcomponents. The performance of WR model was 
better than the other models due to the fact that it uses different resolution components for LR. The ineffec-
tive frequency components were removed from the rainfall time series, which effectively improved the per-
formance of the LR model. WR is a simpler model compared to the non-linear SVR model; however, WR has 
shown better accuracy in rainfall prediction. This signifies the role of wavelet preprocessing of the rainfall 
time series, which de-noised the inputs and resulted in improved prediction ability of the model.

To assess the spatial variations in the performance of the forecasting models, the state was divided into 
four zones: lower Assam, middle Assam, upper Assam, and southern Assam (Figure  7). Table 4 presents 
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Figure 6: (A) MAE for Different Models at 21 Stations. (B) RMSE for Different Models at 21 Stations. (C) Correlation Coefficient (R) 
for Different Models at 21 Stations. (D) Nash-Sutcliffe Index (NS) for Different Models at 21 Stations.

the average RMSEs for four regions, obtained using different models. A comparison of model performances 
reveals that the upper Assam part has the highest accuracy (least RMSEs), whereas middle Assam has the 
least accuracy (highest RMSEs). The average standard deviations of monthly rainfall for upper, middle, lower, 
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Figure 7: Map Showing the Distribution of RMSEs for the WR2 Model over Assam.

Table 4: RMSEs Obtained for Different Parts of Assam Using Six Models.

Region  
 

RMSE (mm)

BR1   SVR1   WR1   BR2   SVR2   WR2

Upper   127.42   111.81   106.19   128.12   108.71   95.31
Middle   206.65   180.82   169.10   207.37   176.85   154.33
Lower   182.18   157.02   147.59   182.88   144.55   126.26
Southern   192.27   170.08   161.48   194.80   163.41   141.25

and southern Assam were 168, 254, 222, and 259 mm, respectively. The upper Assam region had the minimum 
average standard deviation, which could be the reason for the better performance of models in this region, 
as variability in station rainfalls for this region was least. Figure 7 shows the performance of the WR2 model 
(best model) in the form of a map made using inverse distance weighted interpolation of RMSEs at different 
stations. The average RMSEs for lower, middle, upper and southern Assam were 126.26, 154.33, 95.31, and 
141.25 mm, respectively. Upper Assam had the lowest RMSE followed by lower, southern, and middle Assam, 
respectively. The WR2 model performed best for the stations in the upper Assam zone. Stations in the middle 
Assam had the highest RMSEs, which imply that the forecasting model performed badly at these stations. 
Of 21 stations, station no. 15 (Lakhimpur) had the least RMSE for the WR2 model, whereas station no. 11 
(Kamrup) had the highest RMSE. It is already shown in Table 1 that the Kamrup station had the highest values 
of standard deviation and skewness.

5  �Conclusions
A comparison of three different forecasting techniques, BR, SVR, and WR, for monthly rainfall data at 21 sta-
tions in Assam, India, is presented in this paper. The GRBF kernel was used for SVR, and the SVR parameters 
were optimized utilizing a grid search technique. For the WR model, the rainfall time series was decomposed 
into subcomponents using DWT and a new time series was generated by adding effective subcomponents, 
which were used as input for the LR model. The monthly rainfall data of 102 years were used for the study, 



654      A. Sharma and M.K. Goyal: Three Soft Computing Techniques for Monthly Rainfall Forecast

which were divided into 60:40 ratio for calibration and validation, respectively. Based on the MAE, RMSE, R, 
and NSE, WR was found to be the most efficient and BR was found the least efficient for rainfall prediction. The 
efficiency index for BR, SVR, and WR was found to be 32.8%, 52.9%, and 64.03%, respectively. The WR model 
used in this study was a linear model; however, SVR is an advanced non-linear model. WR is simpler than SVR 
but was able to perform better than SVR. Hence, it can be concluded that wavelet processing of the input time 
series resulted in better performance of the WR model. Spatial assessment of model performance reveals that 
model performance was found best for stations in the upper part of the state, followed by the lower, southern, 
and middle parts. The study can be useful for better management of water resources in the state.
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