
J. Intell. Syst. 2018; 27(4): 643–658

Iyad Abu Doush*, Amal Lutfi Quran, Mohammed Azmi Al-Betar
and Mohammed A. Awadallah

MAX-SAT Problem using Hybrid Harmony
Search Algorithm
DOI 10.1515/jisys-2016-0129
Received August 1, 2016; previously published online May 4, 2017.

Abstract: Maximum Satisfiability problem is an optimization variant of the Satisfiability problem (SAT)
denoted as MAX-SAT. The aim of this problem is to find Boolean variable assignment that maximizes the
number of satisfied clauses in the Boolean formula. In case the number of variables per clause is equal or
greater than three, then this problem is considered NP-complete. Hence, many researchers have developed
techniques to deal with MAX-SAT. In this paper, we investigate the impact of different hybrid versions of
binary harmony search (HS) algorithm on solving MAX 3-SAT problem. Therefore, we propose two novel
hybrid binary HS algorithms. The first hybridizes Flip heuristic with HS, and the second uses Tabu search
combined with Flip heuristic. Furthermore, a distinguished feature of our proposed approaches is using an
objective function that is updated dynamically based on the stepwise adaptation of weights (SAW) mecha-
nism to evaluate the MAX-SAT solution using the proposed hybrid versions. The performance of the proposed
approaches is evaluated over standard MAX-SAT benchmarks, and the results are compared with six evolu-
tionary algorithms and three stochastic local search algorithms. The obtained results are competitive and
show that the proposed novel approaches are effective.

Keywords: Maximum satisfiability problem, harmony search, local search, optimization, 3SAT problem,
 evolutionary algorithms, MAX-SAT problem, metaheuristic.

1 Introduction
The combinatorial optimization is the core of several research areas including operational research, com-
puter science, discrete mathematics, and many other domains. This field tries to solve various combinatorial
optimization problems (COP) that are not easy to solve due to their size and combinatorial nature. The satisfi-
ability problem (SAT) is one of the popular optimization problems. In this problem, the solver determines the
satisfiability of a formula by searching for the Boolean variable assignment, which makes such evaluation to
be true [14].

The SAT problem can be used to simulate challenges in many areas, whereas many real-world problems
can be easily represented in the propositional logic such as graph coloring [11], checking [39], and task plan-
ning [27]. The SAT problem is recognized as NP-complete in almost all its variations [14].

An NP-complete variation of the SAT problem is when we want to count the satisfied clauses. This type of
SAT problem is named MAX-SAT (maximum satisfiability). The objective of the MAX-SAT problem is to specify
what the maximum number of clauses that are satisfied of a propositional formula is. This propositional

*Corresponding author: Iyad Abu Doush, Computer Science Department, Yarmouk University, Irbid, Jordan; and Department of
Computer Science and Information Systems, American University of Kuwait, Salmiya, Kuwait,
e-mail: iyad.doush@yu.edu.jo
Amal Lutfi Quran: Computer Science Department, Yarmouk University, Irbid, Jordan
Mohammed Azmi Al-Betar: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University,
P.O. Box 50, Al-Huson, Irbid, Jordan
Mohammed A. Awadallah: Department of Computer Science, Al-Aqsa University, P. O. Box 4051, Gaza, Palestine

mailto:iyad.doush@yu.edu.jo

644      I. Abu Doush et al.: Solving Max-Sat using HSA

formula is written in conjunctive normal form (CNF), where each literal is either negated or not, and the vari-
able can be repeated in the logic clauses as shown in eq. (1):

 1 2 3 3 4 5 4 6 9() () ()F x x x x x x x x x= ∨ ∨ ∧ ¬ ∨ ∨ ∧… ∨ ¬ ∨ ¬ (1)

Furthermore, MAX-SAT problem can be considered as a generalization of the SAT problem. Solving the
MAX-SAT can lead to solve the SAT problem easily, but not vice versa. Thus, solving the MAX-SAT problem is
harder than solving the SAT problem. Additionally, even in the case of having two literals for each clause, the
MAX-SAT is considered NP-hard. On the other hand, the SAT problem can be solved in polynomial time if we
have two literals per clause [44].

MAX-SAT is broadly used as modeling framework to solve various combinatorial optimization problems.
There are many applications expressed as MAX-SAT such as scheduling [56], routing [56], model checking [10]
of finite state systems, AI planning [46], electronic markets [47], and design debugging [49].

The MAX k-SAT problem is a variant of MAX-SAT that relates to the clause instances with at most k
 literals [28]. The MAX k-SAT problem was demonstrated as NP-complete for any k ≥ 3 [57]. A special case
of MAX k-SAT is MAX 3-SAT where each Boolean expression is presented in CNF, and each clause con-
tains only three variables. Other variants of the MAX-SAT problem are partial MAX-SAT [43] and weighted
MAX-SAT [13].

In order to solve the MAX k-SAT problem, we have two options: (i) the exact algorithms and (ii) metaheuris-
tic methods. The exact algorithms are used to find the exact solution and to verify the satisfiability of the SAT
problem or its unsatisfiability, but they typically have an exponential complexity [43]. The exact algorithms
are based on the Davis–Putnam–Loveland algorithm (DPLL) [15], such as the branch and bound algorithm
based on DPLL [37]. While the metaheuristics methods can find an optimal solution faster, they do not guar-
antee to find the exact solution of the problem. They are fundamentally based on local search and evolu-
tionary algorithms. The metaheuristic methods for MAX k-SAT problem include stochastic local search (SLS)
methods [25, 40, 41, 48], evolutionary algorithms (EA) [22, 34, 38], and hybrid methods of EA and SLS or exact
methods [16, 30, 31, 35].

Harmony search (HS) algorithm, a recent evolutionary algorithm, has attracted the attention of several
researchers since its appearance in 2001. The HS had been successfully applied to a variety of problems that
have covered many areas as follows: mechanical component design [26], timetabling [3, 7], nurse rostering
[9], office space allocation [8], structural engineering problems [36], multi-buyer multi-vendor supply chain
problem [50], control systems [26], optimization benchmarks [1, 24], flow shop scheduling [54], water dis-
tribution network [19], power systems [26], information technology [26], industry [26], medical images [6],
construction design [26], soil stability analysis [12], Internet routing [17], and robotics [51]. Furthermore, the
structure population of HS is studied in Refs. [5] and [4].

Previous research on HS applies the algorithm to solve discrete or continuous optimization problems,
and only a few research study the application of the algorithm on binary problems such as MAX k-SAT. Geem
[18] introduced the first application of HS using binary code to solve water pump switching problems. Other
researchers tackled other binary problems: ecologic optimization problem [20], one-dimensional binary
knapsack problems [23], and 0–1 knapsack problem [58]. The research on binary-coded HS algorithms still
needs more investigation, and the performance of such algorithm still needs to be improved [55].

In this paper, we investigate the effectiveness of introducing two novel hybrid variations of binary HS
algorithm for MAX 3-SAT problem. The first uses flip heuristic, and the second uses Tabu search joined with
flip heuristic. Also, we introduce the use of adaptive objective function based on the stepwise adaptation of
weights (SAW) to evaluate the solutions resulting from the proposed hybrid variants of HS algorithm. The
performance of the proposed algorithms is evaluated on solving the MAX 3-SAT problem. A comparison with
nine state-of-the-art techniques shows the effectiveness of the proposed algorithms.

The organization of this paper is as follows: The background of MAX 3-SAT problem and binary HS algo-
rithm is overviewed in Section 2. The adaptation of binary HS algorithm and its hybrid versions for the MAX
3-SAT problem are proposed in Section 3. Experiments and comparative results are presented in Section 4.
Finally, the conclusion and future research directions are provided in Section 5.

I. Abu Doush et al.: Solving Max-Sat using HSA      645

2 Background
In this section, a detailed background about the MAX 3-SAT problem is discussed, and then, the procedural
steps of the binary HS are illustrated.

2.1 MAX k-SAT Problem

CNF representation is used by the SAT solvers. Using CNF, a conjunction of propositional clauses is inserted
in which a disjunction of literals form each clause.

Here, n is used to denote the number of Boolean variables, while m is used to represent the number of
clauses in the propositional formula F that expressed in CNF, if F has n Boolean variables x1, x2, …, xn, and m
clauses C1, C2, …, Cm; therefore, the MAX k-SAT problem can be formulated as follows [52]:

 – Each assignment of the Boolean variables is viewed as a binary vector V, where V = (v1, v2, …, …,
vn) ∈ {0, 1}n.

 – Each clause of length k is a disjunction of k literals, a clause Ci = (x1 ∨ x2 ∨ … ∨ xk).
 – Each literal Li is either a variable xi or its complement ¬xi.
 – Each variable or its negation can be shown more than one time in the logical expression.
 – The assignment is complete if all the variables are assigned, and it is called partial otherwise.
 – A solution of F is an assignment satisfying all clauses of F.

For some k, the k-SAT problem searches about a complete variable assignment that makes a CNF formula
F = C1∧C2∧…∧Cm evaluate to true. If such assignment exists for F, then F is a satisfiable formula, else F is said
to be unsatisfiable. The MAX k-SAT problem is an important version of the SAT problem and is considered as
a combinatorial optimization problem. It seeks to find the best assignment V ∈ {0, 1}n in which we maximize
the number of satisfied clauses in the Boolean formula.

The MAX k-SAT is defined by determining the set of all potential solutions ({0, 1}n) and a function SC → N
named score of the assignment, which equals the number of true clauses. The objective is to find the best
binary vector that maximizes the number of satisfied clauses in the Boolean formula.

For this problem, there are 2n possible satisfying assignments. The MAX k-SAT problem is proven to be
NP-complete for any k > 2. In this work, we concentrate on solving the MAX 3-SAT problem, which is a combi-
natorial optimization problem and considered a special case of the weighted MAX 3-SAT, where each clause
weight equals one. In MAX 3-SAT, each clause of F contains only three literals as shown in eq. (1).

2.2 The Binary Harmony Search Algorithm

A close relationship can be found between optimization and music. Jazz musicians when they are creating
their music, they either play notes (pitches) randomly, play notes based on their experiences, or modify the
pitch in order to find a perfect harmony. Therefore, in order to find an optimal solution, the variables in the
HS algorithm are assigned with values, which are either selected randomly or chosen from good values previ-
ously memorized.

There are similarities between the musicians’ behavior when they are composing their music and the
optimization process; this analogy between improvisation and optimization is summarized below:

 – Each decision variable represents a musician.
 – A musical note (or a pitch) represents the value of each variable.
 – A solution vector at certain iteration represents the musical harmony at a certain time.
 – The audience’s aesthetics corresponds to the objective function.
 – As musical harmony is improved practice after practice, the solution vector is improved iteration by

iteration.

646      I. Abu Doush et al.: Solving Max-Sat using HSA

The literature has many research work to solve problems using binary HS algorithm. Kong et al. [29] pro-
posed a new binary HS (NBHS) algorithm for solving multidimensional knapsack problems. The classical HS
algorithm is modified in the NBHS algorithm as follows: (i) the value of the decision variables in the solution
includes the probability distribution of 0 and 1 rather than the exact value; (ii) the mean harmony concept
is used in the improvisation process rather than the original concept of the memory consideration. In the
evaluation process, their method obtained satisfactory results for multidimensional knapsack problems with
large dimension sizes.

Afkhami et al. [2] introduced a binary HS algorithm for solving a maximum clique problem (MCP). The
solution represented as a series of ones and zeros. The pitch adjustment operator of the classical HS algo-
rithm is adjusted to be flipping the decision variables from 0 to 1 or from 1 to 0.

Nasrollahi et al. [45] presented a binary HS algorithm for highway rehabilitation decision making prob-
lems. The value of the decision variable in the solution is one if the road segment must be reconstructed and
zero if not. Their method is tested using real-world dataset sampled from Iran with good results.

Wang et al. [53] introduced a binary HS algorithm for optimization benchmark functions. The solution
is represented as a series of ones and zeros. The pitch adjustment operator is modified to choose the value
from its structural neighborhood rather an adjacent value in HS memory. The performance of their method is
better than the performance of the classical HS.

As musicians obtain a random pitch from the instrument range, random values in random selection
are taken from the variable possible range of values. This is similar when a musician plays any favored
pitch from his memory. In memory consideration, the values are picked from the vectors of harmony
memory. When a pitch is taken from memory, the pitch can be further adjusted by a musician to the
neighboring pitches to get a better harmony. In pitch adjustment, the value is updated with a prede-
fined probability. This value can change the value in memory with adjacent values according to a defined
probability. The overall HS algorithm is shown as a flowchart in Figure 1. HS has five main steps that are
described below:

2.2.1 Initialize the Problem and the Algorithm Parameters

Generally, the optimization problem is formulated as:

 Minimize{ () | 1, 2, , }j jf x x X N∈ = … (2)

where f(x) represents an objective function, and x is the set of the decision variables xj; Xj represents the
set of potential range of values for each decision variable, and N is the number of decision variables. That
is Xj ∈[LBj, UBj], where LBj and UBj are both the lower and upper boundaries for each decision variable,

Initialize problem
and HS parameters

Update HM

Improvise
new harmonv

Yes

Yes

No

No
Step 3

Step 5

Step 2

Step 1

Step 4

Initialize HM
Stop

?

Better
?

End

Figure 1: The Flowchart of HS Algorithm.

I. Abu Doush et al.: Solving Max-Sat using HSA      647

 respectively. In the binary problem the lower bound is 0, and the upper bound is 1, and the variable xj value
can be either 0 or 1.

The HS algorithm parameters are also initialized in this step:
 – The number of improvisations (NI): NI is a termination condition of the optimization process that cor-

responds to the number of iterations.
 – Harmony memory size (HMS): HMS indicates how many solutions are stored in the harmony memory.
 – Harmony memory consideration rate (HMCR): the rate HMCR ∈[0,1] is used to decide whether the value

of a decision variable of the new harmony is picked from the harmony memory (HM).
 – Pitch adjustment rate (PAR): the probability PAR ∈[0,1] decides whether the decision variable picked

from the harmony memory will be adjusted to the adjacent value by a certain amount. In the case of the
binary coded HS, the solution can have only two values 0 or 1. This operator is used to flip the current
value of the solution.

Moreover, the HMCR and PAR are the two parameters that control the three operators of the HS algorithm: (1)
memory consideration controlled by HMCR, (2) random consideration controlled by 1 − HMCR, and (3) pitch
adjustment rate that is controlled by PAR.

2.2.2 Initialize the Harmony Memory (HM)

The HM is a matrix of size N × HMS filled by sets of solution vectors determined by HMS. These vectors are
randomly generated as follows:

In binary HS {0, 1},i
jx ∈ where i ∈ {1, 2, …, HMS} and j ∈ {1, 2, …, N}.

Those generated solutions are stored in HM in ascending order (or descending order) according to their
objective function values as follows:

1 1 1
1 2
2 2 2
1 2

HMS HMS HMS
1 2

HM .

N

N

N

x x x
x x x

x x x

 =

�
�

� � � �
�

(3)

2.2.3 Improvise a New Harmony Memory

In this step, a new harmony vector 1 2(, , ,)Nx x x= …′ ′ ′ ′x is created according to three operators:

Memory consideration: the value of the first decision variable 1x′ for the new vector is randomly selected
from any of the values in the specified HM range 1 2 HMS

1 1 1{ , , , }.x x x… The values of the other decision variables
2 3(, , ,)Nx x x…′ ′ ′ are selected sequentially in the same way with probability (w.p.) HMCR, where HMCR ∈(0, 1),

is the rate of selecting one value from the possible values stored in the HM.

Random consideration: Decision variables that are not selected with values based on memory considera-
tion are randomly selected according to their possible value range based on random consideration with a
probability (1 − HMCR) as follows:

1 2 HMS{ , , , } w. p. HMCR,
w. p. (1 HMCR).

j j j
j

j

x x x
x

 …←′ −X
(4)

For example, if HMCR is 0.85, this indicates that the HS algorithm will choose the decision variable value from
stored values in the HM w.p. 85% or from the whole possible range w.p. (100–85)%. For the binary HS, the
random consideration means generating xj ∈ {0, 1} randomly with the rate (1 − HMCR).

648      I. Abu Doush et al.: Solving Max-Sat using HSA

Pitch adjustment: Every variable jx′ of a new harmony vector obtained by the memory consideration is
checked to determine whether it should be modified with the probability of PAR, where PAR ∈(0, 1), which is
the rate of pitch adjustment as bellow:

w. p. PAR,
pitch adjustment for ?

w. p. (1 PAR).
j

j
j

x
x

x
 ′′←′ −′

(5)

The (1 − PAR) value refers to the rate of doing nothing. If the pitch adjustment decision for jx′ is yes, the value
of jx′ is replaced to its adjacent value as follows:

1 if 0,
?

0 if 1.
j

j
j

x
x

x
 =′←′′ =′

(6)

2.2.4 Update the Harmony Memory (HM)

In this step, the objective function f(x′) value is calculated for the new harmony vector x′. In case the vector of
the new harmony is better than the worst harmony xworst in the HM (i.e. xworst = x1 if HM is sorted in descending
order), the new harmony is kept in the HM, and the worst harmony vector is deleted from the HM.

2.2.5 Check the Stopping Criterion

The computation is terminated in case the maximum number of improvisations (i.e. the stopping criterion) is
satisfied. This is specified by the NI parameter or else, Steps 3 and 4 of HS algorithm are repeated, and finally,
the best solution to the problem will be the best harmony memory vector. The HS procedure can be presented
as in Algorithm 1.

Algorithm 1: Binary HS Algorithm Pseudo-Code.

Set HS parameters: HMCR, PAR, NI, HMS.
= (0, 1),j

ix Random ∀i = 1, 2, …, N and ∀j = 1, 2, …, HMS {generate HM solutions}
Calculate(f(xj)), ∀j =(1, 2, …, HMS)
Sort(HM)
itr = 0
while (itr ≤ NI) do
 x′ = φ
 for i = 1, …, N do
  if (U(0, 1) ≤ HMCR) then
    ∈ …′ 1 2 HMS{ , , , }i i i ix x x x {memory consideration}

   if (U(0, 1) ≤ PAR) then
     =′ ′()i ix Flip x {pitch adjustment}

   end if
  else
    ∈′ {0, 1}ix {random consideration}

  end if
 end for
 if (f(x′) < f(xworst)) then
  Include x′ to the HM
  Exclude xworst from HM
 end if
 itr = itr + 1
end while

I. Abu Doush et al.: Solving Max-Sat using HSA      649

3 The Methodology
In this section, the proposed approaches are presented for MAX 3-SAT problem in three consecutive versions
as follows: the first proposed algorithm called HS algorithm for SATisfiability problem (HSASAT) where it
applies the pure HS for solving MAX 3-SAT. The second proposed algorithm refers to as weighted HS algo-
rithm with flip heuristic for SATisfiability problem (WHSFLIP), which is an enhanced version of HSASAT. It
maintains a local search procedure that is based on the Flip heuristic used in flipGA [38]. The last proposed
algorithm is an enhancement to the WHSFLIP to develop a new algorithm named weighted HS with Tabu
search for a SATisfiability problem (WHSTS), which is based on a local search algorithm that mixes the Flip
heuristic with Tabu search principles.

In WHSFLIP and WHSTS, a new objective function is utilized based on the clause weights as will be dis-
cussed in the following subsection.

3.1 Objective Function

The objective function (or evaluation function) is utilized to decide whether the solution for 3-SAT problem
has a good quality or not. There are several proposed fitness functions [22] used by the evolutionary algo-
rithms for the MAX 3-SAT problem. Most of the previous meta-heuristic methods use the standard objec-
tive function (i.e. the number of satisfied clauses) as shown in eq. (7), which maximizes the number of true
clauses:

 1
() ()

m

i
i

F x C x
=

= ∑

(7)

in which Ci(x) represents the truth value of the i-th clause. Thus, we use a dynamic objective function that is
based on the SAW mechanism [21]. This adaptive objective function is given as shown in eq. (8).

 1
() ()

m

i i
i

F W C
=

= ×∑x x

(8)

A weight Wi is added to each clause Ci. The weights are used to specify which clauses are difficult to satisfy in
the current iteration. The weights are initialized to one at the beginning as we give same difficulty rate for all
the clauses. The algorithm automatically modifies the weights. After some iterations (say 250), we adjust the
weights according to eq. (9). This change will make the unsatisfied clauses have more weights, and thus, the
search focuses more on these clauses (i.e. guided search).

 1 1 ()i i iW W C ∗
+ = + − x (9)

3.2 The HS Representation of MAX-SAT Solutions

We map the candidate solutions for MAX 3-SAT into harmony representation then we can apply HS to solve
this problem. There are different possible representations of the MAX-SAT search space such as binary repre-
sentation, floating point representation, the clausal representation, and the path representation [22]. In our
proposed algorithms, we used the binary representation because many state-of-the-art 3-SAT evolutionary
algorithm solvers use this representation [22]. Using this representation, a candidate solution is represented
using a binary vector of length n. Note that n represents the number of Boolean variables in the CNF formula
(see Figure 2).

650      I. Abu Doush et al.: Solving Max-Sat using HSA

Algorithm 1 illustrates the overall flow of the HSASAT approach.

3.3 Local Search used in HS Algorithm

Local search techniques can be used to improve the performance of HS. We have developed a new version
of HS for MAX-SAT called weighted HS with flip heuristic satisfiability problems (WHSFLIP), where the
PAR operator is substituted with flip heuristic used in flipGA [38] as a local search (see Algorithm 2). Such
modification in the algorithm can accelerate the convergence, and thus, the algorithm produces better
outcomes.

1 0 1 1 1 0 0 0 1 1 0 1

Figure 2: Binary Representation of Harmony.

Algorithm 2: Local Search Procedure based on Flip Heuristic Pseudo-Code.

Input: Boolean assignment, formula φ in CNF, maxflip {is the maximum number of flips allowed}.
enhancement = 1
numFlip = 0 {The current number of flips applied}
while {enhancement > 0 numFlip < maxflip} do
 enhancement = 0
 for i = 1, …, nVar do
  {nVar is the number of variables to be resolved}
  flip vari {flip the ith variable}
  numFlip + + 
  calculate the flip gain
  if gain ≥ 0 then
   the flip is confirmed
   enhancement = enhancement + gain
  else
   the flip is rolled back vari

  end if
 end for
end while
Output: Boolean assignment

Flip heuristic means the Boolean formula variables are flipped. We agree on the flip if and only if the
gain ≥ 0 is satisfied, where the gain is

Gain number of satisfied clauses after flip number of satisfied clauses before flip= −

We repeat the process until no enhancement in the number of satisfied clauses is found. Therefore, a new
harmony or a potential solution is produced through random selection, harmony memory consideration, or
flip heuristic (see Algorithm 2).

It is apparently noted that the problem encountered using this heuristic is the large flipped variables to
get the best solution. Thus, in order to reduce this overhead, we developed another version of HS for MAX
3-SAT named weighted HS with Tabu search for SATisfiability problem (WHSTS). Tabu search is inserted to
the Flip heuristic to minimize the number of flips applied. The variable is added to the Tabu list if it does not
improve the objective function (see Algorithm 3).

I. Abu Doush et al.: Solving Max-Sat using HSA      651

The Tabu variables are stored in an ordered FIFO list. Then, during the iterations, these variables are
not allowed to be flipped again. The length of the Tabu list is set experimentally according to the number of
variables in the CNF formula. The optimal length of the Tabu list is set based on the experiments of Mazure
according to eq. (10) [42]:

 Optimal length of tabu list 0.01875 2.8125n= + (10)

The overall flow of WHSTS is illustrated in Algorithm 3).

4 Experiments and Results
The three versions of the proposed HS-based algorithms for MAX 3-SAT are experimentally evaluated and
compared with some evolutionary algorithms along with some state-of-the-art MAX 3-SAT solvers. The exper-
iments were executed on an Intel core i7 processor running with 8 GB of RAM, where the proposed algorithms
were coded using MathWorks MATLAB R2015a (The MathWork, Natick, MA, USA) under Microsoft Windows 7
(Microsoft, Redmond, WA, USA).

4.1 Datasets used for Evaluation

In order to estimate the experimental performance of the proposed algorithms, several test sets are carried
out using different AIM benchmark instances taken from Ref. [42]. The AIM benchmark instances were
 generated by a particular random 3-SAT instance generator that produces yes-instances and no-instances
separately for wide ranges.1 We used 10 yes-instances from the AIM family benchmarks that have exactly one

Algorithm 3: Local Search Procedure based on Tabu Search and Flip Heuristic Pseudo-Code.

Input: Boolean assignment, formula φ in CNF, maxflip. {maxflip is the maximum number of flips allowed}
enhancement = 1
numFlip = 0 {The current number of flips applied}
While enhancement > 0 and numFlip < maxflip do
 enhancement = 0
 for i = 1, …, nVar do
  {nVar is the number of variables to be resolved}
  if vari ∈ TabuList then
   flip vari {flip the ith variable}
   numFlip + + 
   calculate the flip gain
  end if
  if gain ≥ 0 then
   the flip is confirmed
   enhancement = enhancement + gain
  else
   TabuList.push(vari)
   the flip is rolled back vari

  end if
  if TabuList.size() = = TabuListMax then
   TabuList.pop()
  end if
 end for
end while
Output: Boolean assignment

1 http://www.cs.ubc.ca/hoos/SATLIB/benchm.html.

http://www.cs.ubc.ca/hoos/SATLIB/benchm.html

652      I. Abu Doush et al.: Solving Max-Sat using HSA

satisfying assignment to assess the capabilities of our proposed approaches in finding the exact solutions
(see Table 1).

4.2 Experimental Results

The proposed algorithms are tested on different AIM yes-instance benchmarks. The obtained results are com-
pared with the algorithms presented in Refs. [32, 33]. We run the HSASAT, WHSFLIP, and WHSTS programs
using the following parameters’ setting: population size (HMS) = 20, total number of generations = 1000,
Maxflip in flip heuristic = 30,000, HMCR = 0.97, PAR = 0.3, and FW = 0.01. Each instance is tested 30 times
independently. These parameter settings are chosen based on several preliminary experimental testing.

The proposed algorithms compared with the state-of-the-art evolutionary algorithms presented in Ref.
[33] are as follows:

 – PSO-LS: a particle swarm optimization (PSO) that uses SAW objective function and uses a standard PSO-
flight operation based on sigmoid transformation.

 – PSOSAT: PSO algorithm with the standard objective function (i.e. number of true clauses).
 – WPSOSAT: weighted particle swarm optimization for satisfiability problems, which is an evolutionary

algorithm based on a hybrid PSO algorithm and flip heuristic using the SAW objective function.

The comparison results among those evolutionary algorithms along with HSASAT, WHSFLIP, and WHSTS
are summarized in Table 2. Considering the results in the table, we can note that WHSFLIP, WHSTS, and
WPSOSAT succeeded in finding the exact solutions for the 10 benchmark instances, while HSASAT,

Table 1: The Characteristics of the Dataset used in the Evaluation.

Dataset name Number of clauses Number of variables

aim − 50 − 1_6 − yes1 − 4 80 50
aim − 50 − 2_0 − yes1 − 1 100 50
aim − 50 − 3_4 − yes1 − 1 170 50
aim − 50 − 6_0 − yes1 − 1 300 50
aim − 100 − 1_6 − yes1 − 1 160 100
aim − 100 − 2_0 − yes1 − 1 200 100
aim − 100 − 3_4 − yes1 − 1 340 100
aim − 100 − 6_0 − yes1 − 1 600 100
aim − 200 − 2_0 − yes1 − 1 400 200
aim − 200 − 6_0 − yes1 − 1 1200 200

Table 2: Comparative Results 1.

Tests   HSASAT  WHSFLIP  WHSTS  PSO-LS  PSOSAT  WPSOSAT

aim − 50 − 1_6 − yes1 − 4   79  80  80  79  79  80
aim − 50 − 2_0 − yes1 − 1   100  100  100  98.25  100  100
aim − 50 − 3_4 − yes1 − 1   170  170  170  165  170  170
aim − 50 − 6_0 − yes1 − 1   300  300  300  288.25  300  300
aim − 100 − 1_6 − yes1 − 1   159  160  160  154.25  159  160
aim − 100 − 2_0 − yes1 − 1   199  200  200  191  199  200
aim − 100 − 3_4 − yes1 − 1   340  340  340  319.5  340  340
aim − 100 − 6_0 − yes1 − 1   600  600  600  557  600  600
aim − 200 − 2_0 − yes1 − 1   399  400  400  373.25  399  400
aim − 200 − 6_0 − yes1 − 1   1200  1200  1200  1095.25  1200  1200

Bold values represent best solution.

I. Abu Doush et al.: Solving Max-Sat using HSA      653

PSOSAT failed in benchmarks aim − 50 − 1_6 − yes1 − 4, aim − 100 − 1_6 − yes1 − 1, aim − 100 − 2_0 − yes1 − 1,
aim − 200 − 2_0 − yes1 − 1. In contrast, PSO-LS failed in all the benchmark instances.

Furthermore, the proposed algorithms are compared with evolutionary algorithms tested in Ref. [32],
which are:

 – ClonTS: a clonal selection algorithm based on flip heuristic and the standard objective function (i.e.
number of true clauses).

 – WClonTS: weighted clonal selection with Tabu for satisfiability problems. This is based on the SAW
 objective function.

 – Clonsat: an evolutionary algorithm based on a hybrid clonal selection algorithm and Walksat procedure.

Comparison of those evolutionary algorithms with the proposed HSASAT, WHSFLIP, and WHSTS is shown in
Table 3. The results show that WHSFLIP, WHSTS, and WClonTS succeeded in finding the exact solutions for
10 benchmark instances, while HSASAT, ClonTS, and Clonsat failed in benchmarks aim − 50 − 1_6 − yes1 − 4,
aim − 100 − 1_6 − yes1 − 1, aim − 100 − 2_0 − yes1 − 1, and aim − 200 − 2_0 − yes1 − 1.

In addition, we have made a comparison with three state-of-the-art stochastic local search algorithms:
Novelty +, Walksat, and IROTS that are presented in Refs. [32, 33]. These algorithms are compared with the
proposed algorithms shown in Table 4

Comparison of those evolutionary algorithms beside HSASAT, WHSFLIP, and WHSTS is shown
in Table 3. The evaluation results prove that WHSFLIP, WHSTS, and WClonTS succeeded in finding
the exact solutions for the 10 benchmark instances, while HSASAT, ClonTS, and Clonsat failed in
the benchmarks aim − 50 − 1_6 − yes1 − 4, aim − 100 − 1_6 − yes1 − 1, aim − 100 − 2_0 − yes1 − 1, and
aim − 200 − 2_0 − yes1 − 1.

Table 3: Comparative Results 2.

Tests   HSASAT  WHSFLIP  WHSTS  ClonTS  WClonTS  Clonsat

aim − 50 − 1_6 − yes1 − 4   79  80  80  79  80  79.75
aim − 50 − 2_0 − yes1 − 1   100  100  100  100  100  100
aim − 50 − 3_4 − yes1 − 1   170  170  170  170  170  170
aim − 50 − 6_0 − yes1 − 1   300  300  300  300  300  300
aim − 100 − 1_6 − yes1 − 1   159  160  160  159  160  159
aim − 100 − 2_0 − yes1 − 1   199  200  200  199  200  199
aim − 100 − 3_4 − yes1 − 1   340  340  340  340  340  340
aim − 100 − 6_0 − yes1 − 1   600  600  600  600  600  600
aim − 200 − 2_0 − yes1 − 1   399  400  400  399  400  399
aim − 200 − 6_0 − yes1 − 1   1200  1200  1200  1200  1200  1200

Bold values represent best solution.

Table 4: Comparative Results 3.

Tests   HSASAT  WHSFLIP  WHSTS  Novelty +   Walksat  IROTS

aim − 50 − 1_6 − yes1 − 4   79  80  80  79  79  79.75
aim − 50 − 2_0 − yes1 − 1   100  100  100  100  100  100
aim − 50 − 3_4 − yes1 − 1   170  170  170  170  170  170
aim − 50 − 6_0 − yes1 − 1   300  300  300  300  300  300
aim − 100 − 1_6 − yes1 − 1   159  160  160  159  159  159
aim − 100 − 2_0 − yes1 − 1   199  200  200  199  199  199
aim − 100 − 3_4 − yes1 − 1   340  340  340  340  340  340
aim − 100 − 6_0 − yes1 − 1   600  600  600  600  600  600
aim − 200 − 2_0 − yes1 − 1   399  400  400  399  399  399
aim − 200 − 6_0 − yes1 − 1   1200  1200  1200  1200  1200  1200

Bold values represent best solution.

654      I. Abu Doush et al.: Solving Max-Sat using HSA

4.3 Friedman Test Results

A Friedman test was conducted to test the differences in the means of the 12 algorithms. The hypotheses are:
 – H0: all the means are equal.
 – H1: Not all the means are equal.

The analysis results of the Friedman test are presented in Tables 5–7. The descriptive statistics of each algo-
rithm is shown in Table 5. Table 6 presents the mean ranks of the 12 algorithms, and Table 7 reports the Fried-
man test statistics.

In order to determine whether the 12 algorithms are different significantly, we check the Chi square statis-
tics, df, and Asymp. Sig. value. According to Table 7, we can see that the P-value is less than 0.05. So we reject

Table 5: Descriptive Statistics.

N Mean Stdv. Min Max Percentiles

25th 50th 75th

WHSFLIP 10 355 336.03075 80 1200 145 250 450
WHSTS 10 355 336.03075 80 1200 145 250 450
WPSOSAT 10 355 336.03075 80 1200 145 250 450
WClonTS 10 355 336.03075 80 1200 145 250 450
IROTS 10 354.675 336.15464 79.75 1200 144.25 249.5 449.25
Clonsat 10 354.675 336.15464 79.75 1200 144.25 249.5 449.25
HSASAT 10 354.6 336.22288 79 1200 144.25 249.5 449.25
PSOSAT 10 354.6 336.22288 79 1200 144.25 249.5 449.25
ClonTS 10 354.6 336.22288 79 1200 144.25 249.5 449.25
Novelty +  10 354.6 336.22288 79 1200 144.25 249.5 449.25
Walksat 10 354.6 336.22288 79 1200 144.25 249.5 449.25
PSO-LS 10 332.075 304.58724 79 1095.25 140.25 239.625 419.1875

Table 6: Friedman Test.

Mean rank

WHSFLIP 8.4
WHSTS 8.4
WPSOSAT 8.4
WClonTS 8.4
IROTS 6.45
Clonsat 6.45
HSASAT 6.05
PSOSAT 6.05
ClonTS 6.05
Novelty +  6.05
Walksat 6.05
PSO-LS 1.25

Table 7: Test Statistics.

N 10
Chi square 73.028
Df 11
Asymp. Sig. 0

I. Abu Doush et al.: Solving Max-Sat using HSA      655

H0 at 5% significance level and accept H1. So there is a statistically significant difference in the means of the
12 algorithms.

By looking at Table 6 we can see that WHSFLIP, WHSTS, WPSOSAT, and WClonTS had the heights rank
(i.e. 8.40), thanks to the SAW objective function and using hybrid evolutionary algorithms with local search,
which improves the algorithms’ performance significantly.

IROTS and Clonsat ranked second in the Friedman test and were close to the exact solutions as IROTS
executed RoTS algorithm at each local search phase and Clonsat combined clonal selection algorithm and
Walksat procedure.

Also, the analysis results show that HSASAT, PSOSAT, ClonTS, Novelty +, and Walksat have similar per-
formances, but they ranked second in the Friedman test, where HSASAT and PSOSAT used, respectively, pure
HS and pure PSO algorithms with the standard objective function, while ClonTS used clonal selection algo-
rithm based on flip heuristic and the standard objective function. Novelty +  and Walksat are state-of-the-art
stochastic local search algorithms.

The analysis results showed that PSO-LS is not competitive to deal with satisfied instances. It was ranked
the last in the Friedman test because it used a pure flight operation based on sigmoid transformation. Accord-
ing to the analysis results, our proposed approaches WHSFLIP, WHSTS succeeded in finding the exact solu-
tions of the yes-instances, while HSASAT had good results (see Figure 3).

5 Conclusion
In this paper, three new approaches are proposed to solve the MAX 3-SAT problem. The first developed
approach is based on the HS algorithm with the standard MAX-SAT objective function (HSASAT). The second
proposed approach is a novel HS algorithm with a local search algorithm based on flip heuristic (WHSFLIP).
The third developed approach is a novel HS algorithm with Tabu search and flip heuristic (WHSTS). In order
to enhance the performance of the second and third approaches, we use adaptive objective function based
on the SAW mechanism.

According to the experimental results, HSASAT algorithm provides competitive results in most yes-
instances. While WHSFLIP gave better solutions compared with other programs in all conducted tests, it
suffers from the large number of flips used to find the best solution. On the other hand, WHSTS approach
overcome that problem using Tabu search combined with flip heuristic and gave high-quality solutions over
all benchmark instances. Furthermore, the framework of the proposed procedures was considered as an
extended platform for evaluating the different variants of the satisfiability problems.

10

8

V
al

ue
s

of
 m

ea
n

ra
nk

s

6

4 8.4 8.4

6.45 6.45 6.05 6.05 6.05 6.05 6.05

1.25

8.48.4

2

0
WHSFLIP

WHSTS
WPSOSAT

WClonTS
IROTS

Clonsat
HSASAT

PSOSAT
ClonTS Walksat

PSO-LSNovelty+

Programs

Figure 3: Friedman Test for Satisfiable Tests.

656      I. Abu Doush et al.: Solving Max-Sat using HSA

The proposed novel HS algorithms can be used to solve other optimization problems as they prove to
provide better solutions than the original HS algorithm.

Our future work will focus on testing the proposed procedures over larger benchmarks and over unsatis-
fied benchmark instances to ensure the effectiveness of the proposed approaches. Also, we plan to apply the
proposed novel HS algorithms on other optimization problems.

Bibliography
[1] I. Abu Doush, Harmony search with multi-parent crossover for solving ieee-cec2011 competition problems, in: Proceed-

ings of the 19th International Conference on Neural Information Processing – Volume Part IV, ICONIP’12, Lecture Notes in
Computer Science, vol. 7666. Springer, Berlin, Heidelberg, Doha, Qatar, pp. 108–114, 2012.

[2] S. Afkhami, O. R. Ma and A. Soleimani, A binary harmony search algorithm for solving the maximum clique problem, Int. J.
Comput. Appl. 69 (2013), 38–43.

[3] M. A. Al-Betar and A. T. Khader, A harmony search algorithm for university course timetabling, Ann. Oper. Res. 194 (2012),
3–31.

[4] M. A. Al-Betar, A. T. Khader, M. A. Awadallah, M. H. Alawan and B. Zaqaibeh, Cellular harmony search for optimization
problems, J. Appl. Math. 20 (2013), 2013.

[5] M. A. Al-Betar, M. A. Awadallah, A. T. Khader and Z. A. Abdalkareem, Island-based harmony search for optimization prob-
lems, Exp. Syst. Appl. 42 (2015), 2026–2035.

[6] O. M. Alia, R. Mandava, D. Ramachandram and M. E. Aziz, Harmony search-based cluster initialization for fuzzy c-means
segmentation of MR images, in: TENCON 2009–2009 IEEE Region 10 Conference, IEEE, Singapore, pp. 1–6, 2009.

[7] K. Anwar, A. T. Khader, M. A. Al-Betar and M. A. Awadallah, Harmony search-based hyper-heuristic for examination
 timetabling, in: 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), IEEE, Kuala
Lumpur, Malaysia, pp. 176–181, 2013.

[8] M. A. Awadallah, A. T. Khader, M. A. Al-Betar and P. C. Woon, Office-space-allocation problem using harmony search algo-
rithm, in: Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12–15, 2012,
Proceedings, Part II, pp. 365–374, Springer, Berlin, Heidelberg, 2012.

[9] M. A. Awadallah, M. A. Al-Betar, A. T. Khader, A. L. Bolaji and M. Alkoffash, Hybridization of harmony search with hill climb-
ing for highly constrained nurse rostering problem, Neural Comput. Appl. 28 (2017), 463–482.

[10] A. Biere, A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without BDDs, in: Tools and Algorithms for the Construc-
tion and Analysis of Systems: 5th International Conference, TACAS’99 Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS’99 Amsterdam, The Netherlands, March 22–28, 1999 Proceedings, pp. 193–207,
Springer, Berlin, Heidelberg, 1999.

[11] N. Bouhmala and O.-C. Granmo, Solving graph coloring problems using learning automata, in: Evolutionary Computation in
Combinatorial Optimization: Proceedings of the 8th European Conference, EvoCOP 2008, Naples, Italy, March 26–28, 2008,
pp. 277–288, Springer, Berlin, Heidelberg, 2008.

[12] Y. Cheng, L. Li, T. Lansivaara, S. Chi and Y. Sun, An improved harmony search minimization algorithm using different slip
surface generation methods for slope stability analysis, Eng. Optim. 40 (2008), 95–115.

[13] A. Choi, T. Standley and A. Darwiche, Approximating weighted max-SAT problems by compensating for relaxations, in:
Principles and Practice of Constraint Programming – CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal,
September 20–24, 2009 Proceedings, pp. 211–225, Springer, Berlin, Heidelberg, 2009.

[14] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory
of Computing, STOC ‘71, pp. 151–158, ACM, New York, NY, USA, 1971.

[15] M. Davis, G. Logemann and D. Loveland, A machine program for theorem-proving, Commun. ACM 5 (1962), 394–397.
[16] S. Fernandes and H. R. Lourenço, Hybrids combining local search heuristics with exact algorithms, in: V Congreso Espanol

sobre Metaheursticas, Algoritmos Evolutivos y Bioinspirados, pp. 269–274, 2007.
[17] R. Forsati, A. Haghighat and M. Mahdavi, Harmony search based algorithms for bandwidth-delay-constrained least-cost

multicast routing, Comput. Commun. 31 (2008), 2505–2519.
[18] Z. W. Geem, Harmony search in water pump switching problem, in: Advances in Natural Computation: First International

Conference, ICNC 2005, Changsha, China, August 27–29, 2005, Proceedings, Part III, pp. 751–760, Springer, Berlin,
 Heidelberg, 2005.

[19] Z. W. Geem, Particle-swarm harmony search for water network design, Eng. Optim. 41 (2009), 297–311.
[20] Z. W. Geem and J. C. Williams, Harmony search and ecological optimization, IJEST 1 (2007), 150–154.
[21] J. Gottlieb and N. Voss, Adaptive fitness functions for the satisfiability problem, in: Parallel Problem Solving From Nature

PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings, pp. 621–630, Springer, Berlin,
Heidelberg, 2000.

I. Abu Doush et al.: Solving Max-Sat using HSA      657

[22] J. Gottlieb, E. Marchiori and C. Rossi, Evolutionary algorithms for the satisfiability problem, Evol. Comput. 10 (2002), 35–50.
[23] J. Greblicki and J. Kotowski, Analysis of the properties of the harmony search algorithm carried out on the one dimensional

binary knapsack problem, in: Computer Aided Systems Theory – EUROCAST 2009: 12th International Conference, Las Pal-
mas de Gran Canaria, Spain, February 15–20, 2009, Revised Selected Papers, pp. 697–704, Springer, Berlin, Heidelberg,
2009.

[24] B. H. F. Hasan, I. A. Doush, E. A. Maghayreh, F. Alkhateeb and M. Hamdan, Hybridizing harmony search algorithm with dif-
ferent mutation operators for continuous problems, Appl. Math. Comput. 232 (2014), 1166–1182.

[25] H. H. Hoos and T. Stützle, Local search algorithms for SAT: an empirical evaluation, J. Autom. Reason. 24 (2000), 421–481.
[26] G. Ingram and T. Zhang, Overview of applications and developments in the harmony search algorithm, in: Music-Inspired

Harmony Search Algorithm: Theory and Applications, pp. 15–37, Springer, Berlin, Heidelberg, 2009.
[27] H. Kautz and B. Selman, Pushing the envelope: planning, propositional logic, and stochastic search, in: Proceedings of the

National Conference on Artificial Intelligence, Portland, Oregon, pp. 1194–1201, 1996.
[28] H. Kautz and B. Selman, The state of sat, Discrete Appl. Math. 155 (2007), 1514–1524.
[29] X. Kong, L. Gao, H. Ouyang and S. Li, Solving large-scale multidimensional knapsack problems with a new binary harmony

search algorithm, Comput. Oper. Res. 63 (2015), 7–22.
[30] L. Kroc, A. Sabharwal, C. P. Gomes and B. Selman, Integrating systematic and local search paradigms: a new strategy for

MaxSAT, in: Proceeding IJCAI'09 – Proceedings of the 21st international joint conference on Artifical intelligence, Pasadena,
California, USA, pp. 544–551, 2009.

[31] F. Lardeux, F. Saubion and J.-K. Hao, Gasat: a genetic local search algorithm for the satisfiability problem, Evol. Comput. 14
(2006), 223–253.

[32] A. Layeb, A clonal selection algorithm based tabu search for satisfiability problems, J. Adv. Inform. Technol. 3 (2012), 138–146.
[33] A. Layeb, A particle swarm algorithm for solving the maximum satisfiability problem, in: 12th International Arab Conference

in Information Technology, Naif Arab University for Security Sciences, Saudia Arabia, pp. 175–184, 2011.
[34] A. Layeb and D.-E. Saidouni, A new quantum evolutionary local search algorithm for MAX 3-SAT problem, in: Hybrid Artifi-

cial Intelligence Systems: Third International Workshop, HAIS 2008, Burgos, Spain, September 24–26, 2008, Proceedings,
pp. 172–179, Springer, Berlin, Heidelberg, 2008.

[35] A. Layeb, A. H. Deneche and S. Meshoul, A new artificial immune system for solving the maximum satisfiability problem,
in: Trends in Applied Intelligent Systems: 23rd International Conference on Industrial Engineering and Other Applications
of Applied Intelligent Systems, IEA/AIE 2010, Cordoba, Spain, June 1–4, 2010, Proceedings, Part II, pp. 136–142, Springer,
Berlin, Heidelberg, 2010.

[36] K. S. Lee and Z. W. Geem, A new structural optimization method based on the harmony search algorithm, Comput. Struct.
82 (2004), 781–798.

[37] C. M. Li, F. Manyà and J. Planes, Exploiting unit propagation to compute lower bounds in branch and bound Max-SAT
solvers, in: Principles and Practice of Constraint Programming – CP 2005: 11th International Conference, CP 2005, Sitges,
Spain, October 1–5, 2005. Proceedings, Springer, Berlin, Heidelberg, 2005, pp. 403–414.

[38] E. Marchiori and C. Rossi, A flipping genetic algorithm for hard 3-SAT problems, in: Proceedings of the Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann Publishers, Orlando, Florida, USA, Vol. 1, pp. 393–400, 1999.

[39] F. Marić, Formal verification of a modern sat solver by shallow embedding into Isabelle/HOL, Theor. Comput. Sci. 411
(2010), 4333–4356.

[40] J. P. Marques-Silva and K. A. Sakallah, Grasp: a search algorithm for propositional satisfiability, IEEE Trans. Comput. 48
(1999), 506–521.

[41] M. Mastrolilli and L. M. Gambardella, Maximum satisfiability: how good are tabu search and plateau moves in the worst-
case? Eur. J. Oper. Res. 166 (2005), 63–76.

[42] B. Mazure, L. Sas and É. Grégoire, Tabu search for sat, in: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, Providence, Rhode
Island, pp. 281–285, 1997.

[43] M. E. B. Menaï and M. Batouche, A backbone-based co-evolutionary heuristic for partial MAX-SAT, in: Artificial Evolution:
7th International Conference, Evolution Artificielle, EA 2005, Lille, France, October 26–28, 2005, Revised Selected Papers,
pp. 155–166, Springer, Berlin, Heidelberg, 2006.

[44] R. G. Michael and S. J. David, Computers and intractability: a guide to the theory of np-completeness, WH Freeman and Co.,
San Francisco, 1979.

[45] A. Nasrollahi, M. Saffarzadeh, A. Isfahanian and M. Ghayekhloo, Application of a new binary harmony search algorithm in
highway rehabilitation decision-making problems: a case study in Iran, Civil Eng. Environ. Syst. 32 (2015), 335–350.

[46] J. Rintanen, K. Heljanko and I. Niemelä, Planning as satisfiability: parallel plans and algorithms for plan search, Artif. Intell.
170 (2006), 1031–1080.

[47] T. Sandholm, Algorithm for optimal winner determination in combinatorial auctions, Artif. Intell. 135 (2002), 1–54.
[48] B. Selman, H. J. Levesque, D. G. Mitchell, A new method for solving hard satisfiability problems, AAAI, San Jose, CA, 92

(1992), 440–446.
[49] A. Smith, A. Veneris, M. F. Ali and A. Viglas, Fault diagnosis and logic debugging using boolean satisfiability, IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst. 24 (2005), 1606–1621.

658      I. Abu Doush et al.: Solving Max-Sat using HSA

[50] A. A. Taleizadeh, S. T. A. Niaki and F. Barzinpour, Multiple-buyer multiple-vendor multi-product multi-constraint supply
chain problem with stochastic demand and variable lead-time: a harmony search algorithm, Appl. Math. Comput. 217
(2011), 9234–9253.

[51] P. Tangpattanakul and P. Artrit, Minimum-time trajectory of robot manipulator using harmony search algorithm, in: 6th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Techno-
logy, 2009. ECTI-CON 2009, Vol. 1, IEEE, Bangkok, Thailand, pp. 354–357, 2009.

[52] R. Walter, C. Zengler and W. Küchlin, Applications of maxsat in automotive configuration, in: Configuration Workshop,
Vienna, Austria, pp. 21–28, 2013.

[53] L. Wang, Y. Xu, Y. Mao and M. Fei, A discrete harmony search algorithm, in: Life System Modeling and Intelligent Computing
Conference, Springer, Wuxi, China, pp. 37–43, 2010.

[54] L. Wang, Q.-K. Pan and M. F. Tasgetiren, A hybrid harmony search algorithm for the blocking permutation flow shop sched-
uling problem, Comput. Ind. Eng. 61 (2011), 76–83.

[55] L. Wang, R. Yang, Y. Xu, Q. Niu, P. M. Pardalos and M. Fei, An improved adaptive binary harmony search algorithm, Inform.
Sci. 232 (2013), 58–87.

[56] H. Xu, R. A. Rutenbar and K. Sakallah, sub-SAT: a formulation for relaxed boolean satisfiability with applications in routing,
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 22 (2003), 814–820.

[57] H. Zhang, H. Shen and F. Manya, Exact algorithms for max-sat, Electron. Notes Theor. Comput. Sci. 86 (2003), 190–203.
[58] D. Zou, L. Gao, S. Li and J. Wu, Solving 0–1 knapsack problem by a novel global harmony search algorithm, Appl. Soft Com-

put. 11 (2011), 1556–1564.

