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Abstract: Analyzing the learning dynamics in multi-agent systems (MASs) has received growing attention 
in recent years. Theoretical analysis of the dynamics was only possible in simple domains and simple algo-
rithms. When one or more of these restrictions do not apply, theoretical analysis becomes prohibitively diffi-
cult, and researchers rely on experimental analysis instead. In experimental analysis, researchers have used 
some global performance metric(s) as a rough approximation to the internal dynamics of the adaptive MAS. 
For example, if the overall payoff improved over time and eventually appeared to stabilize, then the learn-
ing dynamics were assumed to be stable as well. In this paper, we promote a middle ground between the 
thorough theoretical analysis and the high-level experimental analysis. We introduce the concept of mining 
dynamics and propose data-mining-based methodologies to analyze multi-agent learning dynamics. Using 
our methodologies, researchers can identify clusters of learning parameter values that lead to similar perfor-
mance, and discover frequent sequences in agent dynamics. We verify the potential of our approach using the 
well-known iterated prisoner’s dilemma (with multiple states) domain.
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1  Introduction
Intelligent agents are becoming more ubiquitous in our everyday life, ranging from personalized assistants 
[8], to intelligent network routers (http://www.cisco.com/web/CA/solutions/sp/mobile_internet/adaptive_
intelligent_routing.html), to automated traders [32]. A system with multiple intelligent entities is called a 
multi-agent system (MAS). A good example that illustrates the existence and the complexity of MASs is the 
2010 Flash Crash [19]. On May 6, 2010, the US stock market lost 9% of its value within a few minutes. It took 
human analysts several months to identify the factors responsible for the unprecedented event: automated 
traders. An automated trader is software that executes trading commands on behalf of a human trader. While 
the behavior of a single automated trader was relatively simple, understanding the collective dynamics of a 
large-scale system of automated traders took human analysts several months [19].

Analyzing the dynamics of learning algorithms in MASs is crucial if such algorithms are to be deployed 
in the real world. The dynamics of an adaptive MAS refer to the evolution of the agent policies over time. The 
goal of analyzing the dynamics is to gain better understanding of the learning algorithm. In particular, and 
to be more concrete, consider the following three questions (Section 2.2 discusses these questions and more 
in detail):

 – Q1: Do agent policies eventually stabilize?
 – Q2: How do agent policies evolve over time?
 – Q3: How do the answers to the two questions above depend on the values of the learning parameter?
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Analyzing the learning dynamics of an algorithm should help us answer these questions. However, analyzing 
the dynamics is complicated, because of the interdependencies between agents. An agent adapts its policy 
in response to changes in the policies of the other agents, which, in turn, cause the other agents to adapt 
their policy in response to the agent’s policy change, and so on. Therefore, an agent that attempts to learn 
an optimal policy is facing a moving target problem. Theoretical analysis of the learning dynamics in MASs 
has received growing attention [1, 2, 6, 10–12, 36, 38, 39, 41, 44]. Most of the theoretical analysis work focused 
on Q1 and Q2 above. As for Q3, usually impractical assumptions were made about the learning parameters. 
For example, some parameters were assumed infinitesimally small [6, 12, 36]. Also, the analyzed domains 
were usually small scale [39] that are restricted in one or more of the following aspects: the number of agents 
(typically two), the number of actions (typically two), the number of system states (typically a single state), 
the interaction patterns (agents interact in a clique arrangement, i.e. an agent), and the learning algorithm 
(relatively simple to analyze with linear dynamics). Even the few exceptions, which analyzed the dynamics 
of large-scale systems, made unrealistic assumptions that are typically violated in real-world settings [24, 
40, 44, 46]. When some of the restrictions above do not apply, theoretical analysis becomes prohibitively dif-
ficult. Instead, researchers relied on experimental analysis that observed the MAS behavior over time. The 
analysis relied on some global performance metric(s), which the system is trying to optimize. (Examples of 
global performance metrics include the percentage of total number of delivered packets in routing problems 
[15], the average turn-around time of tasks in task allocation problems [6], or the average reward – received 
by agents – in general [22].) The focus in experimental analysis of the dynamics was to address Q1, with 
little attention given to the other two questions. Researchers inspected the evolution of global performance 
as a rough approximation of the internal dynamics of the (adaptive) MASs [5, 13, 22, 33]. If the global metric 
improved over time and eventually appeared to stabilize, it was usually considered a reasonable verification 
of convergence.

In this paper, we promote a middle ground between the thorough theoretical analysis, which makes 
restrictive assumptions, and the high-level experimental analysis, which relies mainly on performance 
metrics. We propose the concept of “mining the dynamics”: using data mining techniques to analyze multi-
agent learning dynamics. Two data-mining-based methodologies are presented to address the questions 
above. We verify the potential of our approach using a multi-state domain that was used extensively in previ-
ous work: iterated prisoner’s dilemma (IPD) with multiple states [7]. In doing so, we uncover new unreported 
results regarding the policy that agents reach in the IPD domain. In particular, the contributions of this paper 
are as follows:
1. Proposing the concept of mining dynamics: using data mining techniques to analyze the learning dynam-

ics of agents.
2. Presenting a methodology for using decision trees to (automatically) identify regions of parameter values 

that lead to similar performance (Q3).
3. Presenting a methodology for using frequent sequence analysis to analyze the dynamics in multi-state 

domains (Q1 and Q2).
4. Verifying the effectiveness of our methodologies using a well-known case study where we report a coun-

terintuitive result that was not reported before.

The following section provides the necessary background for understanding the proposed methodologies 
and the experimental analysis that follows.

2   Background
This section provides the necessary background. First, a brief description of reinforcement learning is intro-
duced. Then, the section presents the problem of analyzing the dynamics, along with the domain we will use 
for illustrating our methodologies and our analysis.
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2.1   Reinforcement Learning

A large number of reinforcement learning algorithms were proposed, which vary in their underlying assump-
tions and target domains [2–4, 6, 11, 31, 39]. One of the simplest and most common reinforcement learning 
algorithms is the Q-learning algorithm [42]. Q-learning is a model-free reinforcement learning algorithm that 
is guaranteed to find the optimal policy for a given Markov decision process (MDP). (Here, “model-free” 
means that Q-learning does not require knowing the underlying stochastic reward or transition function 
of the MDP model.) An MDP is defined by the tuple 〈S, A, P, R〉, where S is the set of states representing the 
system and A(s) is the set of actions available to the agent at a given state s. The function P(s, a, s′) is the 
transition probability function and quantifies the probability of reaching state s′ after executing action a at 
state s. Finally, the reward function R(s, a, s′) gives the average reward an agent acquires if the agent executes 
action a at state s and reaches state s′. The goal is then to find the optimal policy π*(s, a), which gives the 
probability of choosing every action a at every state s in order to maximize the expected total discounted 
rewards. In other words, ( , ) 0 0( , ) { | ,  },t

s a t t tt
s a argmax E r s s a a

π
π γ∗

= == = =∑  where the parameter γ denotes 
the discount factor that controls the relative value of future rewards. To solve the model, the action value 
function, Q, is introduced where ( , ) ( , ,  )( ( , ,  ) max ( , )).as

Q s a P s a s R s a s Q s aγ ′′
= +′ ′ ′ ′∑  The Q function repre-

sents the expected total discounted reward if the agent starts at state s, executes action a, and then follows 
the optimal policy thereafter. Intuitively, the function Qt(s, a) represents what the agent believes, at time t, 
to be the worth of action a at state s. The optimal policy can then be defined as π*(s) = argmaxaQ(s, a). The 
Q-learning algorithm incrementally improves the action value function Q using the update equation
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a
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The parameter α is called the learning rate and controls the speed of learning. The variables r and s′ refer 
to the immediate reward and the next state, respectively (both of which are observed after executing action a 
at state s). Algorithm 1 illustrates how the Q-learning update equation is typically used in combination with 
an exploration strategy that generates a policy from the Q-values.

The agent needs to choose the next action considering that its current Q-values may still be erroneous. 
The belief of an action to be inferior may be based on a crude estimate, and there may be a chance that 
updating that estimate reveals the action’s superiority. Therefore, the function Qt in itself does not dictate 
which action an agent should choose in a given state (step 5 in Algorithm 1). The policy π(s, a) of an agent is 
a function that specifies the probability of choosing action a at state s. A greedy policy that only selects the 
action with the highest estimated expected value can result in an arbitrarily bad policy, because if the optimal 
action initially has a low value of Q, it might never be explored. [A greedy policy can be formally defined as 
πt(s, a) = 1 iff a = argmaxa′Qt(s, a') and πt(s, a) = 0 otherwise.] To avoid such premature convergence on sub-
optimal actions, several definitions of π have been proposed that ensure all actions (including actions that 
may appear suboptimal) are selected with non-zero probability [9]. These definitions of π are often called 
exploration strategies [37]. The two most common exploration strategies are ε-greedy exploration and Boltz-
mann exploration. The ε-greedy exploration simply chooses a random action with probability ε, and other-
wise (with probability 1 − ε) chooses the action with the highest Q-value greedily. In this paper, we focus on 
Q-learning with ε-greedy exploration.

2.2   The Problem: Analyzing Learning Dynamics in Multi-agent Context

Analyzing the learning dynamics in a MAS is a non-trivial task, due to the large number of system param-
eters (each agent maintains a set of local parameters controlling its behavior), the concurrency by which 
these parameters change (agents acting independently), and the delay in the effect/consequence of param-
eter changes (because of communication delay between agents and the time it takes for learning algorithms 
to adapt). For instance, the Q-learning algorithm, which we briefly explained in the previous section, was ana-
lyzed more recently and only for stateless domains in a multi-agent context [20, 23, 43]. Although theoretical 
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analysis can provide strong guarantees, it is prohibitively complex to pursue except for simple domains and 
simple algorithms (theoretical analysis is usually limited to systems with few agents and simple algorithms [27, 
41]). Researchers usually relied on experimental analysis in large-scale systems and inspected the evolution of 
some global performance metrics as an approximation to the underlying learning dynamics. For example, if the 
system performance improved and stabilized over time, then it was assumed that learning converged. However, 
this can be misleading, as was shown before [1]. This section expands the motivating questions that were men-
tioned in Section 1. We group the questions under two main classes: parameter analysis and strategy analysis.

In Section 3, we propose methodologies that attempt to answer these questions.

2.2.1   Parameter analysis

A practical question that faces researchers when designing a multi-agent learning experiment is to which 
values shall one set the parameters of the learning algorithm? The vast majority of the previous work that 
evaluated multi-agent learning used the following criteria for choosing parameter values:
1. The values worked reasonably well (it was not explained how such values were found) [6].
2. Adopting parameter values from previous work [44].

Despite the importance of the parameter values, we are not aware of any methodological procedure for choos-
ing these values. Such methodology shall not only identify good parameter values but also identify ranges of 
parameter values safe to use, and determine whether there is dependence between parameters.

2.2.2   Strategy analysis

Identifying regions of parameter values that lead to desired performance is useful, but cannot explain how 
such performance is achieved and learned, or if there is any common pattern in agent dynamics. It may be 
useful to know to which policy agents stabilize (if agents do stabilize). Also, what are the intermediate joint 
strategies that agents pass until reaching the stable joint policies?

2.3   Case Study: IPD

Prisoner’s dilemma (PD) is perhaps the most widely studied toy problem in economics, sociology, biology, and 
computer science [28–30, 34, 35]. Table 1 summarizes the game. Each agent has one of two choices: to cooper-
ate (C) or to defect (D). One agent controls which row is selected, while the other player controls which column 

Algorithm 1: Q-learning Algorithm.
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is selected. The numbers in the corresponding cell represent the payoff of the row player and the column 
player, respectively. For the row agent, the best action is to defect, whether the column player cooperates 
(payoff is 6) or defects (payoff is 1). The same argument goes for the column player. Therefore, both players, if 
selfish and shortsighted, will defect and only get the payoff of 1 each. This payoff is much less than the payoff 
of mutual cooperation (where each player gets a payoff of 5), hence the dilemma. Despite its simplicity, PD 
captures the trade-off between cooperation that leads to social welfare and selfishness that leads to poverty.

If players interact with one another more than once, then we have an IPD problem. In IPD, agents can use 
the history of interactions to model the opponent and respond accordingly, and therefore the domain becomes 
a multi-state domain, not a single-state or stateless domain. For example, if we only consider a history of size 
1, then we have four possible states representing the combinations of two player actions: CC, CD, DC, and DD. 
Researchers in social sciences have developed several strategies that observed and took into account the history 
of the previously selected actions (usually just looking one time step behind). The tit-for-tat strategy [30] is one 
of the famous strategies that addressed this dilemma. Table 2 summarizes the strategy. For example, if at time 
t the opponent defected (chose action D), then the player will choose action D at time t + 1. During the last few 
decades, the IPD game has been used extensively to study multi-agent learning. For example, the tit-for-tat 
strategy was reported to encourage Q-learners to cooperate (if Q-learning played against a tit-for-tat-player) [35]. 
However, even until recently, reaching and maintaining cooperation has been challenging for many reinforce-
ment learning algorithms [17]. Section 5 reviews the previous analysis of Q-learning in the IPD domain.

3   Methodology
This section presents the methodologies we propose to solve the problems outlined in Section 2.2.

3.1   Using Decision Trees to Discover Consistent Clusters of Learning Parameter 
Values

We present a methodology for solving the parameter analysis problem and later show how this has been 
useful in identifying parameter values that allow Q-learning to cooperate in IPD. The methodology consists 
of the following steps:

Table 1: Prisoner’s Dilemma Game That Is Used in the Experiments.

  C  D

C   5,5  0,6
D   6,0  1,1

Table 2: The Tit-for-Tat Strategy as a Function of the State, Where Each State Consists of the Actions Chosen in the Previous 
Time Step.

State   Next chosen action

Self  Opponent

C   C   C
C   D   D
D   C   C
D   D   D
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1. Data collection: Data are collected for large combinations of learning parameter values. A data tuple 
consists of the different parameter values along with the global performance metric achieved in the 
particular simulation run. For example, in the IPD domain, we collect the average payoff for different 
combinations of Q-learning parameters α, γ, and ε. Multiple simulation runs are executed, and the cor-
responding data are collected for the same parameter value combination to ensure the consistency of the 
results.

2. Data preprocessing: To improve the quality of the next step (decision tree construction), we preprocess 
the data as follows. First, the performance metric is converted from continuous values to discrete classes. 
In the case of IPD, for example, we convert the payoff to a binary value: either 1 if the average payoff is 
>4 or 0 otherwise. Second, if the percentage of a class is too low, we use stratified sampling. Stratified 
sampling is a technique that increases the percentage of rare classes through resampling. For example, in 
the IPD domain, the simulation episodes where agents learn to cooperate are significantly less than the 
instances where defection prevails. We have used stratified sampling to artificially increase the number 
of data instances where cooperation is maintained.

3. Decision tree construction: Using the preprocessed data, a decision tree is constructed using any avail-
able implementation. We have chosen decision trees because of their explanatory power. Figure 1 shows 
an example decision tree.

4. Rule interpretation: After the tree is constructed, a human expert can inspect the different branches 
and deduce interesting rules and regions of parameter values. For example, one of the rules we discov-
ered in IPD is that agents using Q-learning will never learn to cooperate if the discount factor γ < 0.75 and 
the learning rate α > 0.148.

While the data collection step above might be expensive (depending on the number of parameter combina-
tions), the benefit of constructing the decision tree is getting a more complete and reliable picture regarding 
the space of parameter values. For example, suppose in a particular domain some parameter values α = 0.1, 
γ = 0.9, and ε = 0.1 result in good performance. If these parameters change slightly, will the performance 
increase or decrease? Using decision trees, discover clusters or regions of parameter values that result in 
similar performances.

3.2   Using Sequence Analysis to Discover Patterns in Multi-state  
Learning Dynamics

We propose here the methodology for addressing the strategy analysis problem, which uses frequent sequence 
mining to discover such patterns. The methodology consists of the following steps.
1. Data collection: Dynamics data are collected for combinations of learning parameter values that 

belong to the same performance class. For example, in the IPD game, we analyze the dynamics for 
parameter combinations that lead to cooperation. A data tuple here is time series of data structure 
values. For example, in case of Q-learning, the main data structure is the Q-table, so each tuple con-
sists of the values in the Q-table (for each state and action) at different times for the different agents 
in the system. In other words, for two agents, two actions, and four states, we have 16 time series per 
data tuple.

2. Data preprocessing: Because frequent sequence mining requires binary data, the preprocessing step 
converts any continuous time series to a binary time series. For example, in case of Q-learning, the Q-val-
ues of every pair of actions for a given agent and a given state are converted to a binary variable represent-
ing the strategy at this particular state (if the Q-value of cooperation is higher than defection, then the 
strategy is to cooperate, and vice versa).

3. Frequent sequence mining: Having prepared our data set, we can use any implementation of frequent 
sequence mining algorithms. A sequence shows a transition of agent strategies from one joint strategy to 
another. Frequent sequence mining discovers sequences that occur frequently in the data. We have used 
the TraMineR implementation [21].
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Figure 1: The Decision Tree That Is Learned from the Learning Parameters Data Set.
The majority of the paths lead to defection (class 0). Only 9 (out of 36) paths in the tree lead to cooperation.
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4. Sequence interpretation: After frequent sequences are discovered, a human expert can inspect the 
sequences and identify interesting patterns. For example, one of the frequent sequences we have discov-
ered in the IPD domain is that agents using Q-learning always learn the Pavlov strategy if they ever learn 
to cooperate.

4   Case Study: Analysis of Cooperation in IPD Game
In this section, we conduct an experimental analysis of the Q-learning dynamics in the IPD domain with 
multi-state setting (agents observe and remember the previous joint action). When Q-learning was studied in 
the context of IPD, it was reported that Q-learners playing against one another did not necessarily cooperate 
[35]. In fact, cooperation only appeared <50% of the time. Those results were obtained for specific parameter 
values, and agents stopped learning after some time (after a period of decaying exploration). Whatever strat-
egy an agent reached at this point was followed thereafter [35]. Treating the process of tuning the learning 
parameters as a minor issue is a common practice in most of the previous work. Usually, only the successful 
values of learning parameters were reported [35, 45]. Here, we revisit the analysis of Q-learning in IPD and 
show that more careful investigation of the learning parameter values improves the promotion of coopera-
tion significantly. Another common limitation of the previous studies of Q-learning in IPD was the lack of 
explanation and/or an in-depth discussion of the multi-state policy that agents learn. Although history states 
were used and Q-learning learned a policy for each state, this learned policy was usually overlooked and only 
the final outcome (e.g. the payoff and/or the percentage of cooperation) was reported. We study here how the 
learned policy changes over time and to what policy do agents converge to.

We conducted experimental analysis using simulation of the IPD domain. Agents were assumed to 
observe the previous joint action, resulting in a total of four states: CC, CD, DC, and DD. The Q-learning 
algorithm in this case would store eight action values (two actions × four states). We have investigated dif-
ferent combinations of the Q-learning parameters: α from 0.01 to 1 with 0.025 step, ε from 0.01 to 0.4 with 
0.01 step, and γ from 0.1 to 1 with step 0.1. This is a total of 14,040 combinations. For each combination, 
five independent runs have been conducted, and the average payoff and the standard deviation are com-
puted. In each simulation run, two Q-learning agents interact for 500,000 iterations. The total number 
of simulation runs we have conducted is 70,200 (five independent runs for each of the 14,040 combina-
tions). Going through the records to find a combination of parameter values that lead to cooperation is 
relatively easy: look for parameter values that result in average payoff >4. However, trying to find patterns 
across these records that govern parameter values is not an easy task. We use the methodology outlined 
in Section 3.1 to discover such patterns, where the performance class is defined as 1 if the payoff is >4, 
and 0 otherwise.

Figure 1 shows the resulting decision tree that is learned from the collected data set (which includes cases 
of both cooperation and defection). Although the tree is relatively large, it significantly summarizes the data 
set of 70,200 records to just few nodes. Furthermore, only nine leaves end up with high payoff (class 1). In 
eight of the nine leaves, a clear condition for cooperation emerge: γ > 0.75 (agents need to value future interac-
tions favorably). We can also observe an inverse relationship between the α parameter and the ε parameter. 
For example, cooperation occurs when 0.035 > ε > 0.015 (low) and 0.198 > α > 0.148 (relatively high), or when 
0.135 > ε > 0.155 (relatively high) and 0.073 > α > 0.023 (low). In other words, agents shall either explore more 
often but learn with a slower pace, or explore less often and learn faster.

Identifying the clusters of learning parameter values that lead to similar outcomes is useful but tells us 
little about the learning dynamics. We now apply the methodology outlined in Section 3.2 to analyze further 
the learning dynamics that lead to cooperation. We focus on cooperation rather than defection because coop-
eration is more beneficial and rare (only 9 out of the 36 leaves in the decision tree lead to cooperation). 
With four states, two actions, and two agents, we have a total of 16 continuous variables representing the 
dynamics of Q-learning. As a preprocessing step, we converted the Q-values of every pair of actions at a 
given time t, a given agent i, and a given state s to a binary variable representing the strategy: ( )t

iB s C=  if 
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( , ) ( , ),t t
i iQ s C Q s D>  otherwise ( ) .t

iB s D=  The joint strategy of two agents at any given time t is then defined 
as 1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).t t t t t t t tB CC B CD B DC B DD B CC B CD B DC B DD−  So, for example, the combination CDDD-CDDC 
means that the first player (CDDD) will cooperate only if both players cooperated in the previous interaction 
(hence 1 ( )tB CC C= ). Otherwise, player 1 will defect. Player 2 will cooperate if both players cooperated in the 
previous interaction (B2(CC)=C) or both players defected in the previous interaction (B2(DD)=C). Otherwise, 
player 2 will defect.

With eight binary variables, there are 256 possible joint strategies. Trying to discover sequential patterns 
in such dynamics is challenging. In this part of our evaluation, we focused on three representative parameter 
settings that all lead to cooperation:
1. α = 0.07, γ = 0.7, and ε = 0.07;
2. α = 0.075, γ = 0.8, and ε = 0.125;
3. α = 0.125, γ = 0.8, and ε = 0.025.

Each setting has been simulated for 10 runs (a total of 30 instances of cooperation). Interestingly, we found 
that agents never converged to the more famous and well-known tit-for-tat strategy. Instead, agents con-
verged to the same symmetric strategy: CDDC-CDDC. This strategy (which we were not familiar with before 
conducting our analysis) is called the Pavlov strategy and is shown in Table 3.

The Pavlov strategy was previously reported in the social sciences [30], and is a variant of win-stay-lose-
switch strategies [30]. The strategy was shown to outperform the tit-for-tat strategy in evolutionary simula-
tions due to two interesting properties [30]: it can correct occasional errors (more resilient to noise) and can 
exploit unconditional cooperators. Such properties make the Pavlov strategy well suited for Q-learning (pro-
motes cooperation while being resilient to exploration).

We have conducted frequent sequence mining [21] on the sequence data sets, and few interesting patterns 
were discovered. Despite the existence of 256 possible joint strategies, only 3 joint strategies dominated the 
sequences: DDDD-DDDD, CDDD-CDDD, and CDDC-CDDC. The mined sequences showed that agents moved 
from DDDD-DDDD to CDDD-CDDD, and then moved to CDDC-CDDC and stabilized.

5   Related Work
Studying the dynamics of learning algorithms in multi-agent contexts has been an active area of research [6, 
7, 12, 16, 18, 20, 25, 26, 28, 38, 43]. Analyzing the dynamics goes beyond observing the received payoff and 
attempts to understand the evolution of agent policies overtime. The vast majority of the previous work in 
analyzing the dynamics focused on studying the dynamics in stateless domains with very few exceptions [7, 
18, 41]. Of the few exceptions, a complete coverage of the literature is beyond the scope of this paper; there-
fore, we will focus on the papers that are most related to our work.

One of the earliest analysis of Q-learning in IPD assumed agents keep record of previous interactions 
and used the Boltzmann exploration strategy [35]. Perhaps the most significant result was that Q-learning 
agents (using Boltzmann exploration) did not stabilize on cooperation and kept oscillating across different 

Table 3: The Pavlov Strategy Defined by the Actions Chosen in the Previous Time Step.

Previous action   Next chosen action

Self  Opponent

C   C   C
C   D   D
D   C   D
D   D   C
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joint policies even after disabling exploration. There was no extensive analysis of different parameter values 
(results were reported only for parameter values that worked best). Also, there was no mention of which 
multi-state strategy did agents reach and how it compared to well-established strategies such as tit-for-tat 
or Pavlov [35]. More recent analysis of Q-learning with Boltzmann exploration used evolutionary (replicator) 
dynamics [25, 38]; however, the same methodology cannot be applied to Q-learning with ε-greedy explora-
tion due to the discontinuous nature of the ε -greedy exploration.

The connection between Q-learning and well-established strategies was indirectly studied in a recent 
work [7]. That earlier work, unlike our work here, did not show that Q-learning in self-play evolves to Pavlov 
strategy. Instead, it reported the results if Q-learning was to interact with another fixed player that follows 
one of the well-known strategies such as TFT and Pavlov. It was also reported that if Q-learning was ini-
tialized to the Pavlov strategy, then cooperation could be sustained. Here, we show that even if Q-learning 
was not initialized to the Pavlov strategy and under range of parameter values, Q-learning will eventually 
converge to the Pavlov strategy. Q-learning with ε-greedy exploration was theoretically analyzed relatively 
recently [20, 43], long after Q-learning was first studied in a multi-agent context. However, the analysis was 
limited to stateless Q-learning and therefore did not comment on the multi-state policies that Q-learning 
reached. Recently, modified and extended versions of Q-learning were proposed to promote cooperation, 
such as individual Q-learning [26], the CoLF and CK heuristics [18], frequency adjusted Q-learning [23], and 
utility-based Q-learning [29]. The dynamics analysis focused primarily on the payoff and how it compared to 
the Nash equilibrium. We study in this paper the basic Q-learning with ε-greedy exploration; however, our 
methodology can be applied to study the dynamics of such extensions.

It is important to distinguish what we are proposing from the important research that falls under the term 
agent mining. Agent mining research focuses on integrating data mining with agent technologies to achieve 
reliable and distributed data mining [14], while we are proposing here the use of data mining techniques to 
analyze specific data generated by agents themselves: the multi-agent learning dynamics.

6   Conclusion and Future Work
We proposed in this paper methodological procedures that use data mining techniques to extract useful 
information from multi-agent learning dynamics. We provided a methodology for identifying safe regions 
of learning parameter values, and a methodology for detecting frequent transitions in multi-agent learning 
dynamics. We verified the potential of our approach using IPD (with multiple states). We were able to discover 
interesting information from the large dynamics data using the methodologies we proposed.

One of the future directions we plan to pursue is the use of frequent sequence mining to analyze the more 
complex domains of multi-agent learning dynamics, such as automated trading over networks. The data that 
result from integrating information about the network structure with the sequence data (of evolving agent 
strategies) is complex and challenging to analyze. Another important direction is developing novel visualiza-
tion techniques that are suitable for multi-state dynamics.
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