
J. Intell. Syst. 2017; 26(4): 613–624

Abdallah Sherief*

Mining Dynamics: Using Data Mining
Techniques to Analyze Multi-agent Learning
DOI 10.1515/jisys-2016-0136
Received August 9, 2016; previously published online September 21, 2016.

Abstract: Analyzing the learning dynamics in multi-agent systems (MASs) has received growing attention
in recent years. Theoretical analysis of the dynamics was only possible in simple domains and simple algo-
rithms. When one or more of these restrictions do not apply, theoretical analysis becomes prohibitively diffi-
cult, and researchers rely on experimental analysis instead. In experimental analysis, researchers have used
some global performance metric(s) as a rough approximation to the internal dynamics of the adaptive MAS.
For example, if the overall payoff improved over time and eventually appeared to stabilize, then the learn-
ing dynamics were assumed to be stable as well. In this paper, we promote a middle ground between the
thorough theoretical analysis and the high-level experimental analysis. We introduce the concept of mining
dynamics and propose data-mining-based methodologies to analyze multi-agent learning dynamics. Using
our methodologies, researchers can identify clusters of learning parameter values that lead to similar perfor-
mance, and discover frequent sequences in agent dynamics. We verify the potential of our approach using the
well-known iterated prisoner’s dilemma (with multiple states) domain.

Keywords: Simulation and experimental verification, multi-agent learning, data mining.

2010 Mathematics Subject Classification. 68T05 Learning and adaptive systems, 68T42 Agent technology.

1 Introduction
Intelligent agents are becoming more ubiquitous in our everyday life, ranging from personalized assistants
[8], to intelligent network routers (http://www.cisco.com/web/CA/solutions/sp/mobile_internet/adaptive_
intelligent_routing.html), to automated traders [32]. A system with multiple intelligent entities is called a
multi-agent system (MAS). A good example that illustrates the existence and the complexity of MASs is the
2010 Flash Crash [19]. On May 6, 2010, the US stock market lost 9% of its value within a few minutes. It took
human analysts several months to identify the factors responsible for the unprecedented event: automated
traders. An automated trader is software that executes trading commands on behalf of a human trader. While
the behavior of a single automated trader was relatively simple, understanding the collective dynamics of a
large-scale system of automated traders took human analysts several months [19].

Analyzing the dynamics of learning algorithms in MASs is crucial if such algorithms are to be deployed
in the real world. The dynamics of an adaptive MAS refer to the evolution of the agent policies over time. The
goal of analyzing the dynamics is to gain better understanding of the learning algorithm. In particular, and
to be more concrete, consider the following three questions (Section 2.2 discusses these questions and more
in detail):

 – Q1: Do agent policies eventually stabilize?
 – Q2: How do agent policies evolve over time?
 – Q3: How do the answers to the two questions above depend on the values of the learning parameter?

*Corresponding author: Abdallah Sherief, British University in Dubai, Dubai, United Arab Emirates,
e-mail: sherief.abdallah@buid.ac.ae. http://orcid.org/0000-0002-1213-2014

http://www.cisco.com/web/CA/solutions/sp/mobile_internet/adaptive_intelligent_routing.html
http://www.cisco.com/web/CA/solutions/sp/mobile_internet/adaptive_intelligent_routing.html
mailto:sherief.abdallah@buid.ac.ae
http://orcid.org/0000-0002-1213-2014

614      A. Sherief: Mining Dynamics

Analyzing the learning dynamics of an algorithm should help us answer these questions. However, analyzing
the dynamics is complicated, because of the interdependencies between agents. An agent adapts its policy
in response to changes in the policies of the other agents, which, in turn, cause the other agents to adapt
their policy in response to the agent’s policy change, and so on. Therefore, an agent that attempts to learn
an optimal policy is facing a moving target problem. Theoretical analysis of the learning dynamics in MASs
has received growing attention [1, 2, 6, 10–12, 36, 38, 39, 41, 44]. Most of the theoretical analysis work focused
on Q1 and Q2 above. As for Q3, usually impractical assumptions were made about the learning parameters.
For example, some parameters were assumed infinitesimally small [6, 12, 36]. Also, the analyzed domains
were usually small scale [39] that are restricted in one or more of the following aspects: the number of agents
(typically two), the number of actions (typically two), the number of system states (typically a single state),
the interaction patterns (agents interact in a clique arrangement, i.e. an agent), and the learning algorithm
(relatively simple to analyze with linear dynamics). Even the few exceptions, which analyzed the dynamics
of large-scale systems, made unrealistic assumptions that are typically violated in real-world settings [24,
40, 44, 46]. When some of the restrictions above do not apply, theoretical analysis becomes prohibitively dif-
ficult. Instead, researchers relied on experimental analysis that observed the MAS behavior over time. The
analysis relied on some global performance metric(s), which the system is trying to optimize. (Examples of
global performance metrics include the percentage of total number of delivered packets in routing problems
[15], the average turn-around time of tasks in task allocation problems [6], or the average reward – received
by agents – in general [22].) The focus in experimental analysis of the dynamics was to address Q1, with
little attention given to the other two questions. Researchers inspected the evolution of global performance
as a rough approximation of the internal dynamics of the (adaptive) MASs [5, 13, 22, 33]. If the global metric
improved over time and eventually appeared to stabilize, it was usually considered a reasonable verification
of convergence.

In this paper, we promote a middle ground between the thorough theoretical analysis, which makes
restrictive assumptions, and the high-level experimental analysis, which relies mainly on performance
metrics. We propose the concept of “mining the dynamics”: using data mining techniques to analyze multi-
agent learning dynamics. Two data-mining-based methodologies are presented to address the questions
above. We verify the potential of our approach using a multi-state domain that was used extensively in previ-
ous work: iterated prisoner’s dilemma (IPD) with multiple states [7]. In doing so, we uncover new unreported
results regarding the policy that agents reach in the IPD domain. In particular, the contributions of this paper
are as follows:
1. Proposing the concept of mining dynamics: using data mining techniques to analyze the learning dynam-

ics of agents.
2. Presenting a methodology for using decision trees to (automatically) identify regions of parameter values

that lead to similar performance (Q3).
3. Presenting a methodology for using frequent sequence analysis to analyze the dynamics in multi-state

domains (Q1 and Q2).
4. Verifying the effectiveness of our methodologies using a well-known case study where we report a coun-

terintuitive result that was not reported before.

The following section provides the necessary background for understanding the proposed methodologies
and the experimental analysis that follows.

2 Background
This section provides the necessary background. First, a brief description of reinforcement learning is intro-
duced. Then, the section presents the problem of analyzing the dynamics, along with the domain we will use
for illustrating our methodologies and our analysis.

A. Sherief: Mining Dynamics      615

2.1 Reinforcement Learning

A large number of reinforcement learning algorithms were proposed, which vary in their underlying assump-
tions and target domains [2–4, 6, 11, 31, 39]. One of the simplest and most common reinforcement learning
algorithms is the Q-learning algorithm [42]. Q-learning is a model-free reinforcement learning algorithm that
is guaranteed to find the optimal policy for a given Markov decision process (MDP). (Here, “model-free”
means that Q-learning does not require knowing the underlying stochastic reward or transition function
of the MDP model.) An MDP is defined by the tuple 〈S, A, P, R〉, where S is the set of states representing the
system and A(s) is the set of actions available to the agent at a given state s. The function P(s, a, s′) is the
transition probability function and quantifies the probability of reaching state s′ after executing action a at
state s. Finally, the reward function R(s, a, s′) gives the average reward an agent acquires if the agent executes
action a at state s and reaches state s′. The goal is then to find the optimal policy π*(s, a), which gives the
probability of choosing every action a at every state s in order to maximize the expected total discounted
rewards. In other words, (,) 0 0(,) { | , },t

s a t t tt
s a argmax E r s s a a

π
π γ∗

= == = =∑ where the parameter γ denotes
the discount factor that controls the relative value of future rewards. To solve the model, the action value
function, Q, is introduced where (,) (, ,)((, ,) max (,)).as

Q s a P s a s R s a s Q s aγ ′′
= +′ ′ ′ ′∑ The Q function repre-

sents the expected total discounted reward if the agent starts at state s, executes action a, and then follows
the optimal policy thereafter. Intuitively, the function Qt(s, a) represents what the agent believes, at time t,
to be the worth of action a at state s. The optimal policy can then be defined as π*(s) = argmaxaQ(s, a). The
Q-learning algorithm incrementally improves the action value function Q using the update equation

1(,) (,) (max (,) (,)).t t t t

a
Q s a Q s a r Q s a Q s aα γ+

′
← + + −′ ′ (1)

The parameter α is called the learning rate and controls the speed of learning. The variables r and s′ refer
to the immediate reward and the next state, respectively (both of which are observed after executing action a
at state s). Algorithm 1 illustrates how the Q-learning update equation is typically used in combination with
an exploration strategy that generates a policy from the Q-values.

The agent needs to choose the next action considering that its current Q-values may still be erroneous.
The belief of an action to be inferior may be based on a crude estimate, and there may be a chance that
updating that estimate reveals the action’s superiority. Therefore, the function Qt in itself does not dictate
which action an agent should choose in a given state (step 5 in Algorithm 1). The policy π(s, a) of an agent is
a function that specifies the probability of choosing action a at state s. A greedy policy that only selects the
action with the highest estimated expected value can result in an arbitrarily bad policy, because if the optimal
action initially has a low value of Q, it might never be explored. [A greedy policy can be formally defined as
πt(s, a) = 1 iff a = argmaxa′Qt(s, a') and πt(s, a) = 0 otherwise.] To avoid such premature convergence on sub-
optimal actions, several definitions of π have been proposed that ensure all actions (including actions that
may appear suboptimal) are selected with non-zero probability [9]. These definitions of π are often called
exploration strategies [37]. The two most common exploration strategies are ε-greedy exploration and Boltz-
mann exploration. The ε-greedy exploration simply chooses a random action with probability ε, and other-
wise (with probability 1 − ε) chooses the action with the highest Q-value greedily. In this paper, we focus on
Q-learning with ε-greedy exploration.

2.2 The Problem: Analyzing Learning Dynamics in Multi-agent Context

Analyzing the learning dynamics in a MAS is a non-trivial task, due to the large number of system param-
eters (each agent maintains a set of local parameters controlling its behavior), the concurrency by which
these parameters change (agents acting independently), and the delay in the effect/consequence of param-
eter changes (because of communication delay between agents and the time it takes for learning algorithms
to adapt). For instance, the Q-learning algorithm, which we briefly explained in the previous section, was ana-
lyzed more recently and only for stateless domains in a multi-agent context [20, 23, 43]. Although theoretical

616      A. Sherief: Mining Dynamics

analysis can provide strong guarantees, it is prohibitively complex to pursue except for simple domains and
simple algorithms (theoretical analysis is usually limited to systems with few agents and simple algorithms [27,
41]). Researchers usually relied on experimental analysis in large-scale systems and inspected the evolution of
some global performance metrics as an approximation to the underlying learning dynamics. For example, if the
system performance improved and stabilized over time, then it was assumed that learning converged. However,
this can be misleading, as was shown before [1]. This section expands the motivating questions that were men-
tioned in Section 1. We group the questions under two main classes: parameter analysis and strategy analysis.

In Section 3, we propose methodologies that attempt to answer these questions.

2.2.1 Parameter analysis

A practical question that faces researchers when designing a multi-agent learning experiment is to which
values shall one set the parameters of the learning algorithm? The vast majority of the previous work that
evaluated multi-agent learning used the following criteria for choosing parameter values:
1. The values worked reasonably well (it was not explained how such values were found) [6].
2. Adopting parameter values from previous work [44].

Despite the importance of the parameter values, we are not aware of any methodological procedure for choos-
ing these values. Such methodology shall not only identify good parameter values but also identify ranges of
parameter values safe to use, and determine whether there is dependence between parameters.

2.2.2 Strategy analysis

Identifying regions of parameter values that lead to desired performance is useful, but cannot explain how
such performance is achieved and learned, or if there is any common pattern in agent dynamics. It may be
useful to know to which policy agents stabilize (if agents do stabilize). Also, what are the intermediate joint
strategies that agents pass until reaching the stable joint policies?

2.3 Case Study: IPD

Prisoner’s dilemma (PD) is perhaps the most widely studied toy problem in economics, sociology, biology, and
computer science [28–30, 34, 35]. Table 1 summarizes the game. Each agent has one of two choices: to cooper-
ate (C) or to defect (D). One agent controls which row is selected, while the other player controls which column

Algorithm 1: Q-learning Algorithm.

A. Sherief: Mining Dynamics      617

is selected. The numbers in the corresponding cell represent the payoff of the row player and the column
player, respectively. For the row agent, the best action is to defect, whether the column player cooperates
(payoff is 6) or defects (payoff is 1). The same argument goes for the column player. Therefore, both players, if
selfish and shortsighted, will defect and only get the payoff of 1 each. This payoff is much less than the payoff
of mutual cooperation (where each player gets a payoff of 5), hence the dilemma. Despite its simplicity, PD
captures the trade-off between cooperation that leads to social welfare and selfishness that leads to poverty.

If players interact with one another more than once, then we have an IPD problem. In IPD, agents can use
the history of interactions to model the opponent and respond accordingly, and therefore the domain becomes
a multi-state domain, not a single-state or stateless domain. For example, if we only consider a history of size
1, then we have four possible states representing the combinations of two player actions: CC, CD, DC, and DD.
Researchers in social sciences have developed several strategies that observed and took into account the history
of the previously selected actions (usually just looking one time step behind). The tit-for-tat strategy [30] is one
of the famous strategies that addressed this dilemma. Table 2 summarizes the strategy. For example, if at time
t the opponent defected (chose action D), then the player will choose action D at time t + 1. During the last few
decades, the IPD game has been used extensively to study multi-agent learning. For example, the tit-for-tat
strategy was reported to encourage Q-learners to cooperate (if Q-learning played against a tit-for-tat-player) [35].
However, even until recently, reaching and maintaining cooperation has been challenging for many reinforce-
ment learning algorithms [17]. Section 5 reviews the previous analysis of Q-learning in the IPD domain.

3 Methodology
This section presents the methodologies we propose to solve the problems outlined in Section 2.2.

3.1 Using Decision Trees to Discover Consistent Clusters of Learning Parameter
Values

We present a methodology for solving the parameter analysis problem and later show how this has been
useful in identifying parameter values that allow Q-learning to cooperate in IPD. The methodology consists
of the following steps:

Table 1: Prisoner’s Dilemma Game That Is Used in the Experiments.

  C  D

C   5,5  0,6
D   6,0  1,1

Table 2: The Tit-for-Tat Strategy as a Function of the State, Where Each State Consists of the Actions Chosen in the Previous
Time Step.

State   Next chosen action

Self  Opponent

C   C   C
C   D   D
D   C   C
D   D   D

618      A. Sherief: Mining Dynamics

1. Data collection: Data are collected for large combinations of learning parameter values. A data tuple
consists of the different parameter values along with the global performance metric achieved in the
particular simulation run. For example, in the IPD domain, we collect the average payoff for different
combinations of Q-learning parameters α, γ, and ε. Multiple simulation runs are executed, and the cor-
responding data are collected for the same parameter value combination to ensure the consistency of the
results.

2. Data preprocessing: To improve the quality of the next step (decision tree construction), we preprocess
the data as follows. First, the performance metric is converted from continuous values to discrete classes.
In the case of IPD, for example, we convert the payoff to a binary value: either 1 if the average payoff is
>4 or 0 otherwise. Second, if the percentage of a class is too low, we use stratified sampling. Stratified
sampling is a technique that increases the percentage of rare classes through resampling. For example, in
the IPD domain, the simulation episodes where agents learn to cooperate are significantly less than the
instances where defection prevails. We have used stratified sampling to artificially increase the number
of data instances where cooperation is maintained.

3. Decision tree construction: Using the preprocessed data, a decision tree is constructed using any avail-
able implementation. We have chosen decision trees because of their explanatory power. Figure 1 shows
an example decision tree.

4. Rule interpretation: After the tree is constructed, a human expert can inspect the different branches
and deduce interesting rules and regions of parameter values. For example, one of the rules we discov-
ered in IPD is that agents using Q-learning will never learn to cooperate if the discount factor γ < 0.75 and
the learning rate α > 0.148.

While the data collection step above might be expensive (depending on the number of parameter combina-
tions), the benefit of constructing the decision tree is getting a more complete and reliable picture regarding
the space of parameter values. For example, suppose in a particular domain some parameter values α = 0.1,
γ = 0.9, and ε = 0.1 result in good performance. If these parameters change slightly, will the performance
increase or decrease? Using decision trees, discover clusters or regions of parameter values that result in
similar performances.

3.2 Using Sequence Analysis to Discover Patterns in Multi-state
Learning Dynamics

We propose here the methodology for addressing the strategy analysis problem, which uses frequent sequence
mining to discover such patterns. The methodology consists of the following steps.
1. Data collection: Dynamics data are collected for combinations of learning parameter values that

belong to the same performance class. For example, in the IPD game, we analyze the dynamics for
parameter combinations that lead to cooperation. A data tuple here is time series of data structure
values. For example, in case of Q-learning, the main data structure is the Q-table, so each tuple con-
sists of the values in the Q-table (for each state and action) at different times for the different agents
in the system. In other words, for two agents, two actions, and four states, we have 16 time series per
data tuple.

2. Data preprocessing: Because frequent sequence mining requires binary data, the preprocessing step
converts any continuous time series to a binary time series. For example, in case of Q-learning, the Q-val-
ues of every pair of actions for a given agent and a given state are converted to a binary variable represent-
ing the strategy at this particular state (if the Q-value of cooperation is higher than defection, then the
strategy is to cooperate, and vice versa).

3. Frequent sequence mining: Having prepared our data set, we can use any implementation of frequent
sequence mining algorithms. A sequence shows a transition of agent strategies from one joint strategy to
another. Frequent sequence mining discovers sequences that occur frequently in the data. We have used
the TraMineR implementation [21].

A. Sherief: Mining Dynamics      619

Figure 1: The Decision Tree That Is Learned from the Learning Parameters Data Set.
The majority of the paths lead to defection (class 0). Only 9 (out of 36) paths in the tree lead to cooperation.

620      A. Sherief: Mining Dynamics

4. Sequence interpretation: After frequent sequences are discovered, a human expert can inspect the
sequences and identify interesting patterns. For example, one of the frequent sequences we have discov-
ered in the IPD domain is that agents using Q-learning always learn the Pavlov strategy if they ever learn
to cooperate.

4 Case Study: Analysis of Cooperation in IPD Game
In this section, we conduct an experimental analysis of the Q-learning dynamics in the IPD domain with
multi-state setting (agents observe and remember the previous joint action). When Q-learning was studied in
the context of IPD, it was reported that Q-learners playing against one another did not necessarily cooperate
[35]. In fact, cooperation only appeared <50% of the time. Those results were obtained for specific parameter
values, and agents stopped learning after some time (after a period of decaying exploration). Whatever strat-
egy an agent reached at this point was followed thereafter [35]. Treating the process of tuning the learning
parameters as a minor issue is a common practice in most of the previous work. Usually, only the successful
values of learning parameters were reported [35, 45]. Here, we revisit the analysis of Q-learning in IPD and
show that more careful investigation of the learning parameter values improves the promotion of coopera-
tion significantly. Another common limitation of the previous studies of Q-learning in IPD was the lack of
explanation and/or an in-depth discussion of the multi-state policy that agents learn. Although history states
were used and Q-learning learned a policy for each state, this learned policy was usually overlooked and only
the final outcome (e.g. the payoff and/or the percentage of cooperation) was reported. We study here how the
learned policy changes over time and to what policy do agents converge to.

We conducted experimental analysis using simulation of the IPD domain. Agents were assumed to
observe the previous joint action, resulting in a total of four states: CC, CD, DC, and DD. The Q-learning
algorithm in this case would store eight action values (two actions × four states). We have investigated dif-
ferent combinations of the Q-learning parameters: α from 0.01 to 1 with 0.025 step, ε from 0.01 to 0.4 with
0.01 step, and γ from 0.1 to 1 with step 0.1. This is a total of 14,040 combinations. For each combination,
five independent runs have been conducted, and the average payoff and the standard deviation are com-
puted. In each simulation run, two Q-learning agents interact for 500,000 iterations. The total number
of simulation runs we have conducted is 70,200 (five independent runs for each of the 14,040 combina-
tions). Going through the records to find a combination of parameter values that lead to cooperation is
relatively easy: look for parameter values that result in average payoff >4. However, trying to find patterns
across these records that govern parameter values is not an easy task. We use the methodology outlined
in Section 3.1 to discover such patterns, where the performance class is defined as 1 if the payoff is >4,
and 0 otherwise.

Figure 1 shows the resulting decision tree that is learned from the collected data set (which includes cases
of both cooperation and defection). Although the tree is relatively large, it significantly summarizes the data
set of 70,200 records to just few nodes. Furthermore, only nine leaves end up with high payoff (class 1). In
eight of the nine leaves, a clear condition for cooperation emerge: γ > 0.75 (agents need to value future interac-
tions favorably). We can also observe an inverse relationship between the α parameter and the ε parameter.
For example, cooperation occurs when 0.035 > ε > 0.015 (low) and 0.198 > α > 0.148 (relatively high), or when
0.135 > ε > 0.155 (relatively high) and 0.073 > α > 0.023 (low). In other words, agents shall either explore more
often but learn with a slower pace, or explore less often and learn faster.

Identifying the clusters of learning parameter values that lead to similar outcomes is useful but tells us
little about the learning dynamics. We now apply the methodology outlined in Section 3.2 to analyze further
the learning dynamics that lead to cooperation. We focus on cooperation rather than defection because coop-
eration is more beneficial and rare (only 9 out of the 36 leaves in the decision tree lead to cooperation).
With four states, two actions, and two agents, we have a total of 16 continuous variables representing the
dynamics of Q-learning. As a preprocessing step, we converted the Q-values of every pair of actions at a
given time t, a given agent i, and a given state s to a binary variable representing the strategy: ()t

iB s C= if

A. Sherief: Mining Dynamics      621

(,) (,),t t
i iQ s C Q s D> otherwise () .t

iB s D= The joint strategy of two agents at any given time t is then defined
as 1 1 1 1 2 2 2 2() () () () () () () ().t t t t t t t tB CC B CD B DC B DD B CC B CD B DC B DD− So, for example, the combination CDDD-CDDC
means that the first player (CDDD) will cooperate only if both players cooperated in the previous interaction
(hence 1 ()tB CC C=). Otherwise, player 1 will defect. Player 2 will cooperate if both players cooperated in the
previous interaction (B2(CC)=C) or both players defected in the previous interaction (B2(DD)=C). Otherwise,
player 2 will defect.

With eight binary variables, there are 256 possible joint strategies. Trying to discover sequential patterns
in such dynamics is challenging. In this part of our evaluation, we focused on three representative parameter
settings that all lead to cooperation:
1. α = 0.07, γ = 0.7, and ε = 0.07;
2. α = 0.075, γ = 0.8, and ε = 0.125;
3. α = 0.125, γ = 0.8, and ε = 0.025.

Each setting has been simulated for 10 runs (a total of 30 instances of cooperation). Interestingly, we found
that agents never converged to the more famous and well-known tit-for-tat strategy. Instead, agents con-
verged to the same symmetric strategy: CDDC-CDDC. This strategy (which we were not familiar with before
conducting our analysis) is called the Pavlov strategy and is shown in Table 3.

The Pavlov strategy was previously reported in the social sciences [30], and is a variant of win-stay-lose-
switch strategies [30]. The strategy was shown to outperform the tit-for-tat strategy in evolutionary simula-
tions due to two interesting properties [30]: it can correct occasional errors (more resilient to noise) and can
exploit unconditional cooperators. Such properties make the Pavlov strategy well suited for Q-learning (pro-
motes cooperation while being resilient to exploration).

We have conducted frequent sequence mining [21] on the sequence data sets, and few interesting patterns
were discovered. Despite the existence of 256 possible joint strategies, only 3 joint strategies dominated the
sequences: DDDD-DDDD, CDDD-CDDD, and CDDC-CDDC. The mined sequences showed that agents moved
from DDDD-DDDD to CDDD-CDDD, and then moved to CDDC-CDDC and stabilized.

5 Related Work
Studying the dynamics of learning algorithms in multi-agent contexts has been an active area of research [6,
7, 12, 16, 18, 20, 25, 26, 28, 38, 43]. Analyzing the dynamics goes beyond observing the received payoff and
attempts to understand the evolution of agent policies overtime. The vast majority of the previous work in
analyzing the dynamics focused on studying the dynamics in stateless domains with very few exceptions [7,
18, 41]. Of the few exceptions, a complete coverage of the literature is beyond the scope of this paper; there-
fore, we will focus on the papers that are most related to our work.

One of the earliest analysis of Q-learning in IPD assumed agents keep record of previous interactions
and used the Boltzmann exploration strategy [35]. Perhaps the most significant result was that Q-learning
agents (using Boltzmann exploration) did not stabilize on cooperation and kept oscillating across different

Table 3: The Pavlov Strategy Defined by the Actions Chosen in the Previous Time Step.

Previous action   Next chosen action

Self  Opponent

C   C   C
C   D   D
D   C   D
D   D   C

622      A. Sherief: Mining Dynamics

joint policies even after disabling exploration. There was no extensive analysis of different parameter values
(results were reported only for parameter values that worked best). Also, there was no mention of which
multi-state strategy did agents reach and how it compared to well-established strategies such as tit-for-tat
or Pavlov [35]. More recent analysis of Q-learning with Boltzmann exploration used evolutionary (replicator)
dynamics [25, 38]; however, the same methodology cannot be applied to Q-learning with ε-greedy explora-
tion due to the discontinuous nature of the ε -greedy exploration.

The connection between Q-learning and well-established strategies was indirectly studied in a recent
work [7]. That earlier work, unlike our work here, did not show that Q-learning in self-play evolves to Pavlov
strategy. Instead, it reported the results if Q-learning was to interact with another fixed player that follows
one of the well-known strategies such as TFT and Pavlov. It was also reported that if Q-learning was ini-
tialized to the Pavlov strategy, then cooperation could be sustained. Here, we show that even if Q-learning
was not initialized to the Pavlov strategy and under range of parameter values, Q-learning will eventually
converge to the Pavlov strategy. Q-learning with ε-greedy exploration was theoretically analyzed relatively
recently [20, 43], long after Q-learning was first studied in a multi-agent context. However, the analysis was
limited to stateless Q-learning and therefore did not comment on the multi-state policies that Q-learning
reached. Recently, modified and extended versions of Q-learning were proposed to promote cooperation,
such as individual Q-learning [26], the CoLF and CK heuristics [18], frequency adjusted Q-learning [23], and
utility-based Q-learning [29]. The dynamics analysis focused primarily on the payoff and how it compared to
the Nash equilibrium. We study in this paper the basic Q-learning with ε-greedy exploration; however, our
methodology can be applied to study the dynamics of such extensions.

It is important to distinguish what we are proposing from the important research that falls under the term
agent mining. Agent mining research focuses on integrating data mining with agent technologies to achieve
reliable and distributed data mining [14], while we are proposing here the use of data mining techniques to
analyze specific data generated by agents themselves: the multi-agent learning dynamics.

6 Conclusion and Future Work
We proposed in this paper methodological procedures that use data mining techniques to extract useful
information from multi-agent learning dynamics. We provided a methodology for identifying safe regions
of learning parameter values, and a methodology for detecting frequent transitions in multi-agent learning
dynamics. We verified the potential of our approach using IPD (with multiple states). We were able to discover
interesting information from the large dynamics data using the methodologies we proposed.

One of the future directions we plan to pursue is the use of frequent sequence mining to analyze the more
complex domains of multi-agent learning dynamics, such as automated trading over networks. The data that
result from integrating information about the network structure with the sequence data (of evolving agent
strategies) is complex and challenging to analyze. Another important direction is developing novel visualiza-
tion techniques that are suitable for multi-state dynamics.

Grant support: This work was supported in part by the British University in Dubai grant INF0009.

Bibliography
[1] S. Abdallah, Using graph analysis to study networks of adaptive agent, In: Proceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems, pp. 517–524, 2010.
[2] S. Abdallah and M. Kaisers, Addressing the policy-bias of Q-learning by repeating updates, In: International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1045–1052, 2013.
[3] S. Abdallah and M. Kaisers, Improving multi-agent learners using less-biased value estimators, In: Proceedings of the Inter-

national Conference on Intelligent Agent Technology, 2015.

A. Sherief: Mining Dynamics      623

[4] S. Abdallah and M. Kaisers, Addressing environment non-stationarity by repeating Q-learning updates, J. Mach. Learn. Res.
17 (2016), 1–31.

[5] S. Abdallah and V. Lesser, Multiagent reinforcement learning and self-organization in a network of agents, In: Proceedings
of the International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8, 2007.

[6] S. Abdallah and V. Lesser, A multiagent reinforcement learning algorithm with non-linear dynamics, J. Artif. Intell. Res. 33
(2008), 521–549.

[7] M. Babes, E. M. de Cote and M. L. Littman, Social reward shaping in the prisoner’s dilemma, in: Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1389–1392, 2008.

[8] P. M. Berry, M. Gervasio, B. Peintner and N. Yorke-Smith, PTIME: personalized assistance for calendaring, ACM Trans. Intell.
Syst. Technol. (TIST) 2 (2011), 40.

[9] O. Besbes, Y. Gur and A. Zeevi, Optimal exploration-exploitation in a multi-armed-bandit problem with non-stationary
rewards, Available at SSRN 2436629 (2014).

[10] C. Boutilier, Sequential optimality and coordination in multiagent systems, In: Proceedings of the International Joint Con-
ference on Artificial Intelligence, pp. 478–485, 1999.

[11] M. Bowling, Convergence and no-regret in multiagent learning, In: Proceedings of the Annual Conference on Advances in
Neural Information Processing Systems, pp. 209–216, 2005.

[12] M. Bowling and M. Veloso, Multiagent learning using a variable learning rate, Artif. Intell. 136 (2002), 215–250.
[13] J. A. Boyan and M. L. Littman, Packet routing in dynamically changing networks: a reinforcement learning approach, In:

Proceedings of the Annual Conference on Advances in Neural Information Processing Systems, pp. 671–678, 1994.
[14] L. Cao, G. Weiss and P. S. Yu, A brief introduction to agent mining, Autonom. Agents Multi-agent Syst. 25 (2012), 419–424

(English).
[15] Y. H. Chang and T. Ho, Mobilized ad-hoc networks: a reinforcement learning approach, In: Proceedings of the International

Conference on Autonomic Computing, pp. 240–247, IEEE Computer Society, Washington, DC, USA, 2004.
[16] C. Claus and C. Boutilier, The dynamics of reinforcement learning in cooperative multiagent systems, In: Proceedings of the

National Conference on Artificial intelligence/Innovative Applications of Artificial Intelligence, pp. 746–752, 1998.
[17] J. W. Crandall, Towards minimizing disappointment in repeated games, J. Artif. Intell. Res. 49 (2014), 111–142.
[18] J. E. M. de Cote, A. Lazaric and M. Restelli, Learning to cooperate in multi-agent social dilemmas, In: International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 783–785, 2006.
[19] D. Easley, M. López de Prado and M. O’Hara, The microstructure of the “Flash Crash”: flow toxicity, liquidity crashes and the

probability of informed trading, J. Portf. Manage. 37 (2011), 118–128.
[20] R. G. Eduardo and R. Kowalczyk, Dynamic analysis of multiagent Q-learning with ε-greedy exploration, In: Proceedings of

the 26th Annual International Conference on Machine Learning, (ICML), pp. 369–376, ACM, New York, NY, 2009.
[21] A. Gabadinho, G. Ritschard, N. S Müller and Matthias Studer, Analyzing and visualizing state sequences in R with

TraMineR, J. Stat. Softw. 40 (2011), 1–37.
[22] M. Ghavamzadeh, S. Mahadevan and R. Makar, Hierarchical multi-agent reinforcement learning, Autonom. Agents Multi-

Agent Syst. 13 (2006), 197–229.
[23] M. Kaisers and K. Tuyls, Frequency adjusted multi-agent Q-learning, In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems: volume 1, AAMAS’10, pp. 309–316, 2010.
[24] J. R. Kok and N. Vlassis, Collaborative multiagent reinforcement learning by payoff propagation, J. Mach. Learn. Res. 7

(2006), 1789–1828.
[25] A. Lazaric, J. E. M. de Cote, F. Dercole and M. Restelli, Bifurcation analysis of reinforcement learning agents in the Selten’s

horse game, In: Adaptive Agents and Multi-Agents Systems Workshop, pp. 129–144, 2007.
[26] D. S. Leslie and E. J. Collins, Individual Q-learning in normal form games, SIAM J. Control Optim. 44 (2005), 495–514.
[27] H. Li, Multi-agent Q-learning of channel selection in multi-user cognitive radio systems: a two by two case, In: Proceedings

of the International Conference on Systems, Man and Cybernetics, pp. 1893–1898, Piscataway, NJ, 2009.
[28] K. Moriyama, Utility based Q-learning to facilitate cooperation in Prisoner’s Dilemma games, Web Intell. Agent Syst. 7

(2009), 233–242.
[29] K. Moriyama, S. Kurihara and M. Numao, Evolving subjective utilities: Prisoner’s Dilemma game examples, In: Proceedings

of the International Conference on Autonomous Agents and Multiagent Systems, (AAMAS), pp. 233–240, Richland, SC,
2011.

[30] M. Nowak and K. Sigmund, A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game,
Nature 364 (1993), 56–58.

[31] L. Panait and S. Luke, Cooperative multi-agent learning: the state of the art, Autonom. Agents Multi-agent Syst. 11 (2005),
387–434.

[32] S. Patterson, Dark Pools: The Rise of the Machine Traders and the Rigging of the US Stock Market, Crown Business,
New York, NY, 2012.

[33] L. Peshkin and V. Savova, Reinforcement learning for adaptive routing, In: Proceedings of the International Joint Conference
on Neural Networks, pp. 1825–1830, 2002.

[34] A. Rogers, R. K. Dash, S. D. Ramchurn, P. Vytelingum and N. R. Jennings, Coordinating team players within a noisy Iterated
Prisoner’s Dilemma tournament, Theor. Comput. Sci. 377 (2007), 243–259.

624      A. Sherief: Mining Dynamics

[35] T. W. Sandholm and R. H. Crites, Multiagent reinforcement learning in the Iterated Prisoner’s Dilemma, Biosystems 37
(1996), 147–166.

[36] S. Singh, M. Kearns and Y. Mansour, Nash convergence of gradient dynamics in general-sum games, In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pp. 541–548, 2000.

[37] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1999.
[38] K. Tuyls, P. J. Hoen and B. Vanschoenwinkel, An evolutionary dynamical analysis of multi-agent learning in iterated games,

Autonom. Agents Multi-agent Syst. 12 (2006), 115–153.
[39] K. Tuyls and G. Weiss, Multiagent learning: basics, challenges, and prospects, AI Mag. 33 (2012), 41.
[40] K. G. Vamvoudakis, F. L. Lewis and G. R. Hudas, Multi-agent differential graphical games: online adaptive learning solution

for synchronization with optimality, Automatica 48 (2012), 1598–1611.
[41] P. Vrancx, K. Tuyls and R. Westra, Switching dynamics of multi-agent learning, In: Proceedings of the 7th International Joint

Conference on Autonomous Agents and Multiagent Systems, pp. 307–313, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 2008.

[42] C. J. C. H. Watkins and P. Dayan, Q-learning, Mach. Learn. 8 (1992), 279–292.
[43] M. Wunder, M. L. Littman and M. Babes, Classes of multiagent Q-learning dynamics with ε-greedy exploration, In: Proceed-

ings of the International Conference on Machine Learning (ICML), pp. 1167–1174, 2010.
[44] C. Zhang and V. Lesser, Multi-agent learning with policy prediction, In: Proceedings of the AAAI Conference on Artificial

Intelligence, pp. 927–934, 2010.
[45] C. Zhang and V. Lesser, Coordinated multi-agent reinforcement learning in networked distributed POMDPs, In: Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI), pp. 764–770, 2011.
[46] M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, In: Proceedings of the Interna-

tional Conference on Machine Learning, pp. 928–936, 2003.

