
J. Intell. Syst. 2018; 27(4): 619–641

Amarjeet* and Jitender Kumar Chhabra

TA-ABC: Two-Archive Artificial Bee Colony for
Multi-objective Software Module Clustering
Problem
DOI 10.1515/jisys-2016-0253
Received October 20, 2016; previously published online May 4, 2017.

Abstract: Multi-objective software module clustering problem (M-SMCP) aims to automatically produce clus-
tering solutions that optimize multiple conflicting clustering criteria simultaneously. Multi-objective evolu-
tionary algorithms (MOEAs) have been a most appropriate alternate for solving M-SMCPs. Recently, it has
been observed that the performance of MOEAs based on Pareto dominance selection technique degrades
with multi-objective optimization problem having more than three objective functions. To alleviate this issue
for M-SMCPs containing more than three objective functions, we propose a two-archive based artificial bee
colony (TA-ABC) algorithm. For this contribution, a two-archive concept has been incorporated in the TA-ABC
algorithm. Additionally, an improved indicator-based selection method is used instead of Pareto dominance
selection technique. To validate the performance of TA-ABC, an empirical study is conducted with two well-
known M-SMCPs, i.e. equal-size cluster approach and maximizing cluster approach, each containing five
objective functions. The clustering result produced by TA-ABC is compared with existing genetic based two-
archive algorithm (TAA) and non-dominated sorting genetic algorithm II (NSGA-II) over seven un-weighted
and 10 weighted practical problems. The comparison results show that the proposed TA-ABC outperforms
significantly TAA and NSGA-II in terms of modularization quality, coupling, cohesion, Pareto optimality,
inverted generational distance, hypervolume, and spread performance metrics.

Keywords: Artificial bee colony, multi-objective optimization, software module clustering, two-archive
algorithm.

1 Introduction
The highly used commercial software systems frequently need to be modified in response to demand for
change in customer, business, and technological requirements. These changes normally have to be performed
in short deadlines and within limited budget. Hence, developers generally modify the systems without con-
sidering the design guidelines of the original software system. Such maintenance practices often degrade
structural design of software systems [30]. For a software system, it becomes a very complicated task to make
further changes in those whose structure quality deteriorated to the point where it is difficult to understand
[34]. The modular structure with low cohesion and high coupling is one of the main reasons of structural
design deterioration. The software module clustering technique, in which the software entities are organized
into disjoint sets of cluster according to predefined criteria [43], is one of the successful methods to improve
the modular structure of the complicated software systems.

The software module clustering process takes software modules with their dependency as an input and
partitions the modules into several disjoint sets of clusters based on predefined rules so that the software
become more understandable and maintainable [43]. The predefined rules can be various software structural

*Corresponding author: Amarjeet, Department of Computer Engineering, NIT Kurukshetra, Haryana, India,
e-mail: amarjeetnitkkr@gmail.com
Jitender Kumar Chhabra: Department of Computer Engineering, NIT Kurukshetra, Haryana, India

mailto:amarjeetnitkkr@gmail.com

620      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

design criteria [7, 8, 20] such as minimum coupling, maximum cohesion, etc. The decomposition of software
modules into clusters based on some structural design criteria is defined as the software module clustering
problem (SMCP) [15, 32, 34, 35, 43]. Many software module clustering approaches in research literature have
been proposed to address the SMCPs [15, 36, 43, 46].

These approaches can be broadly divided into two main groups: (1) search-based software module cluster-
ing and (2) non-search-based software module clustering approach. In search-based approaches, a problem
is transformed as a search-based optimization problem and solved using search-based meta-heuristic algo-
rithms (e.g. genetic algorithms, GA, USA) [16, 45], while in non-search-based approach the problem is solved
using deterministic algorithms (e.g. hierarchical clustering). The software partitioning problem (i.e. SMCP) is
a class of an non-deterministic polynomial-time-hard (NP-hard) problem [43]; hence, deterministic algorithm
cannot be a good alternate because exponential time is needed to solve it. This observation provides the
motivation for the use of search-based meta-heuristics in solving the SMCPs. The meta-heuristic approaches
do not ensure the generation of optimal solution since these approaches evaluate only a part of the feasible
search space, but try to search the different part in the search space in an effective way to get a near-optimal
solution in reasonable computation time and cost [41].

Mostly, search-based approaches first transform the software systems into a module dependency graph
(MDG) [35] and then solve the SMCPs as a graph partitioning problem [34, 38, 43]. MDGs are directed graphs
in which vertex and edges represent modules and their relationships, respectively. Based on the number
of optimization criteria, SMCPs can be designated as a single-objective software module clustering prob-
lems (S-SMCPs) or multi-objective software module clustering problems (M-SMCPs) and can be formulated as
single- or multi-objective optimization problem. The S-SMCPs have a single solution which optimizes single
software quality criteria, while M-SMCPs have many solutions which optimize simultaneously more than one
software quality criteria.

Most researchers [1, 2, 15, 32, 35, 37, 38] have formulated the SMCPs as a single-objective optimization
problem and solved using different single-objective meta-heuristic algorithms [e.g. hill-climbing (HC) and
GA]. The main limitation of the single-objective optimization approach is that it optimizes a single criterion
and generates only a single solution at each run. Thus, little information can be provided to the decision
makers about different aspects of the quality criterion. So formulation of SMCP as a multi-objective optimiza-
tion problem, and solving using multi-objective evolutionary approach has recently become more practically
useful.

The current search-based multi-objective software module clustering approaches [5, 28, 29, 43] have
been applied successfully to solve the M-SMCPs. Most of the multi-objective software modules clustering
approaches for M-SMCP problems are genetic-based multi-objective evolutionary algorithms (MOEAs) (e.g.
[4, 5, 29, 43]). Even though these approaches have shown many advantages in solving the M-SMCPs, still there
are some challenges corresponding to characteristics of MOEAs such as uncertainty, conflicting attribute,
large number of quality criteria, etc that need to be addressed. In this paper, we address the following two
main challenges:

 – The SMCP is naturally a multi-objective optimization problem; hence, MOEA has to solve it by optimizing
multiple objective functions simultaneously. However, the performance of MOEAs, for instance, non-
dominated sorting genetic algorithm II (NSGA-II) [13], gets deteriorated if the number of objectives func-
tions increases by more than three.

 – Most of the MOEAs contain many control parameters that require to be set by users according to domain
knowledge/experience and problem characteristics to achieve a satisfactory performance. However, it is
the most challenging task for SMCPs because there are diverse categories of software problems and iden-
tifying control parameters for every different problem is very difficult and time consuming.

To address the above challenges, there is growing need for MOEAs that can solve M-SMCPs efficiently with a
large number of objective functions. Recent works [12, 19, 40, 47, 48] in optimization literature have proposed
several algorithms to address such kind of optimization problems using, for instance, preference based [19],
objective reduction [40], reference based [12], decomposition based [47], and indicator based [48] approaches.

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      621

However, to the best of our knowledge, these techniques have not yet been explored to solve the M-SMCPs.
We propose a multi-objective software module clustering technique by integrating the two-archive [44] and
indicator based selection [48] concepts into the original artificial bee colony (ABC) [26].

To assess the effectiveness of the proposed approach, we applied it over seven un-weighted and
10 weighted open software projects. We report the results of our proposed approach and compared it with
existing MOEAs [two-archive algorithm (TAA) and NSGA-II] that have been used to solve the M-SMCPs by the
previous researchers [5, 43]. The results indicate that our proposed approach significantly outperforms TAA
and NSGA-II based approaches, in terms of modularization quality (MQ) [43], coupling [43], cohesion [43],
Pareto optimality [43], inverted generational distance (IGD) [50], hypervolume (HV) [49], and spread perfor-
mance [13] metrics.

The rest of this paper is organized as follows: Section 2 presents related research works. Section 3 briefly
describes the SMCPs and problem formulation. Section 4 gives a short description of two-archive evolution-
ary algorithm and detailed description of two-archive based artificial bee colony (TA-ABC). Section 5 presents
details of the experimental setup. Section 6 presents the results and compares them to the best performing
algorithms from the existing literature to demonstrate the superiority of the TA-ABC algorithm. Section 7
discusses the implications of the results. Section 8 provides threats to validity. Finally, Section 9 gives the
concluding remarks and future research directions.

2 Related Works
It is a commonly accepted fact that a software system comprising well-modularized structure is easier to
design, develop, test, maintain, and evolve [6, 9]. However, maintaining a large software system becomes
difficult, especially if their modular structure degrades and is not documented well [15, 24]. To address the
SMCPs, various search-based and deterministic approaches have been proposed in the literature [3, 29,
36, 38, 43]. Our approach formulates the SMCPs as search-based M-SMCP and solves using multi-objective
two-archive ABC algorithm; hence, related works are centered on search-based software module clustering
literature.

Mancoridis et al. [35] were the first who proposed the search-based optimization approach to address the
SMCPs. The work [35] formulated the characteristics of well-modularized software as objective functions; the
evaluation of these objective functions directs the optimization process towards good clustering. Further, the
works have developed an automated tool named Bunch for clustering the software systems. Following this
search-based optimization concept for SMCPs, many other search-based optimization methods have been
designed in previous works, such as GA, HC algorithm, simulated annealing (SA), and so forth [15, 21, 29, 32,
33, 37, 38, 43].

The work of Mancoridis et al. [34] applied the Bunch tool for the maintenance and architecture recovery
of software systems. To guide the process of searching, the authors designed an objective function, namely,
MQ. The MQ is a trade-off between interconnectivity and intraconnectivity and has been integrated into the
Bunch tool [34]. Using the Bunch tool with a set of meta-heuristic clustering algorithms (GA, HC, and SA),
the software system is partitioned as subsystems at a high level. The clustering results process resulted in
software which possesses the best quality in terms of grouping and turns out to be effective in a medium as
well as for large systems.

Several studies [15, 21, 38] have demonstrated that for module clustering the HC algorithm has outper-
formed the standard search techniques such as GA and SA in terms of both the execution time and solution
quality. However, it is well known that the HC algorithm suffers from the problem of early convergence to
local optima [32]. To overcome this problem, the authors [32] proposed a multiple HC approach to address the
software module clustering.

Praditwong [42] proposed two evolutionary algorithms based on GA, namely, Grouping Genetic Algorithm
(GGA) and Group Number Encoding (GNE), to solve SMCPs. The author also performed a comparative study

622      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

of these two genetic-based algorithms over various real-world SMCPs in terms of the MQ quality measure.
The results demonstrated that GGA produced high-quality solutions compared to the GNE approach. Further,
the same authors [43] formulated the SMCP, a multi-objective search problem [namely, maximizing cluster
approach (MCA) and equal-size cluster approach (ECA)] and use two-archive evolutionary algorithms [44].

Even after formulation of SMCP as a search-based optimization problem, some other widely used search-
based algorithms (e.g. ABC [26] and Grey Wolf Algorithm [27]) have not gained much attention. The ABC
algorithm has been demonstrated to be effective and well-situated to solve various optimization problems in
the field of science and engineering [11, 23, 25, 31]. Recently, Dahiya et al. [11] demonstrated the applicabil-
ity of ABC in software testing; however, the applicability and usefulness of the ABC algorithm have not been
studied by any researcher till date to solve the SMCPs. This paper formulates SMCP as search-based multi-
objective optimization problem and solves using ABC meta-heuristic algorithm.

3 Software Module Clustering Problems
SMCP is a problem of automatically grouping software modules into disjoint sets of clusters to improve software
design structure [43]. The SMCPs is basically a graph partitioning problem which is a class of NP-hard problem
[17, 43]. The SMCPs can be represented as a MDG which is defined as a graph G = (V, E), where V represents the
set of modules and E is the set of relationships between modules. All modules need to be partitioned into k
non-overlapping clusters C1, C2, …,Ck; that is, C1 ∪ C2 ∪   ·   ·   ·   ∪ Ck = V, Ci ≠ ∅ and Ci ∩  Cj = ∅, i, j = 1, 2, ∈ k, and
i ≠ j. A good partitioning of the MDG is regarded as a partition with minimum interconnection and maximum
intraconnection. The number of ways to partition an MDG containing a set of n vertex into k nonempty clusters
can be computed by using the Stirling numbers of the second kind, S(n, k) [22]. The searching for an optimal
partition from an MDG becomes problematic as the number of modules increases. To solve such class of prob-
lems using deterministic or exhaustive methods requires very high computing time; hence, formulation of
SMCPs as a search-based optimization problem is the best alternative to find a near-optimal solution. The
search-based SMCPs can be formulated as single-objective or multi-objective optimization problem. The brief
description of multi-objective optimization formulation for SMCP is given in the following subsection.

3.1 Multi-objective Formulation

In multi-objective SMCP, more than one and less than or equal to three objectives are optimized. It determines
a clustering solution x* for which

1 2

j

k

min (), (), . . . , () 2
g () 0 1,...,()
h () 0 1,...,

1,...,

T

M

L U
i i i

f x f x f x M
x j Pf x
x k Q

x x x i n

∗

 ≥
 ≥ ==

= =
 ≤ ≤ =

(1)

where M and fi represent the number of objective functions and ith objective function, respectively. Q is the
number of equality constraints; P is the number of inequality constraints, and U

ix and L
ix represent the upper

and lower bounds of the decision variable xi.

3.2 Module Clustering Objective Functions

The main goal of software module clustering is to improve the quality of clustering by optimizing various
conflicting software attributes. Praditwong et al. [43] have proposed two multi-objective formulations (i.e.
ECA and MCA) that capture attributes of a well-clustered software system. Moreover, these formulations also

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      623

help in guiding the optimization process towards good clustering. The objective functions defined under MCA
and ECA formulations are as follows: (1) maximization of cohesion (i.e. sum of intracluster edges), (2) mini-
mization of coupling (i.e. sum of intercluster edges), (3) minimization of number of clusters, (4) maximization
of MQ, (5) minimization of the number of isolated clusters, and (6) minimization of the differences between
maximum size cluster and minimum size cluster.

The MCA formulation includes the objective function numbered with 1, 2, 3, 4, and 5, and ECA formula-
tion includes the objective function numbered with 1, 2, 3, 4, and 6. The computations of all identified objec-
tive functions except the MQ objective are straightforward. The computation of MQ is defined as follows:

1

0, if 0

MQ where , if 0
1
2

m

k k
k

i
iMF MF i

i j=

 =
= = >
 +

∑

(2)

where i is the number of intracluster edges and j is that of intercluster edges of cluster k for an un-weighted
MDG, while for weighted MDG, i represents the total weight of intracluster edges and j represents total weight
of intercluster edges of cluster k.

4 Two-Archive based Artificial Bee Colony
The basic ABC algorithm [26] was designed to solve the single-objective continuous optimization problem.
However, the software module clustering is a natural multi-objective optimization problem where various
conflicting quality criteria need to be optimized to obtain a good quality software structure. The M-SMCP can
be designed as S-SMCP by aggregating all objective functions into a single objective function and further can
be solved using the single-objective ABC algorithm. However, such formulation has the following shortcom-
ing: as the population evolves, all individual solutions suffer earlier convergence to the local optima in very
few generations. This may lead single-objective ABC algorithm towards production of the population with
low diversity in successive generations [37]. Hence, for complex M-SMCPs, we propose TA-ABC algorithm
adapting the concepts of two-archive approach which can produce a good clustering solution with good con-
vergence, satisfactory diversity, and acceptable complexity.

4.1 The Basic Concept of ABC Algorithm

The ABC, a meta-heuristic algorithm based on the behavior of bees, has gained wide attention and has been
demonstrated to be effective and well situated for solving the various types of optimization problems in
science and engineering fields [11, 23, 25, 31]. The main steps of the basic ABC algorithm are as follows:

 – Population initialization phase: The initial population of the basic ABC algorithm is generated by a
random process. Let vi = {vi1, vi2, …, vin} represent the ith food source in the population with n number of
decision variables. To initialize the population, each food source is generated as follows:

 min max min() , 1,..., ; 1,..., ,i j i j i j i jv v v v r j n i SN= + − × = = (3)

where max
i jv and min

i jv represent the upper and lower bounds for the decision variable j, respectively, and r
is used a uniform random number in [0, 1].

 – Employed bee phase: In the employed bee phase, the ith food source vij of the population is assigned to
the ith employed bee, which generates a new neighboring solution around the assigned food source as
follows.

 new (1,1) ()j i j i j k jv v U v v= + − × −
 (4)

624      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

Algorithm 1: The ABC Algorithm [26].

1. Input- Parameters values;   22. i ← 1, t ← 0;  //Onlooker bee phase;
2. NFS: Population size (i.e. number of food source);   23. while t < NFSdo
3. NIC: Number of iterations;   24. r ← rand(0, 1);  //random generation;
4. NLMT : Maximum number of trials;   25. if r < pi then
5. Output- Optimal solution;   26. t ← t + 1;
6. begin   27. CSi ← a candidate solution by Eq. (3);
7. for i = 1 to NFS do  //Generation of food sources for initial population;  28. f(CSi) ← evaluate candidate solution;
8. FSi ← generate food source i using Eq. (7);   29. if f(CSi) < f(FSi) then  //greedy selection;
9. fi ← f(FSi)  //calculate fitness function of food source i;   30. FSi ← CSi

10. Tr(i) ← 0  //initialize trial to zero;   31. f(FSi) ← f(CSi)
11. Itr ← 1;  //initialize iteration to one   32. Tr(i) ← 0;
12. while Itr < NIC do   33. else
13. for i = 1 to NFS do  //Employee bee phase;   34. Tr(i) ← Tr(i) + 1;
14. CSi ← generate a candidate solution using Eq. (8)   35. i ← (i + 1)mod NFS

15. f(CSi) ← evaluate fitness function of candidate solution   36. //Scout bee phase;
16. if f(CSi) < f(FSi) then  //greedy selection;   37. ind = {i: Tr(i) = max(Tr)};
17. FSi ← CSi   38. if Tr (ind) > NLMT then
18. f(FSi) ← f(CSi)   39. FSind ← random solution by Eq. (7);
19. Tr(i) ← 0;   40. find ← f(FSind);
20. else Tr(i) ← Tr(i) + 1;   41. Tr(ind) ← 0
21. Calculate each onlooker’s bee probability using Eq. (9);   42. Itr ← Itr + 1

where i ∈{1,…,SN}, and k ∈ {1,…,SN}∧k ≠ i is a randomly chosen food source. After generating new solu-
tion vnew it is evaluated and compared to vi then the solution with the higher fitness value is selected.

 – Onlooker bee phase: The onlooker bees make a decision on food sources whether to select or not the
food source selected by the employed bees. To perform this, the onlooker bees use the probability values,
calculated using Eq. (9), to select the food source for discovering promising regions in the search space.

fit
fit
i

i SN
ii n

p
=

=
∑

(5)

where fiti is the fitness value of the ith food source.
 – Scout bee phase: If a food source cannot be further improved through a limited iteration, then the food

source is supposed to be abandoned and a randomly produced food source will be replaced with it.

The above basic ABC algorithm was designed to solve the single-objective optimization problems that have
the continuous decision variables; hence, the original form of the algorithm cannot be directly used for
solving the combinatorial/discrete multi-objective optimization problems. The M-SMCP is a discrete multi-
objective optimization problem; therefore, in this work, some alterations to the basic ABC algorithm have
been done for making it suitable for the M-SMCPs.

4.2 Proposed TA-ABC Algorithm

This section presents a TA-ABC approach to solve M-SMCPs. The proposed TA-ABC has the following main
features:

 – The approach can work efficiently for more than three objective functions.
 – The approach provides a good balance between exploration and exploitation.
 – The proposed approach can be easily implemented.

To impart the above features, the TA-ABC algorithm exploits the concepts of two-archive technique [44] and
indicator based ranking [48]. The combination of both these concepts makes TA-ABC algorithm perform

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      625

 efficiently in case of more than three objective functions. On the other hand, use of ABC algorithm concepts
makes the approach free from many parameters and perform good exploitation and exploration of the search
space. The flow chart of TA-ABC is given in Figure 1.

The working of TA-ABC method is divided into six parts: food source representation, Population initiali-
zation, Send employed bees, Send onlooker bees, Send scout bees, and Update the archive. The detailed
explanations of these parts are provided in the subsequent subsections.

4.2.1 Food Source Representation

To solve M-SMCPs with the TA-ABC algorithm, its solution requires to be modeled in a proper way, so as it
can be solved efficiently. In the search-based techniques, the solution is encoded as a string of (typically
binary) numbers. In our TA-ABC approach, each module clustering solution is encoded as a string of integer
numbers instead of binary numbers. In the integer encoding, a single integer perturbation can separate
a module clustering solution into two distinct module clustering solutions, while binary representation
requires a large number of perturbations. Hence, in the integer encoding, individual module clustering solu-
tions are a smaller distance from one another, which significantly increases the power of exploration and
exploitation [10].

Let {m1, m2, … mn} be the set of n number of modules in the software system. Then the solution is repre-
sented as a vector of nm = n integers (m =[m1, m2, … mn]). In this representation, the value 0 < mi ≤ n of the ith
module indicates the cluster to which the ith module is assigned. A clustering solution with the same value for
all the modules means that all modules are grouped in the same cluster, while a clustering solution contain-
ing all possible values (from 1 to n) denotes that each cluster holds only a single module. To demonstrate it,
let us consider a hypothetical software system depicted in Figure 2.

In Figure 2 the clustering solution (i.e. food source) of software system contains eight modules (i.e. num-
bered with 1–8) distributed in three clusters, namely, C1, C2, and C3. Hence, it can be represented as a vector
C = [1, 1, 2, 2, 2, 3, 3, 3], where modules 1 and 2 are in cluster C1, modules 3, 4, and 5 are in cluster C2, and
modules 6, 7, and 8 are in cluster C3.

N

Y

Population
initialization

Update CA and
DA archive

Stopping
criterion?

Return archives

Send employee bees

Send onlooker bees

Send scout bees

Figure 1: Flow Chart of Proposed TA-ABC Algorithm.

1 1 2 2 2 3 33

1 2 3 4 5 6 7 8
Clustering 1

2

7

8

6

5

4

3

Graphical model of a single food source

Array index represents the modules and
index value represents the cluster

C
1

C
3

C
2

Food source representation

Figure 2: Representation of a Simple Food Source (i.e. Software Clustering Solution).

626      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

4.2.2 Population Initialization

The TA-ABC algorithm receives the population size (PS), MaxTrial, the number of dimensions (D), the number
of scouts (Scouts), and the two external archives, namely, convergence archive (CA) and divergence archive
(DA), each with variable size and constant total size equal to PS. The number of food sources (clustering
solutions) is set as equal to PS. After initialization of basic parameters, the initial food sources are generated
randomly, and their nectar amount (clustering fitness function) is determined. In multi-objective approach,
instead of finding a single solution, a set of non-dominated solutions are collected. For this, non-dominated
food sources are collected and stored in the two external archives CA and DA according to their updating rules
(details are given in subsection 4.2.6). Algorithm 2 provides pseudo-code of population initialization.

The RandInt (UBd  −  LBd)) generates a random number selected from a normal distribution in the range
of 1 [i.e. Lower Bound (LB)] and number of classes [i.e. Upper Bound (UB)], and UBd and LBd are upper and
lower bounds along the dth dimension, respectively.

4.2.3 Send Employed Bees

Algorithm 3 presents the pseudo-code of Send Employed Bee module of the TA-ABC algorithm. After
random initialization of the food source (Population initialization), the employed bees are sent to search
new food sources. For this, the employed bees use the history information stored in combined |CA + DA | 
archives. The main reason for using the external archive solutions is that it contains the best solutions
found so far by the employed bees, and it may guide them towards better possible food sources. The main
steps of the working process of employed bees are as follows: (1) Each of the employed bees searches a
new food source with the help of food source stored in archives (Lines 1−4). (2) If the newly discovered food
source is not the old food source, then the new food source is computed with the old food source using
domination rank approach (Lines 5−6). (3) If the new food source dominates the old food source, then it
replaces the old food source; otherwise, the old food source remains in the population, and its trial value
is incremented by 1 (Lines 7−13).

4.2.4 Send Onlooker Bees

Algorithm 4 presents the pseudo-code of the Send Onlooker Bees module. In the send employed bee module,
all the employed bees search optimal food source using the information provided by the CA and DA external
archives. After searching the optimal food source, all employed bees come to the hive and share their infor-
mation about the newly discovered food source with onlooker bees waiting in the hive. The onlooker bees
collect the information provided by the employed bee regarding the food sources. Based on the collected
information, each onlooker bee needs to make a decision process for the selection of food sources. To perform

Algorithm 2: Pseudo-Code of the Initialization of Food Sources.

1. TA-ABC (Dataset, CA, DA, FoodNumber, MaxTrial)
2. Generate food sources c = (c1, c2, …, cFoodNumber) randomly
3. For i = 1 to FoodNumber
4. For d = 1 to D   /* D represents the dimension (i.e. total number of classes) */
5. ci

d ← RandInt (UBd  −  LBd))   /* LB = 1 and UB = Total number of classes */
6. End For
7. End For
8. Calculate each objective function of ci food source based on considered multi-objective formulation
9. Initiate Trial1, Trial2, …, TrialFoodNumber by 0
10. Update the External Archives CA and DA

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      627

this, the onlooker bees compute the selection probability pi of each food source ci using Eq. (10) for each food
source provided by the corresponding employed bee.

FoodNumber

1

fit()

fit()

i
i

m
m

c
p

c
=

=

∑

(6)

The selection probability pi is the probability of the food source provided by the employed bee i which is pro-
portional to the fitness of food source. To calculate the fitness of a food source advertised by employed bees,
we use the quality indicator Iε+ given in IBEA [48]. Iε+ is an indicator that calculates the minimum distance
that one food source (i.e. solution) requires in order to dominate other food sources in the objective space.
The value of I

ε+
 between two solutions c1 and c2 is computed as follows:

 1 2 1 2(,) min (()) (), 1)i iI c c f c f c i m
ε ε

ε+ = − ≤ ≤ ≤ (7)

where m is the number of objectives. Using Eq. (7), we assign the fitness to each solution according to the
following equation.

Algorithm 3: Pseudo-Code of the Send Employed Bees.

1. For i = 1 to FoodNumber
2. Select a random component d, d ∈ {1, 2,…, D} from food source ci,
3. Select a random food source k from archive |CA + DA |, k ≠ i ∈ {1, 2,…,( | CN + DA |)},
4. vi

d = xk
d,

5. If vi ≠ ci, then
6. Calculate the objective functions of new food source: vi

7. If the new food source vi
d dominates old food source ci

8. Replace old food source ci with new food source vi

9. Else
10. Increment Triali by 1
11. End If
12. End If
13. End For

Algorithm 4: Pseudo-Code of the Send Onlooker Bees.

1. Calculate probability value pi of each food source Ci based On Eq. (10)
2. For I = 1 to FoodNumber
3. If rand < pi, Then   /* Select ci employed bee to follow */
4. Select a random component d, d ∈ {1, 2,…, D} from food source ci,
5. Select a random food source k from archive |CA + DA |, k ≠ i ∈ {1, 2,…,( | CA + DA |)},
6. vi

d = xk
d,

7. If vi ≠ ci, Then
8. Calculate the objective functions of new food source: vi

9. If the new food source vi
d dominates old food source ci

10. Replace old food source Ci with new food source vi

11. Else
12. Increment Triali by 1
13. End If
14. End If
15. End If
16. If i > FoodNumber, Then i = 1   /* Reset the value of i */
17. End For

628      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

 { }

(,)/0.05

\

fit() j i

j i

I c c
i

c P x

c e ε+−

∈

= −∑

(8)

After computing the selection probability, the onlooker bees use the greedy technique to select a food
source advertised by the employed bee. Further, each onlooker bee selects a food source from archive member
randomly and performs the same steps as an employed bee has performed to update their current food source.

4.2.5 Send Scout Bees

At each cycle of the algorithm, the employed and onlooker bees search new food source around each old food
source and evaluate them; if the old food source cannot be improved after a certain number of iterations,
called MaxTrial, then the old food source is abandoned. In Send scout bee module, the algorithm sends scout
bees for each abandoned food sources; the scout bees randomly search a new food source and replaces the
abandoned food source if the newly generated food source dominates it. Otherwise, the old food source is
kept in the population.

4.2.6 Update CA and DA Archives

To guide the employed and onlooker bees in a good direction, the TA-ABC algorithm uses the two exter-
nal archives concepts inspired by the work presented in [44] to store the non-dominated solutions. These
archives are convergence archive (CA) and diversity archive (DA) with variable size; however, the total size is
fixed. Both CA and DA archives are updated as follows: (1) the algorithm first selects the non-dominated solu-
tions from the population. (2) The selected non-dominated solutions are compared to the solutions stored in
the CA and DA archives. (3) If the non-dominated solution is not dominated by any solution stored in CA or
DA archive, then discard the solution (4). If the solution dominates any solution stored in CA or DA archives,
then the dominated solution stored in CA and DA are removed. (5) If the solution is non-dominated with any
solution stored in CA or DA archives, then add the solution in CA. (6) Finally, if the number of non-dominated
solutions of both archive increases the total size of CA and DA, then delete the extra solutions from DA archive
which have the minimal Euclidean distances to CA archive.

4.2.7 Termination

Each of the four modules (i.e. Send employed bee, Send onlooker bee, Send scout bee, and Update archive)
of TA-ABC iterate cycle by cycle until the specified termination condition is reached. At the end of TA-ABC
algorithm termination, the solutions stored in both CA and DA archives are returned as the output. In our
implementation, the TA-ABC terminates after a predefined number of function evaluations same as in TAA
and NSGA-II that have been used to solve M-SMCPs [43].

Algorithm 5: Pseudo-Code of the Send Scout Bees.

1. If there exists some ci | {triali  >  t},
2. Select one such ci randomly,
3. For each component d, d ∈ {1, 2,…,D},
4. vi

j = ←RandInt (UBd − LBd))   /* LB = 1 and UB = Total number of classes */
5. End For
6. Calculate the objective functions of new food source: vi

7. Replace old food source ci with new food source vi

8. Set triali = 0,
9. End If

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      629

5 Experimental Setup
This section describes the experimental setup conducted to evaluate the proposed TA-ABC algorithm over
10 weighted and seven un-weighted MDGs with MCA and ECA multi-objective formulations. Further, an exper-
iment is also performed to compare the results of the TA-ABC with the existing TAA algorithm and NSGA-II.

5.1 Test Problems

In this paper, varieties of MDGs of software systems with different characteristics are used. There are two
types of MDGs (weighted and un-weighted) used to evaluate the proposed approach. Table 1 provides a brief
description about the number of modules and links of MDGs of considered software systems. In un-weighted
MDGs, each connection (link) represents the existence of a unidirectional variable or a method reference
between two modules. In weighted MDGs each connection contains weights which are calculated according

Algorithm 6: Pseudo-Code of the Update the External Archive (CA and DA).

1. Collect FSnd the set of non-dominated food sources in current population   /* Addition Strategy */
2. for i = 1 to | FSnd | do
3. if FSnd[i] is not dominated by any food source stored in either AC or DA archive, then
4. if FSnd[i] dominates any food source stored in either AC or DA archive, then
5. The dominated food sources stored in AC and DA archive are removed
6. Add the FSnd[i] to archive AC
7. else
8. Add the FSnd[i] to archive DA
9. end if
10. end if
11. end if
12. end for
13. if |CA | + | DA | > limit then   /* Removal Strategy */
14. Select a food source of DA with minimal Euclidean distances to CA archive.
15. Delete the selected food source from DA archive.
16. end if

Table 1: Descriptions of Testing Problems [43].

Systems name  Modules  Links

Un-weighted    
 Mtunis   20  57
 Ispell   24  103
 Rcs   29  163
 Bison   37  179
 Grappa   86  295
 Bunch   116  365
 Incl   174  360
Weighted    
 Icecast   60  650
 gnupg   88  601
 inn   90  624
 bitchx   97  1653
 xntp   111  729
 exim   118  1225
 Mod_ssl   135  1095
 ncurses   138  682
 lynx   148  1745
 nmh   198  3262

630      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

to the number of the unidirectional variables and method references between modules. Larger connection
weights specify more interconnection strength between modules and increase probability that it should be
placed in the same cluster.

5.2 Research Questions

In our study, we evaluate the performance of our proposed TA-ABC approach for M-SMCPs by finding out
whether it could generate the good modularization in terms of various structural quality metrics (i.e. MQ,
coupling, and cohesion) compared to other existing algorithms. In addition to structural quality metrics, we
also used the IGD [50], HV [49], spread performance metric [43], Pareto optimality [43], and execution time to
compare the algorithms. The major goal of our study is to address the following research questions.

RQ1. MQ value as assessment criterion: How well does the proposed TA-ABC perform when compared
against TAA and NSGA-II algorithms using the MQ as the assessment criterion?

RQ2. Coupling as assessment criterion: How well does the proposed TA-ABC perform when compared
against TAA and NSGA-II algorithms in terms of coupling?

RQ3. Cohesion as assessment criterion: How well does the proposed TA-ABC perform when compared
against TAA and NSGA-II algorithms in terms of cohesion?

RQ4. Pareto optimality as assessment criterion: How well does the TA-ABC algorithm perform at produc-
ing good approximations to the Pareto front compared to TAA and NSGA-II algorithms?

RQ5. IGD, hypervolume, and spread as assessment criterion: How well does the proposed TA-ABC
perform when compared against TAA and NSGA-II algorithms in terms of IGD, HV, and spread as the assess-
ment criterion?

Note that the IGD metric corresponds to the average Euclidean distance separating each reference solution
(true Pareto front) from its closest non-dominated one (Pareto front obtained by the algorithm). For each
studied software project, we use the set of Pareto optimal solutions produced by all algorithms over all runs
as a true Pareto front.

5.3 Competitor Algorithms and Parameter Setup

This subsection provides a brief description about competitor algorithms with their parameter settings that
have been used in this study. The TAA and NSGA-II are two popular algorithms which have been used to solve
the M-SMCPs by the previous researchers [4, 5, 43]. In this paper, the results of the TA-ABC are compared with
TAA and NSGA-II. The parameter settings of TAA and NSGA-II algorithms are the same as suggested in [5, 43].
Different search-based optimization approaches usually consume different amounts of fitness computations.
To make a fair comparison between such meta-heuristic algorithms, an equal number of fitness function
computations is allowed to each algorithm. The number of fitness evaluations (NFE) for the TA-ABC approach
is computed using the following method: NFE ≤ (SN + SN + 1)*MCN + SN, where SN and MCN is the number of
onlooker bees and maximum number of iterations, respectively. The parameter for NSGA-II is the same as
TAA. The parameter values of the algorithms are assigned according to the number of modules (N) in the
problem instances. The crossover and mutation operators are single-point crossover and single-point muta-
tion, respectively. The mutation probability is set as 0.004*log2 (N). The crossover probability is set as 0.8 for
population size less than 100, otherwise 1.0. The maximum number of generations, population size, and total
archive size is 200N, 10N, and 10N, respectively. The limit parameter for the TA-ABC is set as (D*PS)/2, where
D and PS is the dimension of the problem and population size, respectively.

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      631

5.4 Collecting Results from Experiment

The search-based optimization algorithms are stochastic in nature; i.e. they can produce different values on
each run. We collect the results of each algorithm on each MDG by executing 30 times, following the same
approach as discussed in [5, 43].

6 Results and Analysis
This section illustrates the results obtained by TA-ABC for the solution of M-SMCPs and its comparison with
current evolutionary multi-objective approaches (i.e. TAA and NSGA-II) that have already been used to solve
the M-SMCPs. Each subsection addresses one of the four research questions given in Section 5.2.

6.1 The MQ Value as Assessment Criterion

This section presents the results of the experiments that answer the RQ1. To answer this research question, we
compared the TA-ABC with TAA and NSGA-II algorithms over seven un-weighted and 10 weighted MDGs with
MCA and ECA multi-objective formulations in terms of MQ values.

Table 2 presents the MQ values obtained by TA-ABC, TAA, and NSGA-II algorithms with MCA formulation.
The 8th and 9th columns in the table denote the p-values (p-value below 0.05 is considered statistically sig-

nificant). The symbols [−] denote that the result is significantly in favor of TA-ABC compared to corresponding
approach, symbol [+] denotes opposite, and symbol [≈] is used when there is not a significant favor to any
of the approaches. First, if we compare the MQ results of the TA-ABC approach with the TAA approach on
un-weighted MDGs, the results show that the TA-ABC approach outperforms TAA approach in five MDGs out
of seven MDGs. There are four cases where TA-ABC performs significantly better than TAA approach. Hence,
there is good evidence to suggest that for un-weighted MDGs, the TA-ABC approach outperforms the TAA
approach. Similarly, for weighted MDGs, the results provide sufficient evidence that the TA-ABC out performs

Table 2: Comparison of MQ Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 2.352 0.012 2.294 0.013 2.134 0.087 0.012 [−] <0.001 [−]
 Ispell 2.258 0.068 2.269 0.043 2.075 0.046 0.168 [≈] <0.001 [−]
 Rcs 2.296 0.036 2.145 0.034 2.062 0.034 <0.001 [−] <0.001 [−]
 Bison 2.257 0.051 2.416 0.038 2.187 0.045 <0.001 [+] <0.001 [−]
 Grappa 12.851 0.235 11.586 0.106 10.487 0.214 <0.001 [−] <0.001 [−]
 Bunch 11.765 0.321 12.145 0.225 10.654 0.025 0.013 [+] <0.001 [−]
 Incl 12.869 0.356 11.811 0.351 10.598 0.342 <0.001 [−] <0.001 [−]
Weighted
 Icecast 2.216 0.065 2.401 0.057 2.158 0.054 <0.001 [+] <0.001 [−]
 gnupg 6.418 0.087 6.259 0.072 5.864 0.044 <0.001 [−] <0.001 [−]
 inn 8.026 0.079 7.421 0.077 6.875 0.053 <0.001 [−] <0.001 [−]
 bitchx 3.602 0.038 3.572 0.055 3.254 0.028 0.086 [≈] <0.001 [−]
 xntp 6.869 0.061 6.482 0.110 6.157 0.089 0.034 [−] <0.001 [−]
 exim 5.458 0.104 5.316 0.132 5.024 0.067 <0.001 [−] <0.001 [−]
 Mod_ssl 9.854 0.254 8.832 0.097 8.798 0.154 <0.001 [−] <0.001 [−]
 ncurses 11.562 0.346 10.211 0.145 10.125 0.351 <0.001 [−] <0.001 [−]
 lynx 3.481 0.073 3.447 0.086 3.145 0.025 0.472 [≈] <0.001 [−]
 nmh 6.978 0.257 6.671 0.177 6.658 0.131 <0.001 [−] <0.001 [−]

632      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

the TAA approach over most of the cases except one case. That is, TA-ABC approach beats TAA approach in
nine weighted MDGs, including seven in which the results are statistically significant. Second, if we compare
the results of the TA-ABC approach with NSGA-II approach, the results show that the TA-ABC approach out-
performs the NSGA-II approach for both weighted and un-weighted MDGs.

Table 3 presents the results obtained by TA-ABC, TAA, and NSGA-II with ECA formulation on weighted
and un-weighted datasets. The results provided in Table 3 clearly indicate that the TA-ABC approach out-
performs TAA and NSGA-II in most of the cases. The MQ results obtained by the TA-ABC approach and TAA
approach over un-weighted MDG show that the TA-ABC approach outperforms the TAA approach in six MDGs
out of seven MDGs. There are four cases where the TA-ABC approach performs significantly higher compared
to TAA approach. However, for weighted software applications, the results indicate that the TA-ABC approach
outperforms the TAA approach over most of the cases except one case. That is, TA-ABC approach performs
significantly better than TAA approach in all seven software applications. The comparison results of the
TA-ABC with NSGA-II approach shows that the TA-ABC approach outperforms NSGA-II approach in all cases
for both weighted and un-weighted software applications.

6.2 Coupling as an Assessment Criterion

The coupling values obtained by TA-ABC, TAA, and NSGA-II approaches on un-weighted and weighted
MDGs with MCA formulation are shown in Table 4 and with ECA formulation in Table 5. From Table 4 for
un-weighted MDGs it can be observed that TA-ABC approach obtained higher values of coupling than TAA
approach in all seven cases, out of which five cases are significantly in favor of TA-ABC. For weighted MDGs,
the TA-ABC outperforms TAA in all 10 cases in which six cases are statistically significant. However, TA-ABC
performs significantly better than NSGA-II in all cases for un-weighted as well as weighted MDGs.

Table 5 presents the results comparing the performance of the TA-ABC approach and the TAA approach,
and TA-ABC approach and NSGA-II approach with ECA formulation in terms of coupling measure. Coupling
results shown in Table 5 for un-weighted MDGs indicate that the TA-ABC outperforms TAA in five cases, out

Table 3: Comparison of MQ Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 2.157 0.021 2.314 0.000 1.785 0.032 <0.001 [−] <0.001 [−]
 Ispell 2.342 0.036 2.339 0.022 1.981 0.084 0.127 [≈] <0.001 [−]
 Rcs 2.132 0.012 2.239 0.022 1.795 0.036 <0.001 [−] <0.001 [−]
 Bison 2.458 0.054 2.648 0.029 2.235 0.054 <0.001 [−] <0.001 [−]
 Grappa 13.687 0.148 12.578 0.053 12.521 0.052 <0.001 [−] <0.001 [−]
 Bunch 13.897 0.342 13.455 0.088 12.325 0.245 0.175 [≈] <0.001 [−]
 Incl 13.498 0.234 13.511 0.059 12.642 0.134 0.103 [≈] <0.001 [−]
Weighted
 Icecast 2.842 0.036 2.654 0.039 2.561 0.061 <0.001 [−] <0.001 [−]
 gnupg 7.621 0.085 6.905 0.055 7.156 0.035 <0.001 [−] <0.001 [−]
 inn 7.837 0.062 7.876 0.046 7.264 0.052 0.121 [≈] <0.001 [−]
 bitchx 4.036 0.037 4.267 0.027 3.647 0.026 <0.001 [−] <0.001 [−]
 xntp 8.954 0.064 8.168 0.076 8.265 0.087 <0.001 [−] <0.001 [−]
 exim 6.351 0.076 6.361 0.084 5.867 0.068 0.108 [≈] <0.001 [−]
 Mod_ssl 9.258 0.057 9.749 0.071 8.871 0.102 <0.001 [+] <0.001 [−]
 ncurses 12.325 0.127 11.297 0.133 11.135 0.141 <0.001 [−] <0.001 [−]
 lynx 4.957 0.079 4.694 0.060 4.531 0.062 <0.001 [−] <0.001 [−]
 nmh 8.964 0.109 8.592 0.148 8.439 0.075 <0.001 [−] <0.001 [−]

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      633

of which three cases are statistically significant in favor of TA-ABC. For weighted MDGs, the TA-ABC outper-
forms TAA in nine cases out of which seven cases are statistically significant in favor of TA-ABC. However, the
coupling results of the TA-ABC and NSGA-II show that the TA-ABC approach performs significantly better than
NSGA-II in all cases for un-weighted and weighted MDGs.

Table 4: Comparison of Coupling Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 63.391 3.256 64.733 4.185 66.561 3.419 0.123 [≈] <0.001 [−]
 Ispell 158.458 1.025 159.800 6.440 166.381 1.076 0.148 [≈] <0.001 [−]
 Rcs 217.391 12.361 235.733 30.669 228.261 12.979 0.014 [−] <0.001 [−]
 Bison 242.925 17.564 277.267 16.463 255.071 18.442 <0.001 [−] <0.001 [−]
 Grappa 385.125 19.261 420.467 22.380 404.381 20.224 <0.001 [−] <0.001 [−]
 Bunch 498.525 13.256 580.867 16.648 523.451 13.919 0.011 [−] <0.001 [−]
 Incl 519.125 22.153 536.467 28.048 545.081 23.261 <0.001 [−] <0.001 [−]
Weighted
 Icecast 7484.858 368.256 7636.200 589.843 7859.101 386.669 0.125 [≈] <0.001 [−]
 gnupg 4191.188 412.357 5192.530 335.669 4400.747 432.975 <0.001 [−] <0.001 [−]
 inn 5375.388 389.235 6176.730 325.260 5644.157 408.697 <0.001 [−] <0.001 [−]
 bitchx 35837.36 278.365 35938.700 5406.697 37629.228 292.283 0.107 [≈] <0.001 [−]
 xntp 3559.058 356.127 4460.400 219.445 3737.011 373.933 0.014 [−] <0.001 [−]
 exim 11546.06 835.547 12347.400 1127.563 12123.363 877.324 <0.001 [−] <0.001 [−]
 Mod_ssl 11137.16 798.294 12138.500 621.962 11694.018 838.209 <0.001 [−] <0.001 [−]
 ncurses 2569.788 124.576 3071.130 188.785 2698.277 130.805 <0.001 [−] <0.001 [−]
 lynx 22149.56 1234.561 23150.900 1726.014 23257.038 1296.289 0.127 [≈] <0.001 [−]
 nmh 19620.16 562.371 19921.500 876.440 20601.168 590.490 0.162 [≈] <0.001 [−]

Table 5: Comparison of Coupling Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems  
 

TA-ABC 
 

TAA 
 

NSGA-II 
 

p-Values 
 

p-Values

Mean  STD Mean  STD Mean  STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis   61.557  2.235  60.000  0.000  64.635  2.347  0.129 [≈]  <0.001 [−]
 Ispell   157.624  1.234  145.933  5.595  165.505  1.296  <0.001 [+]  <0.001 [−]
 Rcs   213.557  9.345  230.867  15.719  224.235  9.812  <0.001 [−]  <0.001 [−]

Bison   235.091  16.237  252.400  12.434  246.846  17.049  <0.001 [−]  <0.001 [−]
Grappa   376.291  12.894  387.667  16.601  395.106  13.539  0.122 [≈]  <0.001 [−]
Bunch   479.691  18.239  504.600  10.611  503.676  19.151  <0.001 [−]  <0.001 [−]
Incl   534.291  15.765  439.600  7.673  561.006  16.553  0.003 [+]  <0.001 [−]

Weighted
Icecast   7434.024  325.128  7569.670  416.378  7805.725  341.384  <0.001 [−]  <0.001 [−]
gnupg   4090.354  384.265  4413.670  207.660  4294.872  403.478  <0.001 [−]  <0.001 [−]
inn   4874.554  368.864  5046.200  380.526  5118.282  387.307  <0.001 [−]  <0.001 [−]
bitchx   34936.52  356.195  35546.800  1266.136  36683.346  374.005  <0.001 [≈]  <0.001 [−]
xntp   4358.224  348.562  3692.070  109.004  4576.135  365.990  <0.001 [+]  <0.001 [−]
exim   12145.22  532.248  12612.900  1050.310  12752.481  558.860  0.108 [≈]  <0.001 [−]
Mod_ssl  10136.32  1123.561  11008.400  488.348  10643.136  1179.739  <0.001 [−]  <0.001 [−]
ncurses   2468.954  132.623  2607.270  115.030  2592.402  139.254  <0.001 [−]  <0.001 [−]
lynx   18148.72  1137.295  20546.700  956.032  19056.156  1194.160  <0.001 [−]  <0.001 [−]
nmh   17819.32  932.584  18576.800  473.564  18710.286  979.213  <0.001 [−]  <0.001 [−]

634      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

6.3 Cohesion as an Assessment Criterion

This section compares TA-ABC algorithm with TAA and NSGA-II approach, i.e. how each of the multi-objec-
tive approaches performs in terms of cohesion as an assessment criterion using MCA and ECA formulations.
Table 6 presents the cohesion results of the TA-ABC approach, TAA, and NSGA-II with MCA formulation. The
cohesion results obtained from TA-ABC and TAA approaches over un-weighted MDGs given in Table 6 show
that the TA-ABC outperforms TAA in all cases out of which five cases are significantly better. For weighted
MDGs, the TA-ABC outperforms TAA in all cases out of which eight cases are significantly better. The cohesion
results for TA-ABC and NSGA-II clearly show that the TA-ABC performs NSGA-II algorithm significantly better
in all cases of weighted and un-weighted MDGs.

Table 7 presents the results comparing the performance of {TA-ABC approach, TAA approach} and
{TA-ABC approach, NSGA-II approach} in terms of cohesion measure using ECA formulation. First, if we
compare the cohesion values of TA-ABC approach and TAA approach, the results shown in Table 7 indicate
that the TA-ABC approach outperforms TAA in five cases out of the seven un-weighted MDGs, out of which
three cases are significantly better. In weighted MDGs, the TA-ABC approach outperforms TAA in nine out
of 10 cases, out of which seven cases are significantly better. Second, if we compare the TA-ABC approach
and NSGA-II approach, the comparison results indicate that the TA-ABC approach significantly outperforms
NSGA-II in all cases for weighted and un-weighted MDGs.

6.4 Pareto Optimality as Assessment Criterion

This section compares the TA-ABC algorithm with TAA and NSGA-II in terms of how well each performs at
producing good approximations to the Pareto front. Table 8 presents the dominance relationship for the
results obtained from TA-ABC and TAA with both MCA and ECA formulations. This dominance relationship is
used to compare any two solutions in multi-objective space. In this table, A denotes the TA-ABC with MCA, B
denotes the TA-ABC with ECA, C denotes the TAA with MCA, and D denotes the TAA with ECA. The heading

Table 6: Comparison of Cohesion Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems  
 

TA-ABC 
 

TAA 
 

NSGA-II 
 

p-Values 
 

p-Values

Mean  STD Mean  STD Mean  STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
Mtunis   25.304  1.365  24.633  2.092  23.719  3.419  0.112 [≈]  <0.001 [−]
Ispell   23.771  2.156  23.100  3.220  19.8095  1.076  0.212 [≈]  <0.001 [−]
Rcs   54.304  12.354  45.133  15.335  48.869  12.979  0.013 [−]  <0.001 [−]
Bison   57.538  3.856  40.367  8.231  51.465  18.442  <0.001 [−]  <0.001 [−]
Grappa   102.438  6.389  84.767  11.190  92.81  20.224  <0.001 [−]  <0.001 [−]
Bunch   114.738  5.687  73.567  8.324  102.275  13.919  0.011 [−]  <0.001 [−]
Incl   100.438  12.568  91.767  14.024  87.46  23.261  <0.001 [−]  <0.001 [−]

Weighted
Icecast   1685.571  158.366  1609.900  294.921  1498.45  386.669  0.089 [≈]  <0.001 [−]
gnupg   1605.404  135.854  1104.733  167.834  1500.625  432.975  <0.001 [−]  <0.001 [−]
inn   1172.304  201.361  771.633  162.630  1037.92  408.697  <0.001 [−]  <0.001 [−]
bitchx   7695.303  1532.563  7644.633  2703.349  6799.369  292.283  0.102 [≈]  <0.001 [−]
xntp   1184.471  88.356  733.800  109.722  1095.495  373.933  0.017 [−]  <0.001 [−]
exim   3679.97  512.364  3279.300  563.781  3391.319  877.324  <0.001 [−]  <0.001 [−]
Mod_ssl  3412.403  256.845  2911.733  310.981  3133.974  838.209  <0.001 [−]  <0.001 [−]
ncurses   825.104  69.325  574.433  94.392  760.8595  130.805  <0.001 [−]  <0.001 [−]
lynx   2929.237  632.862  2428.567  863.007  2375.498  1296.289  <0.001 [−]  <0.001 [−]
nmh   2182.937  363.581  2032.267  438.220  1692.433  590.490  <0.001 [−]  <0.001 [−]

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      635

NXY indicates the number of solutions generated by approach X that are dominated by solutions produced by
Y. In comparison, the approach X is better than approach Y if NXY is small and NYX is large.

Table 8 shows that the number of solutions produced by {TA-ABC with ECA} outperform {TA-ABC with
MCA} in all of the problems studied. The {TA-ABC with MCA} outperforms {TAA with MCA} for un-weighted
problems (four out of seven problems), while, in weighted systems, the {TA-ABC with MCA} outperforms the
{TAA with MCA} in only one problem. The {TA-ABC with MCA} outperforms {TAA with ECA} for un-weighted

Table 7: Comparison of Cohesion Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems  
 

TA-ABC  
 

TAA  
 

NSGA-II  
 

p-Values  
 

p-Values

Mean   STD Mean   STD Mean   STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
Mtunis   26.221   0.361   27.000   0.000   24.682   2.347   0.106 [≈]   <0.001 [−]
Ispell   24.188   2.231   30.033   2.798   20.2475   1.296   <0.001 [+]   <0.001 [−]
Rcs   56.221   13.265   47.567   7.859   50.882   9.812   <0.001 [−]   <0.001 [−]
Bison   61.455   8.236   52.800   6.217   55.5775   17.049   <0.001 [−]   <0.001 [−]
Grappa   106.855   9.356   101.167   8.301   97.4475   13.539   0.078 [≈]   <0.001 [−]
Bunch   124.155   86.349   111.700   5.305   112.1625   19.151   0.007 [−]   <0.001 [−]
Incl   92.855   6.348   140.200   3.836   79.4975   16.553   0.002 [+]   <0.001 [−]

Weighted
Icecast   1710.988   123.456   1643.167   208.189   1525.138   341.384   <0.001 [−]   <0.001 [−]
gnupg   1655.821   88.346   1494.167   103.830   1553.562   403.478   <0.001 [−]   <0.001 [−]
inn   1422.721   36.123   1336.900   190.263   1300.857   387.307   <0.001 [−]   <0.001 [−]
bitchx   8145.723   563.238   7840.600   633.068   7272.31   374.005   0.091 [≈]   <0.001 [−]
xntp   784.888   55.237   1117.967   54.502   675.9325   365.990   <0.001 [+]   <0.001 [−]
exim   3380.39   235.642   3146.567   525.155   3076.76   558.860   0.067 [≈]   <0.001 [−]
Mod_ssl  3912.823   145.326   3476.800   244.174   3659.415   1179.739   <0.001 [−]   <0.001 [−]
ncurses   875.521   12.365   806.367   57.515   813.797   139.254   <0.001 [−]   <0.001 [−]
lynx   4929.657   213.023   3730.633   478.016   4475.939   1194.160   <0.001 [−]   <0.001 [−]
nmh   3083.357   142.691   2704.600   236.782   2637.874   979.213   <0.001 [−]   <0.001 [−]

Table 8: Results of Dominated Comparison of TA-ABC Algorithm and TAA.

NAB NBA NAC NCA NAD NDA NBC NCB NBD NDB

Un-weighted
Mtunis 28 0 14 23 16 22 0 30 6 27
Ispell 30 0 25 26 24 21 2 24 5 25
Rcs 30 0 14 21 16 20 0 25 7 22
Bison 30 0 22 14 12 11 5 24 8 11
Grappa 27 0 21 18 17 16 0 30 4 27
Bunch 26 0 16 13 18 17 4 25 8 26
Incl 30 0 19 15 17 21 5 21 3 22

Weighted
Icecast 30 0 11 18 14 15 8 22 7 17
gnupg 30 0 17 19 22 21 2 17 6 21
inn 30 0 18 25 21 27 1 29 5 18
bitchx 30 0 14 27 17 22 3 24 8 26
xntp 30 0 21 22 22 21 0 30 9 18
exim 30 0 19 17 16 18 8 24 11 17
Mod_ssl 30 0 22 25 23 25 1 27 7 27
ncurses 30 0 16 17 17 22 7 18 5 28
lynx 30 0 14 19 12 14 0 30 5 26
nmh 30 0 21 24 20 24 0 30 2 24

636      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

problems (three out of seven problems), while in weighted systems, the {TA-ABC with ECA} outperforms the
{TAA with MCA} in eight out of 10 problems. The {TA-ABC with ECA} outperforms {TAA with MCA} in all un-
weighted and weighted problems. Similarly, the {TA-ABC with ECA} outperforms {TAA with ECA} in all un-
weighted and weighted problems. These findings taken together indicate that the TA-ABC is better than TAA.

Table 9 presents the dominance relationship for the results obtained from TA-ABC and NSGA-II with both
MCA and ECA formulations. In this table, P denotes the TA-ABC with MCA, Q denotes the TA-ABC with ECA, R
denotes the NSGA-II with MCA, and S denotes the NSGA-II with ECA.

Table 9 shows that the number of solutions produced by {TA-ABC with ECA} outperforms {TA-ABC
with MCA} in all of the problems studied. The {TA-ABC with MCA} outperforms {NSGA-II with MCA} for un-
weighted problems (five out of seven problems), while in weighted systems, the {TA-ABC with MCA} outper-
forms {NSGA-II with MCA} in only two problems. The {TA-ABC with MCA} outperforms {NSGA-II with ECA}
for un-weighted problems (two out of seven problems), while in weighted systems, the {TA-ABC with ECA}
outperforms the {NSGA-II with MCA} in seven of 10 problems. The {TA-ABC with ECA} outperforms {NSGA-II
with MCA} in all un-weighted and weighted problems. Similarly, the {TA-ABC with ECA} outperforms {NSGA-II
with ECA} in all un-weighted and weighted problems. These findings taken together indicate that the TA-ABC
is better than NSGA-II.

6.5 IGD, Hypervolume, and Spread as Assessment Criteria

In the previous sections, we compared our TA-ABC algorithm with other existing algorithms (i.e. TAA and
NSGA-II) in terms of structural quality metrics (i.e. MQ, coupling, and cohesion) and Pareto optimality. In this
section, we compare the TA-ABC algorithm with existing algorithms in terms of IGD, HV, and spread values
for both MCA and ECA formulations. The symbol [−] denotes that the result is significantly in favor of TA-ABC
compared to corresponding approach, symbol [+] denotes opposite, and symbol [≈] is used when there is
not a significant favor to any of the approaches. Table 10 presents IGD values of the results obtained through
TA-ABC, TAA, and NSGA-II over weighted and un-weighted software projects. Tables 11 and 12 report the statis-
tics of the HV and spread of the results obtained through TA-ABC, TAA, and NSGA-II algorithms, respectively.
For the MCA and ECA formulations, IGD statistics given in Table 10 indicates that TA-ABC outperforms other

Table 9: Results of Dominated Comparison of TA-ABC Algorithm and NSGA-II.

NPQ NQP NPR NRP NPS NSP NQR NRQ NQS NSQ

Un-weighted
Mtunis 28 0 26 21 15 23 1 28 7 25
Ispell 30 0 22 24 23 26 3 25 5 26
Rcs 30 0 15 24 15 22 0 25 7 28
Bison 30 0 23 15 10 13 5 23 5 16
Grappa 27 0 20 17 17 16 0 27 4 27
Bunch 26 0 16 13 18 17 4 25 8 22
Incl 30 0 18 14 17 21 4 21 6 24

Weighted
Icecast 30 0 12 18 12 16 7 21 6 19
gnupg 30 0 17 19 22 21 2 17 7 26
inn 30 0 19 24 21 27 1 28 5 14
bitchx 30 0 14 27 18 23 5 24 8 26
xntp 30 0 22 18 24 22 0 30 10 17
exim 30 0 12 17 19 18 6 22 11 17
Mod_ssl 30 0 22 25 20 14 1 27 7 25
ncurses 30 0 19 17 23 22 7 22 6 29
lynx 30 0 14 19 17 14 1 30 5 22
nmh 30 0 21 24 24 13 0 30 3 21

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      637

Table 10: The Statistics of IGD Metric Values Obtained at 30 Runs of TA-ABC, TAA, and NSGA-II Algorithms with MCA and ECA.

Systems MCA ECA

TA-ABC TAA NSGA-II TA-ABC TAA NSGA-II

Un-weighted
Mtunis 2.737 × 10−4 2.741 × 10−4 [≈] 3.261 × 10−4 [−] 2.534 × 10−4 2.538 × 10−4 [≈] 4.652 × 10−4 [−]
Ispell 3.891 × 10−3 3.958 × 10−3 [−] 4.184 × 10−3 [≈] 3.653 × 10−3 3.738 × 10−3 [−] 4.142 × 10−3 [−]
Rcs 4.486 × 10−3 4.493 × 10−3 [≈] 4.274 × 10−3 [+] 4.278 × 10−3 4.376 × 10−3 [−] 4.678 × 10−3 [−]
Bison 4.103 × 10−4 4.194 × 10−4 [−] 4.229 × 10−4 [−] 4.103 × 10−4 4.104 × 10−4 [≈] 4.106 × 10−4 [≈]
Grappa 5.912 × 10−4 6.052 × 10−4 [−] 5.232 × 10−4 [−] 5.768 × 10−4 5.125 × 10−4 [−] 5.212 × 10−4 [−]
Bunch 6.192 × 10−4 6.365 × 10−4 [−] 6.413 × 10−4 [−] 6.192 × 10−4 6.365 × 10−3 [−] 6.324 × 10−3 [−]
Incl 5.987 × 10−3 6.172 × 10−3 [−] 6.215 × 10−3 [−] 6.001 × 10−3 6.218 × 10−3 [−] 6.187 × 10−3 [−]

Weighted
Icecast 7.786 × 10−3 7.945 × 10−3 [−] 7.776 × 10−3 [≈] 7.674 × 10−3 7.743 × 10−3 [−] 8.242 × 10−3 [−]
gnupg 5.476 × 10−3 5.489 × 10−3 [≈] 5.271 × 10−3 [+] 5.274 × 10−3 5.386 × 10−3 [−] 5.671 × 10−3 [−]
inn 4.103 × 10−4 4.194 × 10−4 [−] 4.229 × 10−4 [−] 5.526 × 10−3 5.533 × 10−4 [≈] 6.261 × 10−4 [−]
bitchx 6.912 × 10−4 7.062 × 10−4 [−] 7.212 × 10−4 [−] 7.683 × 10−3 7.734 × 10−3 [−] 8.241 × 10−3 [−]
xntp 6.192 × 10−3 6.365 × 10−3 [−] 6.413 × 10−3 [−] 5.276 × 10−3 5.386 × 10−3 [−] 5.671 × 10−3 [−]
exim 7.987 × 10−3 8.172 × 10−3 [−] 8.215 × 10−3 [−] 5.526 × 10−4 5.533 × 10−4 [≈] 6.261 × 10−4 [−]
Mod_ssl 5.737 × 10−4 5.740 × 10−4 [≈] 6.283 × 10−4 [−] 7.683 × 10−3 7.734 × 10−3 [−] 8.241 × 10−3 [−]
ncurses 6.128 × 10−4 6.736 × 10−4 [−] 7.128 × 10−4 [−] 6.122 × 10−4 6.647 × 10−4 [−] 7.123 × 10−4 [−]
lynx 7.008 × 10−3 7.692 × 10−3 [−] 8.314 × 10−3 [−] 8.123 × 10−3 8.612 × 10−3 [−] 9.341 × 10−4 [−]
nmh 5.121 × 10−3 5.734 × 10−3 [−] 6.502 × 10−3 [−] 5.012 × 10−3 5.398 × 10−3 [−] 6.328 × 10−3 [−]

Table 11: The Statistics of HV Metric Values Obtained at 30 Runs of TA-ABC, TAA, and NSGA-II Algorithms with MCA and ECA.

Systems  
 

MCA  
 

ECA

TA-ABC   TAA   NSGA-II TA-ABC   TAA   NSGA-II

Un-weighted
Mtunis   0.2718   0.1515 [−]   0.2755 [≈]   0.5242   0.3286 [−]   0.5215 [≈]
Ispell   0.4335   0.3232 [−]   0.2115 [−]   0.4579   0.0821 [≈]   0.6846 [+]
Rcs   0.5381   0.3370 [−]   0.6701 [+]   0.7201   0.1429 [−]   0.5677 [−]
Bison   0.5122   0.0745 [−]   0.3821 [−]   0.3999   0.4939 [+]   0.1717 [−]
Grappa   0.5170   0.5155 [≈]   0.1524 [−]   0.4991   0.3267 [−]   0.3483 [−]
Bunch   0.2880   0.3168 [+]   0.0393 [−]   0.7616   0.6015 [−]   0.3533 [−]
Incl   0.5064   0.2263 [−]   0.3094 [−]   0.5065   0.3518 [−]   0.0794 [−]

Weighted
Icecast   0.6211   0.5946 [−]   0.1373 [−]   0.4204   0.4212 [≈]   0.2488 [−]
gnupg   0.5302   0.6758 [+]   0.4217 [−]   0.3085   0.1274 [−]   0.0515 [−]
inn   0.9559   0.1015 [−]   0.0582 [−]   0.8767   0.2050 [−]   0.2077 [−]
bitchx   0.6459   0.2439 [−]   0.2925 [−]   0.5272   0.1598 [−]   0.1477 [−]
xntp   0.7492   0.0465 [−]   0.2305 [−]   0.6413   0.5502 [−]   0.7332 [+]
exim   0.1244   0.2125 [+]   0.2524 [+]   0.6543   0.1295 [−]   0.5680 [−]
Mod_ssl  0.0564   0.0519 [≈]   0.1041 [+]   0.6562   0.4352 [−]   0.2538 [−]
ncurses   0.7373   0.3349 [−]   0.3827 [−]   0.3598   0.4141 [+]   0.1107 [−]
lynx   0.3703   0.2205 [−]   0.1058 [−]   0.7116   0.3318 [−]   0.6337 [−]
nmh   0.6966   0.6898 [≈]   0.2562 [−]   0.5819   0.3474 [−]   0.3625 [−]

algorithms in most of the cases for weighted and un-weighted MDGs. Additionally, TAA seems to be better
than NSGA-II in most of the cases. The results based on the HV metric show that TA-ABC performs better than
A-TAA and NSGA-II in most of the cases. Results in Table 12 indicate that the spread values achieved with the
Pareto front generated by the TA-ABC algorithm is lower than those of TAA and NSGA-II, and in most of the
cases it has the significantly lower values.

638      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

7 Discussions
This section discusses the contributions and implications of our TA-ABC for M-SMCPs. The main contribution
of the proposed TA-ABC approach with respect to the existing approaches on software module clustering
(TAA and NSGA-II) is that this paper integrates the external archive concepts of TAA algorithm into the ABC
algorithm so that balanced exploration and exploitation is achieved for more than three objective functions.
The experimental results showed that the proposed TA-ABC approach performed better compared to existing
approaches in terms of MQ, coupling, cohesion, Pareto optimality, and IGD values in most of the cases. In this
study, we observed that the following helped in improving the quality of software systems in terms of MQ,
coupling, cohesion, Pareto optimality, and IGD:

 – The original TAA fails to maintain the diversity in case of all the solutions in CA are on the true Pareto front
and the size of the CA has reached the limit of the union of DA and CA. In such situation there is no space
available for any additional member of DA. The reason is that the CA does not maintain the diversity; it
only maintains the convergence. However, to achieve a good balance between the diversity and conver-
gence, TA-ABC algorithm maintains the diversity in CA in the case when the CA has reached the limit.

 – Similarly, the updating strategy for CA and DA in TA-ABC algorithm generates good Pareto optimal solu-
tions compared to TAA algorithm. The main reason for generating such good Pareto optimal solutions by
the TA-ABC is that the approach is designed to produce good approximations to the Pareto front.

To conclude, we found that our approach produces good software clustering in terms of MQ, coupling, cohe-
sion, and Pareto optimality in most of the cases compared to existing algorithms.

8 Threats to Validity
To explain the limitations and strengths of our proposed approach, we explore the factors that could affect
the validity of the results obtained by TA-ABC. In this paper, we considered two major categories of threats

Table 12: The Statistics of Spread Metric Values Obtained at 30 Runs of TA-ABC, TAA, AND NSGA-II Algorithms with MCA and
ECA.

Systems  
 

MCA  
 

ECA

TA-ABC   TAA   NSGA-II TA-ABC   TAA   NSGA-II

Un-weighted
Mtunis   0.0129   0.0646 [−]   0.0939 [−]   0.0332   0.1000 [−]   0.3728 [−]
Ispell   0.1081   0.2548 [−]   0.2822 [−]   0.0802   0.0778 [≈]   0.1734 [−]
Rcs   0.0249   0.0257 [≈]   0.1897 [−]   0.0510   0.0866 [−]   0.1515 [−]
Bison   0.1836   0.3951 [−]   0.2836 [−]   0.1521   0.8278 [−]   0.6633 [−]
Grappa   0.0258   0.0128 [+]   0.1523 [−]   0.3558   0.4608 [−]   0.1117 [+]
Bunch   0.0858   0.1044 [−]   0.0145 [+]   0.0428   0.1778 [−]   0.1601 [−]
Incl   0.3451   0.2906 [−]   0.2747 [−]   0.0874   0.3231 [−]   0.1544 [−]

Weighted
Icecast   0.1677   0.2452 [−]   0.2873 [−]   0.2167   0.7026 [−]   0.3508
gnupg   0.0159   0.0763 [−]   0.0860 [−]   0.0783   0.2372 [−]   0.3109 [−]
inn   0.1242   0.2371 [−]   0.4045 [−]   0.4104   0.7794 [−]   0.8934 [−]
bitchx   0.1827   0.2756 [−]   0.1841 [≈]   0.2540   0.6059 [−]   0.4622 [−]
xntp   0.2971   0.5802 [−]   0.6537 [−]   0.0530   0.4223 [−]   0.1450 [−]
exim   0.1920   0.5939 [−]   0.3607 [−]   0.1017   0.4426 [−]   0.3881 [−]
Mod_ssl  0.3569   0.7684 [−]   0.4207 [−]   0.0441   0.8191 [−]   0.3010 [−]
ncurses   0.1781   0.2960 [−]   0.0386 [+]   0.0292   0.6537 [−]   0.4755 [−]
lynx   0.0646   0.0613 [≈]   0.0925 [−]   0.1533   0.1994 [−]   0.6796 [−]
nmh   0.1044   0.2977 [−]   0.6147 [−]   0.2078   0.2594 [−]   0.3948 [−]

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      639

(i.e. external validity and internal validity) that could affect the validation of results. External validity (or
selection validity) concerns the degree to which the findings (i.e. results sample) of the approach can be
generalized to the wider classes of problems. In search-based software engineering, this is a very important
threat to the validity of findings because of a large number of diverse software systems available to any study.
In our experimentation, this threat to validity has been mitigated by the fact that the proposed approach is
concerned with MDG, an abstract representation of software systems. Since there is a many to one relation
between the software systems and MDG (i.e. many individual software systems can map into a single MDG),
the findings of a set of MDGs of a particular size is relevant to wider MDGs. In order to mitigate the possi-
ble external threats to validity, the experimentation uses the various size of MDGs, both un-weighted and
weighted.

Internal validity is the degree to which conclusions can be drawn about the causal effect of independent
variables on the dependent variables [18]. In this empirical study, the choice of statistical test (i.e. two-tailed
t-test) was made to support the comparability with other existing studies [28, 43]. The t-test is more appropri-
ate to data with normal distribution. However, studies [4, 14, 39] suggest that the t test is robust, even in the
presence of non-normal distributed and significantly skewed data, if the sample sizes are sufficiently large
as our empirical study.

9 Conclusions and Future Works
This paper presented a TA-ABC approach to address M-SMCPs. For this, the original ABC algorithm has been
redesigned as multi-objective ABC algorithm by integrating the concept of external archives. The TA-ABC
has been applied to solve M-SMCPs with two well-known multi-objective formulations of software cluster-
ing domain (ECA and MCA). The performance of the TA-ABC has been evaluated on two datasets obtained
through different alternates: weighted MDGs and un-weighted MDGs. The results of the TA-ABC have been
compared with the results reported in the literature. The five main quality criteria (i.e. MQ, coupling, cohe-
sion, Pareto optimality, IGD, HV, and spread performance metric) have been used to assess the quality of the
obtained clustering solutions. The results clearly reveal that TA-ABC is able to obtain better clustering solu-
tions in terms of MQ, coupling, cohesion, Pareto optimality, IGD, HV, and spread performance metric. Hence,
TA-ABC approach can be very useful to solve clustering problem of software and thus can help software man-
agers in the better management of the software. In a future study, we will customize other meta-heuristic
algorithms such as MOPSO, MODE, MOABC, MOSOS, etc. to address the M-SMCPs.

Bibliography
[1] H. Abdeen, S. Ducasse, H. A. Sahraoui and I. Alloui, Automatic package coupling and cycle minimization, in: Proceedings of

the 16th Working Conference on Reverse Engineering, France, pp. 103–112, 2009.
[2] P. Amarjeet and J. K. Chhabra, Harmony search based remodularization for object-oriented software systems, Comput. Lang.

Syst. Struct. 47 (2017), 153–169.
[3] P. Amarjeet and J. K. Chhabra, Improving modular structure of software system using lexical and structural dependencies.

Inform. Software Tech. 82 (2017), 96–120.
[4] P. Amarjeet and J. K. Chhabra, Improving package structure of object-oriented software using multi-objective optimization

and weighted class connections, J. King Saud U. Comput. Inf. Sci., in press. Available online 2 November 2015.
[5] M. Barros, An analysis of the effects of composite objectives in multi-objective software module clustering, in: Proceedings

of the Fourteenth International Conference on Genetic and Evolutionary Computation, USA, pp. 1205–1212, 2012.
[6] V. R. Basil and A. J. Turner, Iterative enhancement: a practical technique for software development, IEEE T. Software Eng. 1

(1975), 390–396.
[7] J. K. Chhabra, K. K. Aggarwal and Y. Singh, Code and data spatial complexity: two important software understandability

measures, Inform. Software Tech. 45 (2003), 539–546.
[8] J. K. Chhabra, K. K. Aggarwal and Y. Singh, Measurement of object-oriented software spatial complexity, Inform. Software

Tech. 46 (2004), 689–699.

640      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

[9] L. L. Constantine and E. Yourdon, Structured Design, Prentice Hall, USA, 1979.
[10] E. Cotilla-Sanchez, P. D. H. Hines, C. Barrows, S. Blumsack and M. Patel, Multi-attribute partitioning of power networks

based on electrical distance, IEEE T. Power Syst. 28 (2013), 4979–4987.
[11] S. S. Dahiya, J. K. Chhabra and S. Kumar, Application of artificial bee colony algorithm to software testing. in: 2010 21st

Australian Software Engineering Conference, Auckland, pp. 149–154, 2010.
[12] K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated

sorting approach, part I: solving problems with box constraints, IEEE T. Evolut. Comput. 18 (2004), 577–601.
[13] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist non-dominated sorting genetic algorithm for multi-objec-

tive optimization: NSGA-II, IEEE T. Evolut. Comput. 6 (2002), 182–197.
[14] L. Devroye, Non-Uniform Random Variate Generation. Springer-Verlag, USA, 1986.
[15] D. Doval, S. Mancoridis, B. S. Mitchell, Automatic clustering of software systems using a genetic algorithm, in: Proceedings

of IEEE Conference on Software Technology and Engineering Practice, USA, pp. 73–81, 1999.
[16] A. E. Ezugwu, N. A. Okoroafor, S. M. Buhari, M. E. Frincu, S. B. Junaidu, Grid resource allocation with genetic algorithm

using population based on multisets, J. Intell. Syst. 26 (2017), 169–184.
[17] A. Farrugia, Vertex-partitioning into fixed additive induced hereditary properties is NP-hard, Electron. J. Combin. 11 (2004),

1–9.
[18] M. Genero, J. Olivas, M. Piattini and F. Romero, Using metrics to predict OO information systems maintainability, in: Pro-

ceedings of the 13th International Conference on Advanced Information Systems Engineering (CAiSE’01), Springer-Verlag,
London, UK, pp. 388–401, 2001.

[19] D. Gong, J. Sun and X. Ji, Evolutionary algorithms with preference polyhedron for interval multi-objective optimization
problems. Inform. Sciences 233 (2013), 141–161.

[20] V. Gupta and J. K. Chhabra, Package level cohesion measurement in object-oriented software, J. Braz. Comput. Soc. 18
(2011), 251–266.

[21] M. Harman, R. Hierons and M. Proctor, A new representation and crossover operator for search-based optimization of soft-
ware modularization, in: Proceedings of the Genetic and Evolutionary Computation Conference, USA, pp. 1351–1358, 2002.

[22] J. Harris, J. Hirst and M. Mossinghoff, Combinatorics and Graph Theory, Springer, New York, pp. 212–237, 2000.
[23] H. A. Hashim, B. O. Ayinde and M. A. Abido, Optimal placement of relay nodes in wireless sensor network using artificial

bee colony algorithm, J. Netw. Comput. Appl. 64 (2016), 239–248.
[24] S. D. Hester, D. L. Parnas and D. F. Utter, Using documentation as a software design medium. Bell Syst. Technol. J. 60

(1981), 1941–1977.
[25] H. T. Jadhav and P. D. Bamane, Temperature dependent optimal power flow using g-best guided artificial bee colony algo-

rithm, Int. J. Elec. Power Energy Syst. 77 (2016), 77–90.
[26] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University,

Engineering Faculty, Computer Engineering Department, 2005.
[27] V. Kumar, J. K. Chhabra and D. Kumar, Grey wolf algorithm-based clustering technique, J. Intell. Syst. 26 (2017), 153–168.
[28] A. C. Kumari and K. Srinivas, Hyper-heuristic approach for multi-objective software module clustering, J. Syst. Software 117

(2016), 384–401.
[29] A. C. Kumari, K. Srinivas and M. P. Gupta, Software module clustering using a hyper-heuristic based multi-objective genetic

algorithm. Advance Computing Conference (IACC), 2013 IEEE 3rd International, Ghaziabad, pp. 813–818, 2013.
[30] M. M. Lehman, On understanding laws, evolution, and conservation in the large-program life cycle, J. Syst. Softw. 1 (1980),

213–22.
[31] X. Li and G. Yang, Artificial bee colony algorithm with memory, Appl. Soft Comput. 41 (2016), 362–372.
[32] K. Mahdavi, M. Harman and R. M. Hierons, A multiple hill climbing approach to software module clustering, in: Proceedings

of the International Conference on Software Maintenance, Netherlands, pp. 315–324, 2003.
[33] A. S. Mamaghani and M. R. Meybodi, Clustering of software systems using new hybrid algorithms, in: Proceedings of the

Ninth IEEE International Conference on Computer and Information Technology (CIT’09), vol. 1, Bangladesh, 2009.
[34] S. Mancoridis, B. S. Mitchell, Y.-F. Chen and E. R. Gansner, Bunch: a clustering tool for the recovery and maintenance of

software system structures, in: Proceedings of the IEEE International Conference on Software Maintenance, UK, pp. 50–59,
1999.

[35] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. F. Chen and E. R. Gansner, Using automatic clustering to produce high-level
system organizations of source code, in: Proceedings of the International Workshop on Program Comprehension, Italy,
pp. 45–53, 1998.

[36] O. Maqbool and H. A. Babri, Hierarchical clustering for software architecture recovery, IEEE T. Software Eng. 33 (2007),
759–780.

[37] B. S. Mitchell, A heuristic search approach to solving the software clustering problem. PhD. dissertation, Drexel University,
USA, 2002.

[38] B. S. Mitchell and S. Mancoridis, Using heuristic search techniques to extract design abstractions from source code, in:
Proceedings of the Genetic and Evolutionary Computation Conference, USA, pp. 1375–1382, 2002.

[39] L. E. Moses, Think and Explain with Statistics, Addison-Wesley, USA, 1986.

Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony      641

[40] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell and I.-H. Moghadam, Experimental assessment of software metrics using
automated refactoring, in: ESEM’12, Sweden, pp.49–58, 2012.

[41] V. Plevris and M. Papadrakakis, A hybrid particle swarm – gradient algorithm for global structural optimization, Comput.
Aided Civ. Inf. Eng. 26 (2011), 48–68.

[42] K. Praditwong, Solving software module clustering problem by evolutionary algorithms, in: 2011 Eighth International Joint
Conference on Computer Science and Software Engineering (JCSSE), Nakhon Pathom, pp. 154–159, 2011.

[43] K. Praditwong, M. Harman and X. Yao, Software module clustering as a multi-objective search problem, IEEE T. Software
Eng. 37 (2011), 264–282.

[44] K. Praditwong and X. Yao, A new multi-objective evolutionary optimization algorithm: the two-archive algorithm, in: Pro-
ceedings of the International Conference on Computational Intelligence and Security, vol 1, Hong Kong, pp. 286–291, 2006.

[45] P. Prashanth, K. K Pattanaik and P. Singh, BAT and hybrid BAT meta-heuristic for quality of service-based web service selec-
tion. J. Intell. Syst. 26 (2017), 123–137.

[46] A. Ramírez, J. R. Romero and S. Ventura, An approach for the evolutionary discovery of software architectures, Inform. Sci-
ences 305 (2015), 234–255.

[47] Q. Zhang and H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE T. Evolut. Comput. 11
(2007), 712–731.

[48] E. Zitzler and S. Künzli, Indicator-Based Selection in Multi-objective Search, Parallel Problem Solving from Nature – PPSN
VIII, pp. 832–842, Springer, Berlin, Germany, 2004.

[49] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms – a comparative case study, in: Confer-
ence on Parallel Problem Solving from Nature (PPSN V), pp. 292–301, 1998.

[50] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca and V. G. da Fonseca, Performance assessment of multi-objective optimiz-
ers: an analysis and review, IEEE T. Evolut. Comput. 7 (2003), 117–132.

