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Abstract: Multi-objective software module clustering problem (M-SMCP) aims to automatically produce clus-
tering solutions that optimize multiple conflicting clustering criteria simultaneously. Multi-objective evolu-
tionary algorithms (MOEAs) have been a most appropriate alternate for solving M-SMCPs. Recently, it has 
been observed that the performance of MOEAs based on Pareto dominance selection technique degrades 
with multi-objective optimization problem having more than three objective functions. To alleviate this issue 
for M-SMCPs containing more than three objective functions, we propose a two-archive based artificial bee 
colony (TA-ABC) algorithm. For this contribution, a two-archive concept has been incorporated in the TA-ABC 
algorithm. Additionally, an improved indicator-based selection method is used instead of Pareto dominance 
selection technique. To validate the performance of TA-ABC, an empirical study is conducted with two well-
known M-SMCPs, i.e. equal-size cluster approach and maximizing cluster approach, each containing five 
objective functions. The clustering result produced by TA-ABC is compared with existing genetic based two-
archive algorithm (TAA) and non-dominated sorting genetic algorithm II (NSGA-II) over seven un-weighted 
and 10 weighted practical problems. The comparison results show that the proposed TA-ABC outperforms 
significantly TAA and NSGA-II in terms of modularization quality, coupling, cohesion, Pareto optimality, 
inverted generational distance, hypervolume, and spread performance metrics.

Keywords: Artificial bee colony, multi-objective optimization, software module clustering, two-archive 
algorithm.

1  Introduction
The highly used commercial software systems frequently need to be modified in response to demand for 
change in customer, business, and technological requirements. These changes normally have to be performed 
in short deadlines and within limited budget. Hence, developers generally modify the systems without con-
sidering the design guidelines of the original software system. Such maintenance practices often degrade 
structural design of software systems [30]. For a software system, it becomes a very complicated task to make 
further changes in those whose structure quality deteriorated to the point where it is difficult to understand 
[34]. The modular structure with low cohesion and high coupling is one of the main reasons of structural 
design deterioration. The software module clustering technique, in which the software entities are organized 
into disjoint sets of cluster according to predefined criteria [43], is one of the successful methods to improve 
the modular structure of the complicated software systems.

The software module clustering process takes software modules with their dependency as an input and 
partitions the modules into several disjoint sets of clusters based on predefined rules so that the software 
become more understandable and maintainable [43]. The predefined rules can be various software structural 
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design criteria [7, 8, 20] such as minimum coupling, maximum cohesion, etc. The decomposition of software 
modules into clusters based on some structural design criteria is defined as the software module clustering 
problem (SMCP) [15, 32, 34, 35, 43]. Many software module clustering approaches in research literature have 
been proposed to address the SMCPs [15, 36, 43, 46].

These approaches can be broadly divided into two main groups: (1) search-based software module cluster-
ing and (2) non-search-based software module clustering approach. In search-based approaches, a problem 
is transformed as a search-based optimization problem and solved using search-based meta-heuristic algo-
rithms (e.g. genetic algorithms, GA, USA) [16, 45], while in non-search-based approach the problem is solved 
using deterministic algorithms (e.g. hierarchical clustering). The software partitioning problem (i.e. SMCP) is 
a class of an non-deterministic polynomial-time-hard (NP-hard) problem [43]; hence, deterministic algorithm 
cannot be a good alternate because exponential time is needed to solve it. This observation provides the 
motivation for the use of search-based meta-heuristics in solving the SMCPs. The meta-heuristic approaches 
do not ensure the generation of optimal solution since these approaches evaluate only a part of the feasible 
search space, but try to search the different part in the search space in an effective way to get a near-optimal 
solution in reasonable computation time and cost [41].

Mostly, search-based approaches first transform the software systems into a module dependency graph 
(MDG) [35] and then solve the SMCPs as a graph partitioning problem [34, 38, 43]. MDGs are directed graphs 
in which vertex and edges represent modules and their relationships, respectively. Based on the number 
of optimization criteria, SMCPs can be designated as a single-objective software module clustering prob-
lems (S-SMCPs) or multi-objective software module clustering problems (M-SMCPs) and can be formulated as 
single- or multi-objective optimization problem. The S-SMCPs have a single solution which optimizes single 
software quality criteria, while M-SMCPs have many solutions which optimize simultaneously more than one 
software quality criteria.

Most researchers [1, 2, 15, 32, 35, 37, 38] have formulated the SMCPs as a single-objective optimization 
problem and solved using different single-objective meta-heuristic algorithms [e.g. hill-climbing (HC) and 
GA]. The main limitation of the single-objective optimization approach is that it optimizes a single criterion 
and generates only a single solution at each run. Thus, little information can be provided to the decision 
makers about different aspects of the quality criterion. So formulation of SMCP as a multi-objective optimiza-
tion problem, and solving using multi-objective evolutionary approach has recently become more practically 
useful.

The current search-based multi-objective software module clustering approaches [5, 28, 29, 43] have 
been applied successfully to solve the M-SMCPs. Most of the multi-objective software modules clustering 
approaches for M-SMCP problems are genetic-based multi-objective evolutionary algorithms (MOEAs) (e.g. 
[4, 5, 29, 43]). Even though these approaches have shown many advantages in solving the M-SMCPs, still there 
are some challenges corresponding to characteristics of MOEAs such as uncertainty, conflicting attribute, 
large number of quality criteria, etc that need to be addressed. In this paper, we address the following two 
main challenges:

 – The SMCP is naturally a multi-objective optimization problem; hence, MOEA has to solve it by optimizing 
multiple objective functions simultaneously. However, the performance of MOEAs, for instance, non-
dominated sorting genetic algorithm II (NSGA-II) [13], gets deteriorated if the number of objectives func-
tions increases by more than three.

 – Most of the MOEAs contain many control parameters that require to be set by users according to domain 
knowledge/experience and problem characteristics to achieve a satisfactory performance. However, it is 
the most challenging task for SMCPs because there are diverse categories of software problems and iden-
tifying control parameters for every different problem is very difficult and time consuming.

To address the above challenges, there is growing need for MOEAs that can solve M-SMCPs efficiently with a 
large number of objective functions. Recent works [12, 19, 40, 47, 48] in optimization literature have proposed 
several algorithms to address such kind of optimization problems using, for instance, preference based [19], 
objective reduction [40], reference based [12], decomposition based [47], and indicator based [48] approaches. 
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However, to the best of our knowledge, these techniques have not yet been explored to solve the M-SMCPs. 
We propose a multi-objective software module clustering technique by integrating the two-archive [44] and 
indicator based selection [48] concepts into the original artificial bee colony (ABC) [26].

To assess the effectiveness of the proposed approach, we applied it over seven un-weighted and 
10 weighted open software projects. We report the results of our proposed approach and compared it with 
existing MOEAs [two-archive algorithm (TAA) and NSGA-II] that have been used to solve the M-SMCPs by the 
previous researchers [5, 43]. The results indicate that our proposed approach significantly outperforms TAA 
and NSGA-II based approaches, in terms of modularization quality (MQ) [43], coupling [43], cohesion [43], 
Pareto optimality [43], inverted generational distance (IGD) [50], hypervolume (HV) [49], and spread perfor-
mance [13] metrics.

The rest of this paper is organized as follows: Section 2 presents related research works. Section 3 briefly 
describes the SMCPs and problem formulation. Section 4 gives a short description of two-archive evolution-
ary algorithm and detailed description of two-archive based artificial bee colony (TA-ABC). Section 5 presents 
details of the experimental setup. Section 6 presents the results and compares them to the best performing 
algorithms from the existing literature to demonstrate the superiority of the TA-ABC algorithm. Section 7 
discusses the implications of the results. Section 8 provides threats to validity. Finally, Section 9 gives the 
concluding remarks and future research directions.

2   Related Works
It is a commonly accepted fact that a software system comprising well-modularized structure is easier to 
design, develop, test, maintain, and evolve [6, 9]. However, maintaining a large software system becomes 
difficult, especially if their modular structure degrades and is not documented well [15, 24]. To address the 
SMCPs, various search-based and deterministic approaches have been proposed in the literature [3, 29, 
36, 38, 43]. Our approach formulates the SMCPs as search-based M-SMCP and solves using multi-objective 
two-archive ABC algorithm; hence, related works are centered on search-based software module clustering 
literature.

Mancoridis et al. [35] were the first who proposed the search-based optimization approach to address the 
SMCPs. The work [35] formulated the characteristics of well-modularized software as objective functions; the 
evaluation of these objective functions directs the optimization process towards good clustering. Further, the 
works have developed an automated tool named Bunch for clustering the software systems. Following this 
search-based optimization concept for SMCPs, many other search-based optimization methods have been 
designed in previous works, such as GA, HC algorithm, simulated annealing (SA), and so forth [15, 21, 29, 32, 
33, 37, 38, 43].

The work of Mancoridis et al. [34] applied the Bunch tool for the maintenance and architecture recovery 
of software systems. To guide the process of searching, the authors designed an objective function, namely, 
MQ. The MQ is a trade-off between interconnectivity and intraconnectivity and has been integrated into the 
Bunch tool [34]. Using the Bunch tool with a set of meta-heuristic clustering algorithms (GA, HC, and SA), 
the software system is partitioned as subsystems at a high level. The clustering results process resulted in 
software which possesses the best quality in terms of grouping and turns out to be effective in a medium as 
well as for large systems.

Several studies [15, 21, 38] have demonstrated that for module clustering the HC algorithm has outper-
formed the standard search techniques such as GA and SA in terms of both the execution time and solution 
quality. However, it is well known that the HC algorithm suffers from the problem of early convergence to 
local optima [32]. To overcome this problem, the authors [32] proposed a multiple HC approach to address the 
software module clustering.

Praditwong [42] proposed two evolutionary algorithms based on GA, namely, Grouping Genetic Algorithm 
(GGA) and Group Number Encoding (GNE), to solve SMCPs. The author also performed a comparative study 
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of these two genetic-based algorithms over various real-world SMCPs in terms of the MQ quality measure. 
The results demonstrated that GGA produced high-quality solutions compared to the GNE approach. Further, 
the same authors [43] formulated the SMCP, a multi-objective search problem [namely, maximizing cluster 
approach (MCA) and equal-size cluster approach (ECA)] and use two-archive evolutionary algorithms [44].

Even after formulation of SMCP as a search-based optimization problem, some other widely used search-
based algorithms (e.g. ABC [26] and Grey Wolf Algorithm [27]) have not gained much attention. The ABC 
algorithm has been demonstrated to be effective and well-situated to solve various optimization problems in 
the field of science and engineering [11, 23, 25, 31]. Recently, Dahiya et al. [11] demonstrated the applicabil-
ity of ABC in software testing; however, the applicability and usefulness of the ABC algorithm have not been 
studied by any researcher till date to solve the SMCPs. This paper formulates SMCP as search-based multi-
objective optimization problem and solves using ABC meta-heuristic algorithm.

3   Software Module Clustering Problems
SMCP is a problem of automatically grouping software modules into disjoint sets of clusters to improve software 
design structure [43]. The SMCPs is basically a graph partitioning problem which is a class of NP-hard problem 
[17, 43]. The SMCPs can be represented as a MDG which is defined as a graph G = (V, E), where V represents the 
set of modules and E is the set of relationships between modules. All modules need to be partitioned into k 
non-overlapping clusters C1, C2, …,Ck; that is, C1 ∪ C2 ∪   ·   ·   ·   ∪ Ck = V, Ci ≠ ∅ and Ci ∩  Cj = ∅, i, j = 1, 2, ∈ k, and 
i ≠ j. A good partitioning of the MDG is regarded as a partition with minimum interconnection and maximum 
intraconnection. The number of ways to partition an MDG containing a set of n vertex into k nonempty clusters 
can be computed by using the Stirling numbers of the second kind, S(n, k) [22]. The searching for an optimal 
partition from an MDG becomes problematic as the number of modules increases. To solve such class of prob-
lems using deterministic or exhaustive methods requires very high computing time; hence, formulation of 
SMCPs as a search-based optimization problem is the best alternative to find a near-optimal solution. The 
search-based SMCPs can be formulated as single-objective or multi-objective optimization problem. The brief 
description of multi-objective optimization formulation for SMCP is given in the following subsection.

3.1   Multi-objective Formulation

In multi-objective SMCP, more than one and less than or equal to three objectives are optimized. It determines 
a clustering solution x* for which
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where M and fi represent the number of objective functions and ith objective function, respectively. Q is the 
number of equality constraints; P is the number of inequality constraints, and U

ix  and L
ix represent the upper 

and lower bounds of the decision variable xi.

3.2   Module Clustering Objective Functions

The main goal of software module clustering is to improve the quality of clustering by optimizing various 
conflicting software attributes. Praditwong et al. [43] have proposed two multi-objective formulations (i.e. 
ECA and MCA) that capture attributes of a well-clustered software system. Moreover, these formulations also 
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help in guiding the optimization process towards good clustering. The objective functions defined under MCA 
and ECA formulations are as follows: (1) maximization of cohesion (i.e. sum of intracluster edges), (2) mini-
mization of coupling (i.e. sum of intercluster edges), (3) minimization of number of clusters, (4) maximization 
of MQ, (5) minimization of the number of isolated clusters, and (6) minimization of the differences between 
maximum size cluster and minimum size cluster.

The MCA formulation includes the objective function numbered with 1, 2, 3, 4, and 5, and ECA formula-
tion includes the objective function numbered with 1, 2, 3, 4, and 6. The computations of all identified objec-
tive functions except the MQ objective are straightforward. The computation of MQ is defined as follows:
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where i is the number of intracluster edges and j is that of intercluster edges of cluster k for an un-weighted 
MDG, while for weighted MDG, i represents the total weight of intracluster edges and j represents total weight 
of intercluster edges of cluster k.

4   Two-Archive based Artificial Bee Colony
The basic ABC algorithm [26] was designed to solve the single-objective continuous optimization problem. 
However, the software module clustering is a natural multi-objective optimization problem where various 
conflicting quality criteria need to be optimized to obtain a good quality software structure. The M-SMCP can 
be designed as S-SMCP by aggregating all objective functions into a single objective function and further can 
be solved using the single-objective ABC algorithm. However, such formulation has the following shortcom-
ing: as the population evolves, all individual solutions suffer earlier convergence to the local optima in very 
few generations. This may lead single-objective ABC algorithm towards production of the population with 
low diversity in successive generations [37]. Hence, for complex M-SMCPs, we propose TA-ABC algorithm 
adapting the concepts of two-archive approach which can produce a good clustering solution with good con-
vergence, satisfactory diversity, and acceptable complexity.

4.1   The Basic Concept of ABC Algorithm

The ABC, a meta-heuristic algorithm based on the behavior of bees, has gained wide attention and has been 
demonstrated to be effective and well situated for solving the various types of optimization problems in 
science and engineering fields [11, 23, 25, 31]. The main steps of the basic ABC algorithm are as follows:

 – Population initialization phase: The initial population of the basic ABC algorithm is generated by a 
random process. Let vi = {vi1, vi2, …, vin} represent the ith food source in the population with n number of 
decision variables. To initialize the population, each food source is generated as follows:

 min max min( ) , 1,..., ; 1,..., ,i j i j i j i jv v v v r j n i SN= + − × = =  (3)

where max
i jv and min

i jv represent the upper and lower bounds for the decision variable j, respectively, and r 
is used a uniform random number in [0, 1].

 – Employed bee phase: In the employed bee phase, the ith food source vij of the population is assigned to 
the ith employed bee, which generates a new neighboring solution around the assigned food source as 
follows.

 new ( 1,1) ( )j i j i j k jv v U v v= + − × −
 (4)
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Algorithm 1: The ABC Algorithm [26].

1. Input- Parameters values;   22. i ← 1, t ← 0;  //Onlooker bee phase;
2. NFS: Population size (i.e. number of food source);   23. while t < NFSdo
3. NIC: Number of iterations;   24. r ← rand(0, 1);  //random generation;
4. NLMT : Maximum number of trials;   25. if r < pi then
5. Output- Optimal solution;   26. t ← t + 1;
6. begin   27. CSi ← a candidate solution by Eq. (3);
7. for i = 1 to NFS do  //Generation of food sources for initial population;  28. f(CSi) ← evaluate candidate solution;
8. FSi ← generate food source i using Eq. (7);   29. if f(CSi) < f(FSi) then  //greedy selection;
9. fi ← f(FSi)  //calculate fitness function of food source i;   30. FSi ← CSi

10. Tr(i) ← 0  //initialize trial to zero;   31. f(FSi) ← f(CSi)
11. Itr ← 1;  //initialize iteration to one   32. Tr(i) ← 0;
12. while Itr < NIC do   33. else
13. for i = 1 to NFS do  //Employee bee phase;   34. Tr(i) ← Tr(i) + 1;
14. CSi ← generate a candidate solution using Eq. (8)   35. i ← (i + 1)mod NFS

15. f(CSi) ← evaluate fitness function of candidate solution   36. //Scout bee phase;
16. if f(CSi) < f(FSi) then  //greedy selection;   37. ind = {i: Tr(i) = max(Tr)};
17. FSi ← CSi   38. if Tr (ind) > NLMT then
18. f(FSi) ← f(CSi)   39. FSind ← random solution by Eq. (7);
19. Tr(i) ← 0;   40. find ← f(FSind);
20. else Tr(i) ← Tr(i) + 1;   41. Tr(ind) ← 0
21. Calculate each onlooker’s bee probability using Eq. (9);   42. Itr ← Itr + 1

where i ∈{1,…,SN}, and k ∈ {1,…,SN}∧k ≠ i is a randomly chosen food source. After generating new solu-
tion vnew it is evaluated and compared to vi then the solution with the higher fitness value is selected.

 – Onlooker bee phase: The onlooker bees make a decision on food sources whether to select or not the 
food source selected by the employed bees. To perform this, the onlooker bees use the probability values, 
calculated using Eq. (9), to select the food source for discovering promising regions in the search space.
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where fiti is the fitness value of the ith food source.
 – Scout bee phase: If a food source cannot be further improved through a limited iteration, then the food 

source is supposed to be abandoned and a randomly produced food source will be replaced with it.

The above basic ABC algorithm was designed to solve the single-objective optimization problems that have 
the continuous decision variables; hence, the original form of the algorithm cannot be directly used for 
solving the combinatorial/discrete multi-objective optimization problems. The M-SMCP is a discrete multi-
objective optimization problem; therefore, in this work, some alterations to the basic ABC algorithm have 
been done for making it suitable for the M-SMCPs.

4.2   Proposed TA-ABC Algorithm

This section presents a TA-ABC approach to solve M-SMCPs. The proposed TA-ABC has the following main 
features:

 – The approach can work efficiently for more than three objective functions.
 – The approach provides a good balance between exploration and exploitation.
 – The proposed approach can be easily implemented.

To impart the above features, the TA-ABC algorithm exploits the concepts of two-archive technique [44] and 
indicator based ranking [48]. The combination of both these concepts makes TA-ABC algorithm perform 
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 efficiently in case of more than three objective functions. On the other hand, use of ABC algorithm concepts 
makes the approach free from many parameters and perform good exploitation and exploration of the search 
space. The flow chart of TA-ABC is given in Figure 1.

The working of TA-ABC method is divided into six parts: food source representation, Population initiali-
zation, Send employed bees, Send onlooker bees, Send scout bees, and Update the archive. The detailed 
explanations of these parts are provided in the subsequent subsections.

4.2.1   Food Source Representation

To solve M-SMCPs with the TA-ABC algorithm, its solution requires to be modeled in a proper way, so as it 
can be solved efficiently. In the search-based techniques, the solution is encoded as a string of (typically 
binary) numbers. In our TA-ABC approach, each module clustering solution is encoded as a string of integer 
numbers instead of binary numbers. In the integer encoding, a single integer perturbation can separate 
a module clustering solution into two distinct module clustering solutions, while binary representation 
requires a large number of perturbations. Hence, in the integer encoding, individual module clustering solu-
tions are a smaller distance from one another, which significantly increases the power of exploration and 
exploitation [10].

Let {m1, m2, … mn} be the set of n number of modules in the software system. Then the solution is repre-
sented as a vector of nm = n integers (m =[m1, m2, … mn]). In this representation, the value 0 < mi ≤ n of the ith 
module indicates the cluster to which the ith module is assigned. A clustering solution with the same value for 
all the modules means that all modules are grouped in the same cluster, while a clustering solution contain-
ing all possible values (from 1 to n) denotes that each cluster holds only a single module. To demonstrate it, 
let us consider a hypothetical software system depicted in Figure 2.

In Figure 2 the clustering solution (i.e. food source) of software system contains eight modules (i.e. num-
bered with 1–8) distributed in three clusters, namely, C1, C2, and C3. Hence, it can be represented as a vector 
C = [1, 1, 2, 2, 2, 3, 3, 3], where modules 1 and 2 are in cluster C1, modules 3, 4, and 5 are in cluster C2, and 
modules 6, 7, and 8 are in cluster C3.

N

Y

Population
initialization

Update CA and
DA archive

Stopping
criterion?

Return archives

Send employee bees

Send onlooker bees

Send scout bees

Figure 1: Flow Chart of Proposed TA-ABC Algorithm.
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Figure 2: Representation of a Simple Food Source (i.e. Software Clustering Solution).
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4.2.2   Population Initialization

The TA-ABC algorithm receives the population size (PS), MaxTrial, the number of dimensions (D), the number 
of scouts (Scouts), and the two external archives, namely, convergence archive (CA) and divergence archive 
(DA), each with variable size and constant total size equal to PS. The number of food sources (clustering 
solutions) is set as equal to PS. After initialization of basic parameters, the initial food sources are generated 
randomly, and their nectar amount (clustering fitness function) is determined. In multi-objective approach, 
instead of finding a single solution, a set of non-dominated solutions are collected. For this, non-dominated 
food sources are collected and stored in the two external archives CA and DA according to their updating rules 
(details are given in subsection 4.2.6). Algorithm 2 provides pseudo-code of population initialization.

The RandInt (UBd  −  LBd)) generates a random number selected from a normal distribution in the range  
of 1 [i.e. Lower Bound (LB)] and number of classes [i.e. Upper Bound (UB)], and UBd and LBd are upper and 
lower bounds along the dth dimension, respectively.

4.2.3   Send Employed Bees

Algorithm 3 presents the pseudo-code of Send Employed Bee module of the TA-ABC algorithm. After 
random initialization of the food source (Population initialization), the employed bees are sent to search 
new food sources. For this, the employed bees use the history information stored in combined |CA + DA |  
archives. The main reason for using the external archive solutions is that it contains the best solutions 
found so far by the employed bees, and it may guide them towards better possible food sources. The main 
steps of the working process of employed bees are as follows: (1) Each of the employed bees searches a 
new food source with the help of food source stored in archives (Lines 1−4). (2) If the newly discovered food 
source is not the old food source, then the new food source is computed with the old food source using 
domination rank approach (Lines 5−6). (3) If the new food source dominates the old food source, then it 
replaces the old food source; otherwise, the old food source remains in the population, and its trial value 
is incremented by 1 (Lines 7−13).

4.2.4   Send Onlooker Bees

Algorithm 4 presents the pseudo-code of the Send Onlooker Bees module. In the send employed bee module, 
all the employed bees search optimal food source using the information provided by the CA and DA external 
archives. After searching the optimal food source, all employed bees come to the hive and share their infor-
mation about the newly discovered food source with onlooker bees waiting in the hive. The onlooker bees 
collect the information provided by the employed bee regarding the food sources. Based on the collected 
information, each onlooker bee needs to make a decision process for the selection of food sources. To perform 

Algorithm 2: Pseudo-Code of the Initialization of Food Sources.

1. TA-ABC (Dataset, CA, DA, FoodNumber, MaxTrial)
2. Generate food sources c = (c1, c2, …, cFoodNumber) randomly
3. For i = 1 to FoodNumber
4. For d = 1 to D   /* D represents the dimension (i.e. total number of classes) */
5. ci

d ← RandInt (UBd  −  LBd))   /* LB = 1 and UB = Total number of classes */
6. End For
7. End For
8. Calculate each objective function of ci food source based on considered multi-objective formulation
9. Initiate Trial1, Trial2, …, TrialFoodNumber by 0
10. Update the External Archives CA and DA
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this, the onlooker bees compute the selection probability pi of each food source ci using Eq. (10) for each food 
source provided by the corresponding employed bee.

 

FoodNumber

1

fit( )

fit( )

i
i

m
m

c
p

c
=

=

∑
 

(6)

The selection probability pi is the probability of the food source provided by the employed bee i which is pro-
portional to the fitness of food source. To calculate the fitness of a food source advertised by employed bees, 
we use the quality indicator Iε+ given in IBEA [48]. Iε+ is an indicator that calculates the minimum distance 
that one food source (i.e. solution) requires in order to dominate other food sources in the objective space. 
The value of I

ε+
 between two solutions c1 and c2 is computed as follows:

 1 2 1 2( , ) min ( ( )) ( ), 1 )i iI c c f c f c i m
ε ε

ε+ = − ≤ ≤ ≤  (7)

where m is the number of objectives. Using Eq. (7), we assign the fitness to each solution according to the 
following equation.

Algorithm 3: Pseudo-Code of the Send Employed Bees.

1. For i = 1 to FoodNumber
2. Select a random component d, d ∈ {1, 2,…, D} from food source ci,
3. Select a random food source k from archive |CA + DA |, k ≠ i ∈ {1, 2,…,( | CN + DA |)},
4. vi

d = xk
d,

5. If vi ≠ ci, then
6. Calculate the objective functions of new food source: vi

7. If the new food source vi
d dominates old food source ci

8. Replace old food source ci with new food source vi

9. Else
10. Increment Triali by 1
11. End If
12. End If
13. End For

Algorithm 4: Pseudo-Code of the Send Onlooker Bees.

1. Calculate probability value pi of each food source Ci based On Eq. (10)
2. For I = 1 to FoodNumber
3. If rand < pi, Then   /* Select ci employed bee to follow */
4. Select a random component d, d ∈ {1, 2,…, D} from food source ci,
5. Select a random food source k from archive |CA + DA |, k ≠ i ∈ {1, 2,…,( | CA + DA |)},
6. vi

d = xk
d,

7. If vi ≠ ci, Then
8. Calculate the objective functions of new food source: vi

9. If the new food source vi
d dominates old food source ci

10. Replace old food source Ci with new food source vi

11. Else
12. Increment Triali by 1
13. End If
14. End If
15. End If
16. If i > FoodNumber, Then i = 1   /* Reset the value of i */
17. End For
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After computing the selection probability, the onlooker bees use the greedy technique to select a food 
source advertised by the employed bee. Further, each onlooker bee selects a food source from archive member 
randomly and performs the same steps as an employed bee has performed to update their current food source.

4.2.5   Send Scout Bees

At each cycle of the algorithm, the employed and onlooker bees search new food source around each old food 
source and evaluate them; if the old food source cannot be improved after a certain number of iterations, 
called MaxTrial, then the old food source is abandoned. In Send scout bee module, the algorithm sends scout 
bees for each abandoned food sources; the scout bees randomly search a new food source and replaces the 
abandoned food source if the newly generated food source dominates it. Otherwise, the old food source is 
kept in the population.

4.2.6   Update CA and DA Archives

To guide the employed and onlooker bees in a good direction, the TA-ABC algorithm uses the two exter-
nal archives concepts inspired by the work presented in [44] to store the non-dominated solutions. These 
archives are convergence archive (CA) and diversity archive (DA) with variable size; however, the total size is 
fixed. Both CA and DA archives are updated as follows: (1) the algorithm first selects the non-dominated solu-
tions from the population. (2) The selected non-dominated solutions are compared to the solutions stored in 
the CA and DA archives. (3) If the non-dominated solution is not dominated by any solution stored in CA or 
DA archive, then discard the solution (4). If the solution dominates any solution stored in CA or DA archives, 
then the dominated solution stored in CA and DA are removed. (5) If the solution is non-dominated with any 
solution stored in CA or DA archives, then add the solution in CA. (6) Finally, if the number of non-dominated 
solutions of both archive increases the total size of CA and DA, then delete the extra solutions from DA archive 
which have the minimal Euclidean distances to CA archive.

4.2.7   Termination

Each of the four modules (i.e. Send employed bee, Send onlooker bee, Send scout bee, and Update archive) 
of TA-ABC iterate cycle by cycle until the specified termination condition is reached. At the end of TA-ABC 
algorithm termination, the solutions stored in both CA and DA archives are returned as the output. In our 
implementation, the TA-ABC terminates after a predefined number of function evaluations same as in TAA 
and NSGA-II that have been used to solve M-SMCPs [43].

Algorithm 5: Pseudo-Code of the Send Scout Bees.

1. If there exists some ci | {triali  >  t},
2. Select one such ci randomly,
3. For each component d, d ∈ {1, 2,…,D},
4. vi

j = ←RandInt (UBd − LBd))   /* LB = 1 and UB = Total number of classes */
5. End For
6. Calculate the objective functions of new food source: vi

7. Replace old food source ci with new food source vi

8. Set triali = 0,
9. End If
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5   Experimental Setup
This section describes the experimental setup conducted to evaluate the proposed TA-ABC algorithm over 
10 weighted and seven un-weighted MDGs with MCA and ECA multi-objective formulations. Further, an exper-
iment is also performed to compare the results of the TA-ABC with the existing TAA algorithm and NSGA-II.

5.1   Test Problems

In this paper, varieties of MDGs of software systems with different characteristics are used. There are two 
types of MDGs (weighted and un-weighted) used to evaluate the proposed approach. Table 1 provides a brief 
description about the number of modules and links of MDGs of considered software systems. In un-weighted 
MDGs, each connection (link) represents the existence of a unidirectional variable or a method reference 
between two modules. In weighted MDGs each connection contains weights which are calculated according 

Algorithm 6: Pseudo-Code of the Update the External Archive (CA and DA).

1. Collect FSnd the set of non-dominated food sources in current population   /* Addition Strategy */
2. for i = 1 to | FSnd | do
3. if FSnd[i] is not dominated by any food source stored in either AC or DA archive, then
4. if FSnd[i] dominates any food source stored in either AC or DA archive, then
5. The dominated food sources stored in AC and DA archive are removed
6. Add the FSnd[i] to archive AC
7. else
8. Add the FSnd[i] to archive DA
9. end if
10. end if
11. end if
12. end for
13. if |CA | + | DA | > limit then   /* Removal Strategy */
14. Select a food source of DA with minimal Euclidean distances to CA archive.
15. Delete the selected food source from DA archive.
16. end if

Table 1: Descriptions of Testing Problems [43].

Systems name  Modules  Links

Un-weighted    
 Mtunis   20  57
 Ispell   24  103
 Rcs   29  163
 Bison   37  179
 Grappa   86  295
 Bunch   116  365
 Incl   174  360
Weighted    
 Icecast   60  650
 gnupg   88  601
 inn   90  624
 bitchx   97  1653
 xntp   111  729
 exim   118  1225
 Mod_ssl   135  1095
 ncurses   138  682
 lynx   148  1745
 nmh   198  3262



630      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

to the number of the unidirectional variables and method references between modules. Larger connection 
weights specify more interconnection strength between modules and increase probability that it should be 
placed in the same cluster.

5.2   Research Questions

In our study, we evaluate the performance of our proposed TA-ABC approach for M-SMCPs by finding out 
whether it could generate the good modularization in terms of various structural quality metrics (i.e. MQ, 
coupling, and cohesion) compared to other existing algorithms. In addition to structural quality metrics, we 
also used the IGD [50], HV [49], spread performance metric [43], Pareto optimality [43], and execution time to 
compare the algorithms. The major goal of our study is to address the following research questions.

RQ1. MQ value as assessment criterion: How well does the proposed TA-ABC perform when compared 
against TAA and NSGA-II algorithms using the MQ as the assessment criterion?

RQ2. Coupling as assessment criterion: How well does the proposed TA-ABC perform when compared 
against TAA and NSGA-II algorithms in terms of coupling?

RQ3. Cohesion as assessment criterion: How well does the proposed TA-ABC perform when compared 
against TAA and NSGA-II algorithms in terms of cohesion?

RQ4. Pareto optimality as assessment criterion: How well does the TA-ABC algorithm perform at produc-
ing good approximations to the Pareto front compared to TAA and NSGA-II algorithms?

RQ5. IGD, hypervolume, and spread as assessment criterion: How well does the proposed TA-ABC 
perform when compared against TAA and NSGA-II algorithms in terms of IGD, HV, and spread as the assess-
ment criterion?

Note that the IGD metric corresponds to the average Euclidean distance separating each reference solution 
(true Pareto front) from its closest non-dominated one (Pareto front obtained by the algorithm). For each 
studied software project, we use the set of Pareto optimal solutions produced by all algorithms over all runs 
as a true Pareto front.

5.3   Competitor Algorithms and Parameter Setup

This subsection provides a brief description about competitor algorithms with their parameter settings that 
have been used in this study. The TAA and NSGA-II are two popular algorithms which have been used to solve 
the M-SMCPs by the previous researchers [4, 5, 43]. In this paper, the results of the TA-ABC are compared with 
TAA and NSGA-II. The parameter settings of TAA and NSGA-II algorithms are the same as suggested in [5, 43]. 
Different search-based optimization approaches usually consume different amounts of fitness computations. 
To make a fair comparison between such meta-heuristic algorithms, an equal number of fitness function 
computations is allowed to each algorithm. The number of fitness evaluations (NFE) for the TA-ABC approach 
is computed using the following method: NFE ≤ (SN + SN + 1)*MCN + SN, where SN and MCN is the number of 
onlooker bees and maximum number of iterations, respectively. The parameter for NSGA-II is the same as 
TAA. The parameter values of the algorithms are assigned according to the number of modules (N) in the 
problem instances. The crossover and mutation operators are single-point crossover and single-point muta-
tion, respectively. The mutation probability is set as 0.004*log2 (N). The crossover probability is set as 0.8 for 
population size less than 100, otherwise 1.0. The maximum number of generations, population size, and total 
archive size is 200N, 10N, and 10N, respectively. The limit parameter for the TA-ABC is set as (D*PS)/2, where 
D and PS is the dimension of the problem and population size, respectively.
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5.4   Collecting Results from Experiment

The search-based optimization algorithms are stochastic in nature; i.e. they can produce different values on 
each run. We collect the results of each algorithm on each MDG by executing 30 times, following the same 
approach as discussed in [5, 43].

6   Results and Analysis
This section illustrates the results obtained by TA-ABC for the solution of M-SMCPs and its comparison with 
current evolutionary multi-objective approaches (i.e. TAA and NSGA-II) that have already been used to solve 
the M-SMCPs. Each subsection addresses one of the four research questions given in Section 5.2.

6.1   The MQ Value as Assessment Criterion

This section presents the results of the experiments that answer the RQ1. To answer this research question, we 
compared the TA-ABC with TAA and NSGA-II algorithms over seven un-weighted and 10 weighted MDGs with 
MCA and ECA multi-objective formulations in terms of MQ values.

Table 2 presents the MQ values obtained by TA-ABC, TAA, and NSGA-II algorithms with MCA formulation.
The 8th and 9th columns in the table denote the p-values (p-value below 0.05 is considered statistically sig-

nificant). The symbols [−] denote that the result is significantly in favor of TA-ABC compared to corresponding 
approach, symbol [+] denotes opposite, and symbol [≈] is used when there is not a significant favor to any 
of the approaches. First, if we compare the MQ results of the TA-ABC approach with the TAA approach on 
un-weighted MDGs, the results show that the TA-ABC approach outperforms TAA approach in five MDGs out 
of seven MDGs. There are four cases where TA-ABC performs significantly better than TAA approach. Hence, 
there is good evidence to suggest that for un-weighted MDGs, the TA-ABC approach outperforms the TAA 
approach. Similarly, for weighted MDGs, the results provide sufficient evidence that the TA-ABC out performs 

Table 2: Comparison of MQ Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 2.352 0.012 2.294 0.013 2.134 0.087 0.012 [−] <0.001 [−]
 Ispell 2.258 0.068 2.269 0.043 2.075 0.046 0.168 [≈] <0.001 [−]
 Rcs 2.296 0.036 2.145 0.034 2.062 0.034 <0.001 [−] <0.001 [−]
 Bison 2.257 0.051 2.416 0.038 2.187 0.045 <0.001 [+] <0.001 [−]
 Grappa 12.851 0.235 11.586 0.106 10.487 0.214 <0.001 [−] <0.001 [−]
 Bunch 11.765 0.321 12.145 0.225 10.654 0.025 0.013 [+] <0.001 [−]
 Incl 12.869 0.356 11.811 0.351 10.598 0.342 <0.001 [−] <0.001 [−]
Weighted
 Icecast 2.216 0.065 2.401 0.057 2.158 0.054 <0.001 [+] <0.001 [−]
 gnupg 6.418 0.087 6.259 0.072 5.864 0.044 <0.001 [−] <0.001 [−]
 inn 8.026 0.079 7.421 0.077 6.875 0.053 <0.001 [−] <0.001 [−]
 bitchx 3.602 0.038 3.572 0.055 3.254 0.028 0.086 [≈] <0.001 [−]
 xntp 6.869 0.061 6.482 0.110 6.157 0.089 0.034 [−] <0.001 [−]
 exim 5.458 0.104 5.316 0.132 5.024 0.067 <0.001 [−] <0.001 [−]
 Mod_ssl 9.854 0.254 8.832 0.097 8.798 0.154 <0.001 [−] <0.001 [−]
 ncurses 11.562 0.346 10.211 0.145 10.125 0.351 <0.001 [−] <0.001 [−]
 lynx 3.481 0.073 3.447 0.086 3.145 0.025 0.472 [≈] <0.001 [−]
 nmh 6.978 0.257 6.671 0.177 6.658 0.131 <0.001 [−] <0.001 [−]



632      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

the TAA approach over most of the cases except one case. That is, TA-ABC approach beats TAA approach in 
nine weighted MDGs, including seven in which the results are statistically significant. Second, if we compare 
the results of the TA-ABC approach with NSGA-II approach, the results show that the TA-ABC approach out-
performs the NSGA-II approach for both weighted and un-weighted MDGs.

Table 3 presents the results obtained by TA-ABC, TAA, and NSGA-II with ECA formulation on weighted 
and un-weighted datasets. The results provided in Table 3 clearly indicate that the TA-ABC approach out-
performs TAA and NSGA-II in most of the cases. The MQ results obtained by the TA-ABC approach and TAA 
approach over un-weighted MDG show that the TA-ABC approach outperforms the TAA approach in six MDGs 
out of seven MDGs. There are four cases where the TA-ABC approach performs significantly higher compared 
to TAA approach. However, for weighted software applications, the results indicate that the TA-ABC approach 
outperforms the TAA approach over most of the cases except one case. That is, TA-ABC approach performs 
significantly better than TAA approach in all seven software applications. The comparison results of the 
TA-ABC with NSGA-II approach shows that the TA-ABC approach outperforms NSGA-II approach in all cases 
for both weighted and un-weighted software applications.

6.2   Coupling as an Assessment Criterion

The coupling values obtained by TA-ABC, TAA, and NSGA-II approaches on un-weighted and weighted 
MDGs with MCA formulation are shown in Table 4 and with ECA formulation in Table 5. From Table 4 for 
un-weighted MDGs it can be observed that TA-ABC approach obtained higher values of coupling than TAA 
approach in all seven cases, out of which five cases are significantly in favor of TA-ABC. For weighted MDGs, 
the TA-ABC outperforms TAA in all 10 cases in which six cases are statistically significant. However, TA-ABC 
performs significantly better than NSGA-II in all cases for un-weighted as well as weighted MDGs.

Table 5 presents the results comparing the performance of the TA-ABC approach and the TAA approach, 
and TA-ABC approach and NSGA-II approach with ECA formulation in terms of coupling measure. Coupling 
results shown in Table 5 for un-weighted MDGs indicate that the TA-ABC outperforms TAA in five cases, out 

Table 3: Comparison of MQ Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 2.157 0.021 2.314 0.000 1.785 0.032 <0.001 [−] <0.001 [−]
 Ispell 2.342 0.036 2.339 0.022 1.981 0.084 0.127 [≈] <0.001 [−]
 Rcs 2.132 0.012 2.239 0.022 1.795 0.036 <0.001 [−] <0.001 [−]
 Bison 2.458 0.054 2.648 0.029 2.235 0.054 <0.001 [−] <0.001 [−]
 Grappa 13.687 0.148 12.578 0.053 12.521 0.052 <0.001 [−] <0.001 [−]
 Bunch 13.897 0.342 13.455 0.088 12.325 0.245 0.175 [≈] <0.001 [−]
 Incl 13.498 0.234 13.511 0.059 12.642 0.134 0.103 [≈] <0.001 [−]
Weighted
 Icecast 2.842 0.036 2.654 0.039 2.561 0.061 <0.001 [−] <0.001 [−]
 gnupg 7.621 0.085 6.905 0.055 7.156 0.035 <0.001 [−] <0.001 [−]
 inn 7.837 0.062 7.876 0.046 7.264 0.052 0.121 [≈] <0.001 [−]
 bitchx 4.036 0.037 4.267 0.027 3.647 0.026 <0.001 [−] <0.001 [−]
 xntp 8.954 0.064 8.168 0.076 8.265 0.087 <0.001 [−] <0.001 [−]
 exim 6.351 0.076 6.361 0.084 5.867 0.068 0.108 [≈] <0.001 [−]
 Mod_ssl 9.258 0.057 9.749 0.071 8.871 0.102 <0.001 [+] <0.001 [−]
 ncurses 12.325 0.127 11.297 0.133 11.135 0.141 <0.001 [−] <0.001 [−]
 lynx 4.957 0.079 4.694 0.060 4.531 0.062 <0.001 [−] <0.001 [−]
 nmh 8.964 0.109 8.592 0.148 8.439 0.075 <0.001 [−] <0.001 [−]
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of which three cases are statistically significant in favor of TA-ABC. For weighted MDGs, the TA-ABC outper-
forms TAA in nine cases out of which seven cases are statistically significant in favor of TA-ABC. However, the 
coupling results of the TA-ABC and NSGA-II show that the TA-ABC approach performs significantly better than 
NSGA-II in all cases for un-weighted and weighted MDGs.

Table 4: Comparison of Coupling Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems TA-ABC TAA NSGA-II p-Values p-Values

Mean STD Mean STD Mean STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis 63.391 3.256 64.733 4.185 66.561 3.419 0.123 [≈] <0.001 [−]
 Ispell 158.458 1.025 159.800 6.440 166.381 1.076 0.148 [≈] <0.001 [−]
 Rcs 217.391 12.361 235.733 30.669 228.261 12.979 0.014 [−] <0.001 [−]
 Bison 242.925 17.564 277.267 16.463 255.071 18.442 <0.001 [−] <0.001 [−]
 Grappa 385.125 19.261 420.467 22.380 404.381 20.224 <0.001 [−] <0.001 [−]
 Bunch 498.525 13.256 580.867 16.648 523.451 13.919 0.011 [−] <0.001 [−]
 Incl 519.125 22.153 536.467 28.048 545.081 23.261 <0.001 [−] <0.001 [−]
Weighted
 Icecast 7484.858 368.256 7636.200 589.843 7859.101 386.669 0.125 [≈] <0.001 [−]
 gnupg 4191.188 412.357 5192.530 335.669 4400.747 432.975 <0.001 [−] <0.001 [−]
 inn 5375.388 389.235 6176.730 325.260 5644.157 408.697 <0.001 [−] <0.001 [−]
 bitchx 35837.36 278.365 35938.700 5406.697 37629.228 292.283 0.107 [≈] <0.001 [−]
 xntp 3559.058 356.127 4460.400 219.445 3737.011 373.933 0.014 [−] <0.001 [−]
 exim 11546.06 835.547 12347.400 1127.563 12123.363 877.324 <0.001 [−] <0.001 [−]
 Mod_ssl 11137.16 798.294 12138.500 621.962 11694.018 838.209 <0.001 [−] <0.001 [−]
 ncurses 2569.788 124.576 3071.130 188.785 2698.277 130.805 <0.001 [−] <0.001 [−]
 lynx 22149.56 1234.561 23150.900 1726.014 23257.038 1296.289 0.127 [≈] <0.001 [−]
 nmh 19620.16 562.371 19921.500 876.440 20601.168 590.490 0.162 [≈] <0.001 [−]

Table 5: Comparison of Coupling Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems  
 

TA-ABC 
 

TAA 
 

NSGA-II 
 

p-Values 
 

p-Values

Mean  STD Mean  STD Mean  STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
 Mtunis   61.557  2.235  60.000  0.000  64.635  2.347  0.129 [≈]  <0.001 [−]
 Ispell   157.624  1.234  145.933  5.595  165.505  1.296  <0.001 [+]  <0.001 [−]
 Rcs   213.557  9.345  230.867  15.719  224.235  9.812  <0.001 [−]  <0.001 [−]

Bison   235.091  16.237  252.400  12.434  246.846  17.049  <0.001 [−]  <0.001 [−]
Grappa   376.291  12.894  387.667  16.601  395.106  13.539  0.122 [≈]  <0.001 [−]
Bunch   479.691  18.239  504.600  10.611  503.676  19.151  <0.001 [−]  <0.001 [−]
Incl   534.291  15.765  439.600  7.673  561.006  16.553  0.003 [+]  <0.001 [−]

Weighted
Icecast   7434.024  325.128  7569.670  416.378  7805.725  341.384  <0.001 [−]  <0.001 [−]
gnupg   4090.354  384.265  4413.670  207.660  4294.872  403.478  <0.001 [−]  <0.001 [−]
inn   4874.554  368.864  5046.200  380.526  5118.282  387.307  <0.001 [−]  <0.001 [−]
bitchx   34936.52  356.195  35546.800  1266.136  36683.346  374.005  <0.001 [≈]  <0.001 [−]
xntp   4358.224  348.562  3692.070  109.004  4576.135  365.990  <0.001 [+]  <0.001 [−]
exim   12145.22  532.248  12612.900  1050.310  12752.481  558.860  0.108 [≈]  <0.001 [−]
Mod_ssl  10136.32  1123.561  11008.400  488.348  10643.136  1179.739  <0.001 [−]  <0.001 [−]
ncurses   2468.954  132.623  2607.270  115.030  2592.402  139.254  <0.001 [−]  <0.001 [−]
lynx   18148.72  1137.295  20546.700  956.032  19056.156  1194.160  <0.001 [−]  <0.001 [−]
nmh   17819.32  932.584  18576.800  473.564  18710.286  979.213  <0.001 [−]  <0.001 [−]
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6.3   Cohesion as an Assessment Criterion

This section compares TA-ABC algorithm with TAA and NSGA-II approach, i.e. how each of the multi-objec-
tive approaches performs in terms of cohesion as an assessment criterion using MCA and ECA formulations. 
Table 6 presents the cohesion results of the TA-ABC approach, TAA, and NSGA-II with MCA formulation. The 
cohesion results obtained from TA-ABC and TAA approaches over un-weighted MDGs given in Table 6 show 
that the TA-ABC outperforms TAA in all cases out of which five cases are significantly better. For weighted 
MDGs, the TA-ABC outperforms TAA in all cases out of which eight cases are significantly better. The cohesion 
results for TA-ABC and NSGA-II clearly show that the TA-ABC performs NSGA-II algorithm significantly better 
in all cases of weighted and un-weighted MDGs.

Table 7 presents the results comparing the performance of {TA-ABC approach, TAA approach} and 
{TA-ABC approach, NSGA-II approach} in terms of cohesion measure using ECA formulation. First, if we 
compare the cohesion values of TA-ABC approach and TAA approach, the results shown in Table 7 indicate 
that the TA-ABC approach outperforms TAA in five cases out of the seven un-weighted MDGs, out of which 
three cases are significantly better. In weighted MDGs, the TA-ABC approach outperforms TAA in nine out 
of 10 cases, out of which seven cases are significantly better. Second, if we compare the TA-ABC approach 
and NSGA-II approach, the comparison results indicate that the TA-ABC approach significantly outperforms 
NSGA-II in all cases for weighted and un-weighted MDGs.

6.4   Pareto Optimality as Assessment Criterion

This section compares the TA-ABC algorithm with TAA and NSGA-II in terms of how well each performs at 
producing good approximations to the Pareto front. Table 8 presents the dominance relationship for the 
results obtained from TA-ABC and TAA with both MCA and ECA formulations. This dominance relationship is 
used to compare any two solutions in multi-objective space. In this table, A denotes the TA-ABC with MCA, B 
denotes the TA-ABC with ECA, C denotes the TAA with MCA, and D denotes the TAA with ECA. The heading 

Table 6: Comparison of Cohesion Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with MCA Approach).

Systems  
 

TA-ABC 
 

TAA 
 

NSGA-II 
 

p-Values 
 

p-Values

Mean  STD Mean  STD Mean  STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
Mtunis   25.304  1.365  24.633  2.092  23.719  3.419  0.112 [≈]  <0.001 [−]
Ispell   23.771  2.156  23.100  3.220  19.8095  1.076  0.212 [≈]  <0.001 [−]
Rcs   54.304  12.354  45.133  15.335  48.869  12.979  0.013 [−]  <0.001 [−]
Bison   57.538  3.856  40.367  8.231  51.465  18.442  <0.001 [−]  <0.001 [−]
Grappa   102.438  6.389  84.767  11.190  92.81  20.224  <0.001 [−]  <0.001 [−]
Bunch   114.738  5.687  73.567  8.324  102.275  13.919  0.011 [−]  <0.001 [−]
Incl   100.438  12.568  91.767  14.024  87.46  23.261  <0.001 [−]  <0.001 [−]

Weighted
Icecast   1685.571  158.366  1609.900  294.921  1498.45  386.669  0.089 [≈]  <0.001 [−]
gnupg   1605.404  135.854  1104.733  167.834  1500.625  432.975  <0.001 [−]  <0.001 [−]
inn   1172.304  201.361  771.633  162.630  1037.92  408.697  <0.001 [−]  <0.001 [−]
bitchx   7695.303  1532.563  7644.633  2703.349  6799.369  292.283  0.102 [≈]  <0.001 [−]
xntp   1184.471  88.356  733.800  109.722  1095.495  373.933  0.017 [−]  <0.001 [−]
exim   3679.97  512.364  3279.300  563.781  3391.319  877.324  <0.001 [−]  <0.001 [−]
Mod_ssl  3412.403  256.845  2911.733  310.981  3133.974  838.209  <0.001 [−]  <0.001 [−]
ncurses   825.104  69.325  574.433  94.392  760.8595  130.805  <0.001 [−]  <0.001 [−]
lynx   2929.237  632.862  2428.567  863.007  2375.498  1296.289  <0.001 [−]  <0.001 [−]
nmh   2182.937  363.581  2032.267  438.220  1692.433  590.490  <0.001 [−]  <0.001 [−]
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NXY indicates the number of solutions generated by approach X that are dominated by solutions produced by 
Y. In comparison, the approach X is better than approach Y if NXY is small and NYX is large.

Table 8 shows that the number of solutions produced by {TA-ABC with ECA} outperform {TA-ABC with 
MCA} in all of the problems studied. The {TA-ABC with MCA} outperforms {TAA with MCA} for un-weighted 
problems (four out of seven problems), while, in weighted systems, the {TA-ABC with MCA} outperforms the 
{TAA with MCA} in only one problem. The {TA-ABC with MCA} outperforms {TAA with ECA} for un-weighted 

Table 7: Comparison of Cohesion Values Obtained by TA-ABC, TAA, and NSGA-II Algorithm (with ECA Approach).

Systems  
 

TA-ABC  
 

TAA  
 

NSGA-II  
 

p-Values  
 

p-Values

Mean   STD Mean   STD Mean   STD TA-ABC-TAA TA-ABC-NSGA-II

Un-weighted
Mtunis   26.221   0.361   27.000   0.000   24.682   2.347   0.106 [≈]   <0.001 [−]
Ispell   24.188   2.231   30.033   2.798   20.2475   1.296   <0.001 [+]   <0.001 [−]
Rcs   56.221   13.265   47.567   7.859   50.882   9.812   <0.001 [−]   <0.001 [−]
Bison   61.455   8.236   52.800   6.217   55.5775   17.049   <0.001 [−]   <0.001 [−]
Grappa   106.855   9.356   101.167   8.301   97.4475   13.539   0.078 [≈]   <0.001 [−]
Bunch   124.155   86.349   111.700   5.305   112.1625   19.151   0.007 [−]   <0.001 [−]
Incl   92.855   6.348   140.200   3.836   79.4975   16.553   0.002 [+]   <0.001 [−]

Weighted
Icecast   1710.988   123.456   1643.167   208.189   1525.138   341.384   <0.001 [−]   <0.001 [−]
gnupg   1655.821   88.346   1494.167   103.830   1553.562   403.478   <0.001 [−]   <0.001 [−]
inn   1422.721   36.123   1336.900   190.263   1300.857   387.307   <0.001 [−]   <0.001 [−]
bitchx   8145.723   563.238   7840.600   633.068   7272.31   374.005   0.091 [≈]   <0.001 [−]
xntp   784.888   55.237   1117.967   54.502   675.9325   365.990   <0.001 [+]   <0.001 [−]
exim   3380.39   235.642   3146.567   525.155   3076.76   558.860   0.067 [≈]   <0.001 [−]
Mod_ssl  3912.823   145.326   3476.800   244.174   3659.415   1179.739   <0.001 [−]   <0.001 [−]
ncurses   875.521   12.365   806.367   57.515   813.797   139.254   <0.001 [−]   <0.001 [−]
lynx   4929.657   213.023   3730.633   478.016   4475.939   1194.160   <0.001 [−]   <0.001 [−]
nmh   3083.357   142.691   2704.600   236.782   2637.874   979.213   <0.001 [−]   <0.001 [−]

Table 8: Results of Dominated Comparison of TA-ABC Algorithm and TAA.

NAB NBA NAC NCA NAD NDA NBC NCB NBD NDB

Un-weighted
Mtunis 28 0 14 23 16 22 0 30 6 27
Ispell 30 0 25 26 24 21 2 24 5 25
Rcs 30 0 14 21 16 20 0 25 7 22
Bison 30 0 22 14 12 11 5 24 8 11
Grappa 27 0 21 18 17 16 0 30 4 27
Bunch 26 0 16 13 18 17 4 25 8 26
Incl 30 0 19 15 17 21 5 21 3 22

Weighted
Icecast 30 0 11 18 14 15 8 22 7 17
gnupg 30 0 17 19 22 21 2 17 6 21
inn 30 0 18 25 21 27 1 29 5 18
bitchx 30 0 14 27 17 22 3 24 8 26
xntp 30 0 21 22 22 21 0 30 9 18
exim 30 0 19 17 16 18 8 24 11 17
Mod_ssl 30 0 22 25 23 25 1 27 7 27
ncurses 30 0 16 17 17 22 7 18 5 28
lynx 30 0 14 19 12 14 0 30 5 26
nmh 30 0 21 24 20 24 0 30 2 24



636      Amarjeet and J. K. Chhabra: Two-Archive Artificial Bee Colony

problems (three out of seven problems), while in weighted systems, the {TA-ABC with ECA} outperforms the 
{TAA with MCA} in eight out of 10 problems. The {TA-ABC with ECA} outperforms {TAA with MCA} in all un-
weighted and weighted problems. Similarly, the {TA-ABC with ECA} outperforms {TAA with ECA} in all un-
weighted and weighted problems. These findings taken together indicate that the TA-ABC is better than TAA.

Table 9 presents the dominance relationship for the results obtained from TA-ABC and NSGA-II with both 
MCA and ECA formulations. In this table, P denotes the TA-ABC with MCA, Q denotes the TA-ABC with ECA, R 
denotes the NSGA-II with MCA, and S denotes the NSGA-II with ECA.

Table 9 shows that the number of solutions produced by {TA-ABC with ECA} outperforms {TA-ABC 
with MCA} in all of the problems studied. The {TA-ABC with MCA} outperforms {NSGA-II with MCA} for un-
weighted problems (five out of seven problems), while in weighted systems, the {TA-ABC with MCA} outper-
forms {NSGA-II with MCA} in only two problems. The {TA-ABC with MCA} outperforms {NSGA-II with ECA} 
for un-weighted problems (two out of seven problems), while in weighted systems, the {TA-ABC with ECA} 
outperforms the {NSGA-II with MCA} in seven of 10 problems. The {TA-ABC with ECA} outperforms {NSGA-II 
with MCA} in all un-weighted and weighted problems. Similarly, the {TA-ABC with ECA} outperforms {NSGA-II 
with ECA} in all un-weighted and weighted problems. These findings taken together indicate that the TA-ABC 
is better than NSGA-II.

6.5   IGD, Hypervolume, and Spread as Assessment Criteria

In the previous sections, we compared our TA-ABC algorithm with other existing algorithms (i.e. TAA and 
NSGA-II) in terms of structural quality metrics (i.e. MQ, coupling, and cohesion) and Pareto optimality. In this 
section, we compare the TA-ABC algorithm with existing algorithms in terms of IGD, HV, and spread values 
for both MCA and ECA formulations. The symbol [−] denotes that the result is significantly in favor of TA-ABC 
compared to corresponding approach, symbol [+] denotes opposite, and symbol [≈] is used when there is 
not a significant favor to any of the approaches. Table 10 presents IGD values of the results obtained through 
TA-ABC, TAA, and NSGA-II over weighted and un-weighted software projects. Tables 11 and 12 report the statis-
tics of the HV and spread of the results obtained through TA-ABC, TAA, and NSGA-II algorithms, respectively. 
For the MCA and ECA formulations, IGD statistics given in Table 10 indicates that TA-ABC outperforms other 

Table 9: Results of Dominated Comparison of TA-ABC Algorithm and NSGA-II.

NPQ NQP NPR NRP NPS NSP NQR NRQ NQS NSQ

Un-weighted
Mtunis 28 0 26 21 15 23 1 28 7 25
Ispell 30 0 22 24 23 26 3 25 5 26
Rcs 30 0 15 24 15 22 0 25 7 28
Bison 30 0 23 15 10 13 5 23 5 16
Grappa 27 0 20 17 17 16 0 27 4 27
Bunch 26 0 16 13 18 17 4 25 8 22
Incl 30 0 18 14 17 21 4 21 6 24

Weighted
Icecast 30 0 12 18 12 16 7 21 6 19
gnupg 30 0 17 19 22 21 2 17 7 26
inn 30 0 19 24 21 27 1 28 5 14
bitchx 30 0 14 27 18 23 5 24 8 26
xntp 30 0 22 18 24 22 0 30 10 17
exim 30 0 12 17 19 18 6 22 11 17
Mod_ssl 30 0 22 25 20 14 1 27 7 25
ncurses 30 0 19 17 23 22 7 22 6 29
lynx 30 0 14 19 17 14 1 30 5 22
nmh 30 0 21 24 24 13 0 30 3 21
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Table 10: The Statistics of IGD Metric Values Obtained at 30 Runs of TA-ABC, TAA, and NSGA-II Algorithms with MCA and ECA.

Systems MCA ECA

TA-ABC TAA NSGA-II TA-ABC TAA NSGA-II

Un-weighted
Mtunis 2.737 × 10−4 2.741 × 10−4 [≈] 3.261 × 10−4 [−] 2.534 × 10−4 2.538 × 10−4 [≈] 4.652 × 10−4 [−]
Ispell 3.891 × 10−3 3.958 × 10−3 [−] 4.184 × 10−3 [≈] 3.653 × 10−3 3.738 × 10−3 [−] 4.142 × 10−3 [−]
Rcs 4.486 × 10−3 4.493 × 10−3 [≈] 4.274 × 10−3 [+] 4.278 × 10−3 4.376 × 10−3 [−] 4.678 × 10−3 [−]
Bison 4.103 × 10−4 4.194 × 10−4 [−] 4.229 × 10−4 [−] 4.103 × 10−4 4.104 × 10−4 [≈] 4.106 × 10−4 [≈]
Grappa 5.912 × 10−4 6.052 × 10−4 [−] 5.232 × 10−4 [−] 5.768 × 10−4 5.125 × 10−4 [−] 5.212 × 10−4 [−]
Bunch 6.192 × 10−4 6.365 × 10−4 [−] 6.413 × 10−4 [−] 6.192 × 10−4 6.365 × 10−3 [−] 6.324 × 10−3 [−]
Incl 5.987 × 10−3 6.172 × 10−3 [−] 6.215 × 10−3 [−] 6.001 × 10−3 6.218 × 10−3 [−] 6.187 × 10−3 [−]

Weighted
Icecast 7.786 × 10−3 7.945 × 10−3 [−] 7.776 × 10−3 [≈] 7.674 × 10−3 7.743 × 10−3 [−] 8.242 × 10−3 [−]
gnupg 5.476 × 10−3 5.489 × 10−3 [≈] 5.271 × 10−3 [+] 5.274 × 10−3 5.386 × 10−3 [−] 5.671 × 10−3 [−]
inn 4.103 × 10−4 4.194 × 10−4 [−] 4.229 × 10−4 [−] 5.526 × 10−3 5.533 × 10−4 [≈] 6.261 × 10−4 [−]
bitchx 6.912 × 10−4 7.062 × 10−4 [−] 7.212 × 10−4 [−] 7.683 × 10−3 7.734 × 10−3 [−] 8.241 × 10−3 [−]
xntp 6.192 × 10−3 6.365 × 10−3 [−] 6.413 × 10−3 [−] 5.276 × 10−3 5.386 × 10−3 [−] 5.671 × 10−3 [−]
exim 7.987 × 10−3 8.172 × 10−3 [−] 8.215 × 10−3 [−] 5.526 × 10−4 5.533 × 10−4 [≈] 6.261 × 10−4 [−]
Mod_ssl 5.737 × 10−4 5.740 × 10−4 [≈] 6.283 × 10−4 [−] 7.683 × 10−3 7.734 × 10−3 [−] 8.241 × 10−3 [−]
ncurses 6.128 × 10−4 6.736 × 10−4 [−] 7.128 × 10−4 [−] 6.122 × 10−4 6.647 × 10−4 [−] 7.123 × 10−4 [−]
lynx 7.008 × 10−3 7.692 × 10−3 [−] 8.314 × 10−3 [−] 8.123 × 10−3 8.612 × 10−3 [−] 9.341 × 10−4 [−]
nmh 5.121 × 10−3 5.734 × 10−3 [−] 6.502 × 10−3 [−] 5.012 × 10−3 5.398 × 10−3 [−] 6.328 × 10−3 [−]

Table 11: The Statistics of HV Metric Values Obtained at 30 Runs of TA-ABC, TAA, and NSGA-II Algorithms with MCA and ECA.

Systems  
 

MCA  
 

ECA

TA-ABC   TAA   NSGA-II TA-ABC   TAA   NSGA-II

Un-weighted
Mtunis   0.2718   0.1515 [−]   0.2755 [≈]   0.5242   0.3286 [−]   0.5215 [≈]
Ispell   0.4335   0.3232 [−]   0.2115 [−]   0.4579   0.0821 [≈]   0.6846 [+]
Rcs   0.5381   0.3370 [−]   0.6701 [+]   0.7201   0.1429 [−]   0.5677 [−]
Bison   0.5122   0.0745 [−]   0.3821 [−]   0.3999   0.4939 [+]   0.1717 [−]
Grappa   0.5170   0.5155 [≈]   0.1524 [−]   0.4991   0.3267 [−]   0.3483 [−]
Bunch   0.2880   0.3168 [+]   0.0393 [−]   0.7616   0.6015 [−]   0.3533 [−]
Incl   0.5064   0.2263 [−]   0.3094 [−]   0.5065   0.3518 [−]   0.0794 [−]

Weighted
Icecast   0.6211   0.5946 [−]   0.1373 [−]   0.4204   0.4212 [≈]   0.2488 [−]
gnupg   0.5302   0.6758 [+]   0.4217 [−]   0.3085   0.1274 [−]   0.0515 [−]
inn   0.9559   0.1015 [−]   0.0582 [−]   0.8767   0.2050 [−]   0.2077 [−]
bitchx   0.6459   0.2439 [−]   0.2925 [−]   0.5272   0.1598 [−]   0.1477 [−]
xntp   0.7492   0.0465 [−]   0.2305 [−]   0.6413   0.5502 [−]   0.7332 [+]
exim   0.1244   0.2125 [+]   0.2524 [+]   0.6543   0.1295 [−]   0.5680 [−]
Mod_ssl  0.0564   0.0519 [≈]   0.1041 [+]   0.6562   0.4352 [−]   0.2538 [−]
ncurses   0.7373   0.3349 [−]   0.3827 [−]   0.3598   0.4141 [+]   0.1107 [−]
lynx   0.3703   0.2205 [−]   0.1058 [−]   0.7116   0.3318 [−]   0.6337 [−]
nmh   0.6966   0.6898 [≈]   0.2562 [−]   0.5819   0.3474 [−]   0.3625 [−]

algorithms in most of the cases for weighted and un-weighted MDGs. Additionally, TAA seems to be better 
than NSGA-II in most of the cases. The results based on the HV metric show that TA-ABC performs better than 
A-TAA and NSGA-II in most of the cases. Results in Table 12 indicate that the spread values achieved with the 
Pareto front generated by the TA-ABC algorithm is lower than those of TAA and NSGA-II, and in most of the 
cases it has the significantly lower values.
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7   Discussions
This section discusses the contributions and implications of our TA-ABC for M-SMCPs. The main contribution 
of the proposed TA-ABC approach with respect to the existing approaches on software module clustering 
(TAA and NSGA-II) is that this paper integrates the external archive concepts of TAA algorithm into the ABC 
algorithm so that balanced exploration and exploitation is achieved for more than three objective functions. 
The experimental results showed that the proposed TA-ABC approach performed better compared to existing 
approaches in terms of MQ, coupling, cohesion, Pareto optimality, and IGD values in most of the cases. In this 
study, we observed that the following helped in improving the quality of software systems in terms of MQ, 
coupling, cohesion, Pareto optimality, and IGD:

 – The original TAA fails to maintain the diversity in case of all the solutions in CA are on the true Pareto front 
and the size of the CA has reached the limit of the union of DA and CA. In such situation there is no space 
available for any additional member of DA. The reason is that the CA does not maintain the diversity; it 
only maintains the convergence. However, to achieve a good balance between the diversity and conver-
gence, TA-ABC algorithm maintains the diversity in CA in the case when the CA has reached the limit.

 – Similarly, the updating strategy for CA and DA in TA-ABC algorithm generates good Pareto optimal solu-
tions compared to TAA algorithm. The main reason for generating such good Pareto optimal solutions by 
the TA-ABC is that the approach is designed to produce good approximations to the Pareto front.

To conclude, we found that our approach produces good software clustering in terms of MQ, coupling, cohe-
sion, and Pareto optimality in most of the cases compared to existing algorithms.

8   Threats to Validity
To explain the limitations and strengths of our proposed approach, we explore the factors that could affect 
the validity of the results obtained by TA-ABC. In this paper, we considered two major categories of threats 

Table 12: The Statistics of Spread Metric Values Obtained at 30 Runs of TA-ABC, TAA, AND NSGA-II Algorithms with MCA and 
ECA.

Systems  
 

MCA  
 

ECA

TA-ABC   TAA   NSGA-II TA-ABC   TAA   NSGA-II

Un-weighted
Mtunis   0.0129   0.0646 [−]   0.0939 [−]   0.0332   0.1000 [−]   0.3728 [−]
Ispell   0.1081   0.2548 [−]   0.2822 [−]   0.0802   0.0778 [≈]   0.1734 [−]
Rcs   0.0249   0.0257 [≈]   0.1897 [−]   0.0510   0.0866 [−]   0.1515 [−]
Bison   0.1836   0.3951 [−]   0.2836 [−]   0.1521   0.8278 [−]   0.6633 [−]
Grappa   0.0258   0.0128 [+]   0.1523 [−]   0.3558   0.4608 [−]   0.1117 [+]
Bunch   0.0858   0.1044 [−]   0.0145 [+]   0.0428   0.1778 [−]   0.1601 [−]
Incl   0.3451   0.2906 [−]   0.2747 [−]   0.0874   0.3231 [−]   0.1544 [−]

Weighted
Icecast   0.1677   0.2452 [−]   0.2873 [−]   0.2167   0.7026 [−]   0.3508
gnupg   0.0159   0.0763 [−]   0.0860 [−]   0.0783   0.2372 [−]   0.3109 [−]
inn   0.1242   0.2371 [−]   0.4045 [−]   0.4104   0.7794 [−]   0.8934 [−]
bitchx   0.1827   0.2756 [−]   0.1841 [≈]   0.2540   0.6059 [−]   0.4622 [−]
xntp   0.2971   0.5802 [−]   0.6537 [−]   0.0530   0.4223 [−]   0.1450 [−]
exim   0.1920   0.5939 [−]   0.3607 [−]   0.1017   0.4426 [−]   0.3881 [−]
Mod_ssl  0.3569   0.7684 [−]   0.4207 [−]   0.0441   0.8191 [−]   0.3010 [−]
ncurses   0.1781   0.2960 [−]   0.0386 [+]   0.0292   0.6537 [−]   0.4755 [−]
lynx   0.0646   0.0613 [≈]   0.0925 [−]   0.1533   0.1994 [−]   0.6796 [−]
nmh   0.1044   0.2977 [−]   0.6147 [−]   0.2078   0.2594 [−]   0.3948 [−]
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(i.e. external validity and internal validity) that could affect the validation of results. External validity (or 
selection validity) concerns the degree to which the findings (i.e. results sample) of the approach can be 
generalized to the wider classes of problems. In search-based software engineering, this is a very important 
threat to the validity of findings because of a large number of diverse software systems available to any study. 
In our experimentation, this threat to validity has been mitigated by the fact that the proposed approach is 
concerned with MDG, an abstract representation of software systems. Since there is a many to one relation 
between the software systems and MDG (i.e. many individual software systems can map into a single MDG), 
the findings of a set of MDGs of a particular size is relevant to wider MDGs. In order to mitigate the possi-
ble external threats to validity, the experimentation uses the various size of MDGs, both un-weighted and 
weighted.

Internal validity is the degree to which conclusions can be drawn about the causal effect of independent 
variables on the dependent variables [18]. In this empirical study, the choice of statistical test (i.e. two-tailed 
t-test) was made to support the comparability with other existing studies [28, 43]. The t-test is more appropri-
ate to data with normal distribution. However, studies [4, 14, 39] suggest that the t test is robust, even in the 
presence of non-normal distributed and significantly skewed data, if the sample sizes are sufficiently large 
as our empirical study.

9   Conclusions and Future Works
This paper presented a TA-ABC approach to address M-SMCPs. For this, the original ABC algorithm has been 
redesigned as multi-objective ABC algorithm by integrating the concept of external archives. The TA-ABC 
has been applied to solve M-SMCPs with two well-known multi-objective formulations of software cluster-
ing domain (ECA and MCA). The performance of the TA-ABC has been evaluated on two datasets obtained 
through different alternates: weighted MDGs and un-weighted MDGs. The results of the TA-ABC have been 
compared with the results reported in the literature. The five main quality criteria (i.e. MQ, coupling, cohe-
sion, Pareto optimality, IGD, HV, and spread performance metric) have been used to assess the quality of the 
obtained clustering solutions. The results clearly reveal that TA-ABC is able to obtain better clustering solu-
tions in terms of MQ, coupling, cohesion, Pareto optimality, IGD, HV, and spread performance metric. Hence, 
TA-ABC approach can be very useful to solve clustering problem of software and thus can help software man-
agers in the better management of the software. In a future study, we will customize other meta-heuristic 
algorithms such as MOPSO, MODE, MOABC, MOSOS, etc. to address the M-SMCPs.
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