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Abstract: The intuitionistic fuzzy set is a useful tool to deal with vagueness and uncertainty. Correlation coef-
ficient of the intuitionistic fuzzy sets is an important measure in intuitionistic fuzzy set theory and has great 
practical potential in a variety of areas, such as decision making, medical diagnosis, pattern recognition, etc. 
In this paper, an improved correlation coefficient of the intuitionistic fuzzy sets is defined, and it can over-
come some drawbacks of the existing ones. The properties of this correlation coefficient are discussed. Then, 
the generalization of the coefficient of interval-valued intuitionistic fuzzy sets is also introduced. Finally, 
two examples about the application of the proposed correlation coefficient of the intuitionistic fuzzy sets in 
medical diagnosis and clustering are shown to illustrate the advantages over the existing methods.

Keywords: Correlation coefficient, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, medical 
diagnosis, clustering.
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1  �Introduction
The concept of the intuitionistic fuzzy set (IFS) proposed by Atanassov [1] is a generalization of the fuzzy 
set [26]. One of the characterization of the IFS is that it assigns to each element a membership degree and a 
non-membership degree rather than the membership degree only. The IFS is more flexible and practical for 
dealing with vagueness and uncertainty than the ordinary fuzzy set in many real situations. Then, Atanassov 
and Gargov [2] further generalized the IFS to an interval-valued intuitionistic fuzzy set (IVIFS) in which the 
values of its membership degree and non-membership degree are intervals. The IFS is closely related to other 
generalized fuzzy sets such as L-fuzzy sets [5, 7, 18, 23] and interval-valued fuzzy sets (IVFSs) [13, 15, 27, 29], 
and it has been widely applied in medical diagnosis [8, 14, 30], decision making [20, 24], clustering [3, 9, 25] 
and pattern recognition [4, 6, 12].

The measurement of correlation between two IFSs plays an important role in IFS theory, and it is always 
formulated by correlation coefficient. Therefore, how to define an effective correlation coefficient formula is 
an interesting research topic. Many scholars have paid great attention to this issue and obtained many useful 
results. For example, Hung and Wu [11] proposed a method to calculate the correlation coefficient of IFSs by 
means of “centroid”, which reflected not only the correlation between IFSs but also their positive or negative 
correlation. Moreover, they extended the “centroid” method to IVIFSs. Hung [10] investigated the correlation 
measure of IFSs from the perspective of statistics. Xu developed a correlation coefficient formula [20] of IFSs, 
which was generalized to the IVIFSs. Then, Xu proposed a decision-making method in medical diagnosis 
under the IFS environment. He also proposed another correlation coefficient formula in Ref. [21], which took 
the membership, non-membership, and hesitancy into account simultaneously.
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The correlation coefficient formulas proposed by Xu [19, 21] may have some limitations. First of all, the 
formulas [see Eqs. (1) and (2)] are expressed by the form of quotient, which is of 0/0 type if two IFSs are the 
same. Moreover, the results obtained by Xu’s correlation coefficients are not coincident with our intuition in 
some situations. For example, the formulas may be equal to 1 even if A1 ≠ A2 (see example 1).

In this paper, we improve Xu’s correlation coefficients so that it can overcome the drawbacks above. 
Two examples can show the effectivity of our proposed method. In Section 3, we introduce a new formula 
for calculating the correlation between IFSs and summarize the advantage of the improved correlation coef-
ficient by comparing with Xu’s correlation coefficients [19, 21]. We also generalize it to IVIFS environment. 
Furthermore, we show some applications of the improved correlation coefficient in medical diagnosis and 
clustering in Section 4.

2  �Preliminaries
In this section, some basic concepts of the IFSs and IVIFSs are presented.

Definition 1 ([1]): Let X be a universe of discourse, then an IFS A is defined as:

{( , ( ), ( )) | },A AA x x x x Xµ ν= ∈

where μA(x):X→[0, 1] and νA(x):X→[0, 1], with 0 ≤ μA(x) + νA(x) ≤ 1. The numbers μA(x) and νA(x) represent the 
membership degree and the non-membership degree of the element x to the set A, respectively. For each IFS 
A over X, if πA(x) = 1 − μA(x) − νA(x), x ∈ X, then πA(x) is called the hesitation degree of the element x to the set A.

Let IFS(X) be the set of all IFSs over X. Then for A1, A2 ∈ IFS(X), we have:
(1)	 A1 ⊆ A2 if and only if 

1 2
( ) ( )A Ax xµ µ≤  and 

1 2
( ) ( )A Ax xν ν≥  for each x ∈ X;

(2)	 A1 = A2 if and only if A1 ⊆ A2 and A2 ⊆ A1.

Definition 2 ([2]): Let X be a universe of discourse, then an IVIFS Ã is defined as:

{( , ( ), ( )) | },A AA x x x x Xµ ν= ∈� �
� ��

where ( ) [ ( ), ( )] [0, 1]L U
A A Ax x xµ µ µ= ⊆� � �� � �  and ( ) [ ( ), ( )] [0, 1]L U

A A Ax x xν ν ν= ⊆� � �� � �  are intervals, and 0 ( ) ( ) 1U U
A Ax xµ ν≤ + ≤� ���  

for each x ∈ X.

Especially, if ( ) ( )L U
A Ax xµ µ=� �� �  and ( ) ( ),L U

A Ax xν ν=� �� �  then the IVIFS Ã is reduced to an ordinary IFS.
Let IVIFS(X) be the set of all IVIFSs over X. Then for Ã1, Ã2 ∈ IVIFS(X), we have:

(1)	 Ã1 ⊆ Ã2 if and only if 
1 2
( ) ( ),U U

A Ax xµ µ≤� �� �  
1 2
( ) ( ),L L

A Ax xµ µ≤� �� �  
1 2
( ) ( )U U

A Ax xν ν≥� �� �  and 
1 2
( ) ( )L L

A Ax xν ν≥� �� �  for each x ∈ X;
(2)	 Ã1 = Ã2 if and only if Ã1 ⊆ Ã2 and Ã2 ⊆ Ã1.

The correlation coefficient of two IFSs is introduced by Xu as follows.

Definition 3 ([19]): Let A1, A2 ∈ IFS(X), and X = {x1, x2, …, xn} be a finite universe of discourse, then we define

	

min max min max
1 1 2

1 max max

1( , )
2

n

i i i

A A
n

µ µ ν ν
ρ

µ µ ν ν=

 ∆ + ∆ ∆ + ∆
= + ∆ + ∆ ∆ + ∆ 

∑
�

(1)

as a correlation coefficient of the IFSs A1 and A2, where

1 2 1 2

1 2 1 2

1 2 1 2

min min

max max

| ( ) ( ) |,   | ( ) ( ) | ( 1, 2, , ),

min{| ( ) ( ) |},   min{| ( ) ( ) |},

max{| ( ) ( ) |},   max{| ( ) ( ) |}.

i A i A i i A i A i

A i A i A i A ii i

A i A i A i A ii i

x x x x i n

x x x x

x x x x

µ µ µ ν ν ν

µ µ µ ν ν ν

µ µ µ ν ν ν

∆ = − ∆ = − =

∆ = − ∆ = −

∆ = − ∆ = −

  �
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IFS contains three elements, such as membership, non-membership, and hesitation. However, the 
above correlation coefficient of Definition 3 does not take the hesitation into account. Thus, Xu improved it 
in Ref. [21]:

	

min max min max min max
2 1 2

1 max max max

1( , ) ,
3

n

i i i i

A A
n

µ µ ν ν π π
ρ

µ µ ν ν π π=

 ∆ + ∆ ∆ + ∆ ∆ + ∆
= + + ∆ + ∆ ∆ + ∆ ∆ + ∆ 

∑
�

(2)

where

1 1 1 2 2 2

1 2 1 2

1 2

min

max

( ) 1 ( ) ( ),   ( ) 1 ( ) ( ),

| ( ) ( ) |,   min{| ( ) ( ) |},

max{| ( ) ( ) |} ( 1, 2, , ).

A i A i A i A i A i A i

i A i A i A i A ii

A i A ii

x x x x x x

x x x x

x x i n

π µ ν π µ ν

π π π π π π

π π π

= − − = − −

∆ = − ∆ = −

∆ = − =

 

�

Remark 1: The above correlation coefficients ρk(Ai, Aj) (k = 1, 2) satisfy the following properties:
(a)	 0 ≤ ρk(Ai, Aj) ≤ 1;
(b)	 ρk(Ai, Aj) = ρk(Aj, Ai) (i, j = 1, 2, …, m).

Clustering analysis is an important application of correlation coefficient. In what follows, we recall some 
concepts related to clustering analysis such as association matrix and equivalent association matrix.

Definition 4 ([22]): Let Aj ∈ IFS(X), (j = 1, 2, …, m), then C = (cij)m×m is called an association matrix, where 
cij = ρ(Ai, Aj) (i, j = 1, 2, …, m) is the correlation coefficient of Ai and Aj, which have the following properties:
(a)	 0 ≤ cij ≤ 1 (i, j = 1, 2, …, m);
(b)	 cij = cji (i, j = 1, 2, …m);
(c)	 cij = 1 if and only if Ai = Aj.

Definition 5 ([22]): Let C = (cij)m×m be an association matrix, if

2 ( ) ,ij m mC C C c ×= =�

then C2 is called a composition matrix of C, where max{min{ , }}ij ik kjk
c c c=  (i, j = 1, 2, …, m).

Definition 6 ([22]): Let C = (cij)m×m be an association matrix, and C2 be its composition matrix, if C2 ⊆ C, i.e.,

max{min{ , }}ik kj ijk
c c c≤

for all i, j = 1, 2, …, m, then C is called an equivalent association matrix.
By the transitivity principle of equivalent matrix [17], it is easy to prove the following:

Theorem 1 ([22]): Let C = (cij)m×m be an association matrix, then after the finite times of compositions:

2 4 2 ,
k

C C C C→ → → →� �

there must exist a positive integer k such that ( 1)2 2 ,
k k

C C
+

=  and 2kC  is an equivalent association matrix.

Definition 7 ([22]): Let C = (cij)m×m be an equivalent association matrix, then we call C
λ
  = (

λ
cij)m×m the λ-cutting 

matrix of C, where
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0, ;
( , 1, 2, , )

1, .
ij

ij
ij

c
c i j m

cλ

λ

λ

 <= = ≥
�

and λ is the confidence level with λ ∈[0, 1].

3  �Main Results
In this section, we will introduce an improved correlation coefficient and generalize it to IVIFS environment.

The correlation coefficients proposed by Xu [20, 21] share the two properties of Remark 1. However, both 
the correlation coefficient formulas have the following limitations:
1.	 The quotients in formulas (1) and (2) are of the 0/0 type if the formulas satisfy A1 = A2, and it is unmean-

ingful in mathematical logic. Although we can deliberately set a special value for this 0/0 type quotient, 
it is more reasonable to avoid emerging this case.

2.	 Formula (1) as well as the improved formula (2) may be equal to 1 even if A1 ≠ A2. Hence, neither Formula 
(1) nor (2) satisfies the condition: ρ(Ai, Aj) = 1 ⇔ Ai = Aj, then the two formulas cannot be applied in cluster-
ing sometimes. Let us employ an example to illustrate our idea.

Example 1: Let A1 and A2 be two IFSs in X = {x1, x2} given by

1 1 2

2 1 2

{ , 0.4, 0.3 , ,  0.3, 0.2 };

{ , 0.3, 0.2 , ,  0.2, 0.1 }.

A x x

A x x

= 〈 〉 〈 〉

= 〈 〉 〈 〉

Obviously, A1 ≠ A2. However, ρ1(A1, A2) = 1 and ρ2(A1, A2) = 1.
Thus, how to derive the correlation coefficients of IFSs satisfying the desirable property above (ρ(Ai, 

Aj) = 1 ⇔ Ai = Aj) is an interesting research topic. In order to solve this problem, we develop a new definition of 
correlation coefficient of the IFSs.

3.1  �An Improved Correlation Coefficient of the IFSs

In the following, we define an improved correlation coefficient of the IFSs.

Definition 8: Let A1, A2 ∈ IFS(X), and X = {x1, x2, …, xn} be a finite universe of discourse, then we define

	
1 2

1

1( , ) [ (1 ) (1 )]
2

n

i i i i
i

A A
n

ρ α µ β ν∗

=

= − ∆ + − ∆∑
�

(3)

as a correlation coefficient of the IFSs A1 and A2, where

1 2 1 2

1 2 1 2

max max

min max min max

min min

max

, ( 2, 1, 2, , ),

| ( ) ( ) |,   | ( ) ( ) |,

min{| ( ) ( ) |},   min{| ( ) ( ) |},

max{|

i i
i i

i A i A i i A i A i

A i A i A i A ii i

i

c c
c i n

c c

x x x x

x x x x

µ µ ν ν
α β

µ µ ν ν

µ µ µ ν ν ν

µ µ µ ν ν ν

µ

− ∆ − ∆ − ∆ − ∆
= = > =

− ∆ − ∆ − ∆ − ∆

∆ = − ∆ = −

∆ = − ∆ = −

∆ =

  

�

1 2 1 2max( ) ( ) |},   max{| ( ) ( ) |}.A i A i A i A ii
x x x xµ µ ν ν ν− ∆ = −

Remark 2: Note that the condition “c > 2” ensures that both αi and βi belong to (0, 1). Hence, the correlation 
coefficient ρ*(A1, A2) satisfies the condition 0 ≤ ρ*(A1, A2) ≤ 1. If some αi and βi are <0, it will cause ρ*(A1, A2) < 0. 
We can see example 2 as follows.
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Example 2: Let A1 and A2 be two IFSs in X = {x1, x2} given by

1 1 2

2 1 2

{ , 0.9, 0.1 , ,  0.7, 0.2 };
{ , 0.1, 0.8 , , 0.6, 0.4 }.

A x x
A x x

= 〈 〉 〈 〉
= 〈 〉 〈 〉

By Eq. (3), we can have α1 = −6, α2 = 1, β1 = −4, β2 = 1  when c = 1, then we can calculate that ρ1(A1, A2) 
= −0.175 < 0.

We present some properties of the improved correlation coefficient in the following.

Theorem 2: The correlation coefficient ρ*(A1, A2) satisfies the following properties:
(a)	 ρ*(A1, A2) = ρ*(A2, A1);
(b)	 0 ≤ ρ*(A1, A2) ≤ 1;
(c)	 A1 = A2 ⇔ ρ*(A1, A2) = 1.

Proof
(a)	 Obviously.
(b)	 Since 0 < αi ≤ 1, 0 < βi ≤ 1 and 0 ≤ 1 − Δμi ≤ 1, 0 ≤ 1 − Δνi ≤ 1, then

0 (1 ) (1 ) 2 ( 1, 2, , ),i i i i i nα µ β ν≤ − ∆ + − ∆ ≤ = �

and thus, by Eq. (3), we know that 0 ≤ ρ*(A1, A2) ≤ 1.
(c)	 “ ⇒ ” If A1 = A2, it implies that: 

1 2 1 2
( ) ( ), ( ) ( )A i A i A i A ix x x xµ µ ν ν= =  for all xi ∈ X (i = 1, 2, …, n), then

min max min max0, 0.i iµ µ µ ν ν ν∆ = ∆ = ∆ = ∆ = ∆ = ∆ =

Thus, ρ*(A1, A2) = 1.
“⇐” If ρ*(A1, A2) = 1, by the fact that

0 (1 ) 1, 0 (1 ) 1,i i i iα µ β ν≤ − ∆ ≤ ≤ − ∆ ≤

we have

(1 ) (1 ) 2 and (1 ) (1 ) 1 ( 1, 2, , ).i i i i i i i i i nα µ β ν α µ β ν− ∆ + − ∆ = − ∆ = − ∆ = = �

Since

0 1,   0 1,   0 1 1,   0 1 1,i i i iα β µ ν< ≤ < ≤ ≤ − ∆ ≤ ≤ − ∆ ≤

then we obtain

1, 1 1, 1 1, i.e., 0.i i i i i iα β µ ν µ ν= = − ∆ = − ∆ = ∆ = ∆ =

Thus, 
1 2 1 2
( ) ( ), ( ) ( )A i A i A i A ix x x xµ µ ν ν= =  for all xi ∈ X, i.e., A1 = A2.

Remark 3: We may draw the conclusion from Theorem 2 that the improved correlation coefficient overcomes 
the limitations mentioned above of Xu’s correlation coefficients.

First of all, the improved correlation coefficient avoids emerging the 0/0 type quotient, which is more 
reasonable in mathematical logic.

In addition, under the condition A1 ≠ A2, the improved correlation coefficient ρ*(A1, A2) is certainly less 
than one by the third property of Theorem 3, which is coincident with our intuition. For instance, in Example 1, 
A1 ≠ A2 and ρ*(A1, A2) = 0.9 < 1. Furthermore, the improved correlation coefficient can guarantee that the cor-
relation coefficient of any two IFSs equals 1 if and only if these two IFSs are the same. Consequently, it can be 
applied in medical diagnosis and clustering effectively, which will be discussed in Section 4.

In many situations, the weight of every element xi ∈ X should be taken into account. For example, in 
the multiple attribute decision-making problems, each attribute usually has different importance and, thus, 
needs to be assigned a different weight. As a result, we further extend Formula (3).
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Definition 9: Let A1, A2 ∈ IFS(X), and X = {x1, x2, …, xn} be a finite universe of discourse, then we define

	
1 1 2

1

1( , ) { [ (1 ) (1 )]}
2

n

i i i i i
i

A Aρ ω α µ β ν∗

=

= − ∆ + − ∆∑
�

(4)

as a correlation coefficient of the IFSs A1 and A2, where

max max

min max min max

,  ( 2),i i
i i

c c
c

c c
µ µ ν ν

α β
µ µ ν ν

− ∆ − ∆ − ∆ − ∆
= = >

− ∆ − ∆ − ∆ − ∆

the weight vector of xi (i = 1, 2, …, n) is ω = (ω1, ω2, …, ωn)T, ωi ≥ 0 (i = 1, 2, …, n) and 
1

1.n
ii

ω
=

=∑  The value of ωi 
can be determined by several methods, such as statistical distribution, analytic hierarchy process, coefficient 
of variation method, and so on. It can also be determined according to the experts’ opinions. Especially, if 

T
1 1 1, ,  ,  ,
n n n

ω
 

=   �  Formula (4) reduces to Formula (3).

3.2  �The Improved Correlation Coefficient of the IVIFSs

In the following, we generalize the idea of Definition 8 to the IVIFS theory.

Definition 10: Let Ã1, Ã2 ∈ IVIFS(X), and X = {x1, x2, …, xn} be a finite universe of discourse, then we define

	
2 1 2

1

1( , ) [ (1 ) (1 ) (1 ) (1 )]
4

n
L U L U

i i i i i i i i
i

A A
n

ρ γ µ ζ µ ϕ ν ψ ν∗

=

= − ∆ + − ∆ + − ∆ + − ∆∑� � � �� �
�

(5)

as a correlation coefficient of IVIFSs Ã1 and Ã2, where

1 2

max max

min max min max

max max

min max min max

,   ,

,   ( 2),

| ( ) ( ) |,   |

L L U U
i i

i iL L U U

L L U U
i i

i iL L U U

L L L L
i i i iA A

c c
c c

c c
c

c c

x x

µ µ µ µ
γ ζ

µ µ µ µ

ν ν ν ν
ϕ ψ

ν ν ν ν

µ µ µ ν ν

− ∆ − ∆ − ∆ − ∆
= =

− ∆ − ∆ − ∆ − ∆

− ∆ − ∆ − ∆ − ∆
= = >

− ∆ − ∆ − ∆ − ∆

∆ = − ∆ =  � � �

� � � �
� � � �

� � � �
� � � �

� �� � �
1 2

1 2 1 2

1 2 1 2

1

min min

max

( ) ( ) |,

| ( ) ( ) |,   | ( ) ( ) | ( 1, 2, , ),

min{| ( ) ( ) |}, min{| ( ) ( ) |},

max{| ( )

L L
i iA A

U U U U U U
i i i i i iA A A A

L L L U U U
i i i iA A A Ai i

L L
iAi

x x

x x x x i n

x x x x

x

ν

µ µ µ ν ν ν

µ µ µ µ µ µ

µ µ

−

∆ = − ∆ = − =

∆ = − ∆ = −

∆ =

  

�

� � � �

� � � �

�

�

� � �� � � �

� � � � � �

� �
2 1 2

1 2 1 2

1 2 1 2

max

min min

max max

( ) |}, max{| ( ) ( ) |},

min{| ( ) ( ) |}, min{| ( ) ( ) |},

max{| ( ) ( ) |}, max{| ( )

L U U U
i i iA A Ai

L L L U U U
i i i iA A A Ai i

L L L U U U
i i iA A A Ai i

x x x

x x x x

x x x

µ µ µ µ

ν ν ν ν ν ν

ν ν ν ν ν ν

− ∆ = −

∆ = − ∆ = −

∆ = − ∆ = −

� � �

� � � �

� � � �

� � � �

� � � � � �

� � � � � � ( ) |}.ix

Equation (5) also can be generalized to more general cases:

	
3 1 2

1

1( , ) { [ (1 ) (1 ) (1 ) (1 )]},
4

n
L U L U

i i i i i i i i i
i

A Aρ ω γ µ ζ µ ϕ ν ψ ν∗

=

= − ∆ + − ∆ + − ∆ + − ∆∑� � � �� �
�

(6)

where ω = (ω1, ω2, …, ωn)T, ωi ≥ 0 (i = 1, 2, …, n) is the weight of xi (i = 1, 2, …, n) and 
1

1.n
ii

ω
=

=∑  The value of ωi 

can be determined by the same way which was mentioned in Definition 9. Especially, if 
T

1 1 1, ,  ,  ,
n n n

ω
 

=   
�  

Formula (6) reduces to Formula (5).
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Theorem 3: The correlation coefficient 2 1 2( , )A Aρ∗ � �  satisfies the following properties:
(a)	 2 1 2 2 2 1( ,  ) ( , );A A A Aρ ρ∗ ∗=� � � �

(b)	 2 1 20 ( , ) 1;A Aρ∗≤ ≤� �

(c)	 1 2 2 1 2( ,  ) 1.A A A Aρ∗= ⇔ =� � � �

Proof
(a)	 Obviously.
(b)	 Since

0 1, 0 1, 0 1, 0 1i i iγ ζ ϕ ψ< < < ≤ < ≤ < ≤  
and

0 1 1, 0 1 1, 0 1 1, 0 1 1,L U L U
i i i iµ µ ν ν≤ − ∆ ≤ ≤ − ∆ ≤ ≤ − ∆ ≤ ≤ − ∆ ≤� �� �  

then

0 (1 ) (1 ) (1 ) (1 ) 4L U L U
i i i i i i i iγ µ ζ µ ϕ ν ψ ν≤ − ∆ + − ∆ + − ∆ + − ∆ ≤� �� �

where i = 1, 2, …, n. Thus, by Eq. (5), we know that 2 1 20 ( , ) 1.A Aρ∗≤ ≤� �

(c)	 “ ⇒ ” If Ã1 = Ã2, it implies that: 
1 2 1 2 1 2 1 2
( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )L L U U L L U U

i i i i i i i iA A A A A A A Ax x x x x x x xµ µ µ µ ν ν ν ν= = = =� � � � � � � �� � � �� � � �  for all 
xi ∈ X, then

0,   0,

0,   0.

L L L U U U
i min max i min max

L L L U U U
i min max i min max

µ µ µ µ µ µ

ν ν ν ν ν ν

∆ = ∆ = ∆ = ∆ = ∆ = ∆ =

∆ = ∆ = ∆ = ∆ = ∆ = ∆ =

� � � � � �

� � � � � �

Thus, 2 1 2( , ) 1.A Aρ∗ =� �

“⇐” If 2 1 2( , ) 1,A Aρ∗ =� �  by the fact that
0 (1 ) 1, 0 (1 ) 1,

0 (1 ) 1, 0 (1 ) 1,

L U
i i i i

L U
i i i i

γ µ ζ µ

ϕ ν ψ ν

≤ − ∆ ≤ ≤ − ∆ ≤

≤ − ∆ ≤ ≤ − ∆ ≤

� �

� �

we have

(1 ) (1 ) (1 ) (1 ) 4L U L U
i i i i i i i iγ µ ζ µ ϕ ν ψ ν− ∆ + − ∆ + − ∆ + − ∆ =� �� �  

and

(1 ) (1 ) (1 ) (1 ) 1.L U L U
i i i i i i i iγ µ ζ µ ϕ ν ψ ν− ∆ = − ∆ = − ∆ = − ∆ =� �� �

Since

0 1, 0 1, 0 1, 0 1i i iγ ζ ϕ ψ< < < ≤ < ≤ < ≤

and

0 1 1,   0 1 1,   0 1 1,   0 1 1,L U L U
i i i iµ µ ν ν≤ − ∆ ≤ ≤ − ∆ ≤ ≤ − ∆ ≤ ≤ − ∆ ≤� �� �

then, we obtain
1 1 1 1 1,L U L U

i i i iµ µ ν ν− ∆ = − ∆ = − ∆ = − ∆ =� �� �  

i.e.,

0.L U L U
i i i iµ µ ν ν∆ = ∆ = ∆ = ∆ =� �� �

Thus,
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1 2 1 2

1 2 1 2

( ) ( ),   ( ) ( ),
( ) ( ),   ( ) ( ),

L L U U
i i i iA A A A

L L U U
i i i iA A A A

x x x x
x x x x

µ µ µ µ

ν ν ν ν

= =

= =
� � � �

� � � �

� � � �

� � � �

for all xi ∈ X, i.e., Ã1 = Ã2.

4  �Applications of the Improved Correlation Coefficient
In this section, we mainly focus on the applications of the improved correlation coefficient in medical diag-
nosis and clustering.

4.1  �The Application in Medical Diagnosis

First, for the set of diagnosis A = {A1, A2, …, An}, the set of symptoms C = {C1, C2, …, Ct}, and the set of 
patients B = {B1, B2, …, Bm}, suppose the weight of Ck is ωk (k = 1, 2, …, t), then the diagnosis steps are as 
follows:

–– Step 1: Based on the experience of experts, each symptom is described by a pair of parameters (μ, ν), i.e., 
the membership μ and the non-membership ν.

–– Step 2: For every patient Bj (j = 1, 2, …, m), according to Formula (4), we can calculate the correlation 
coefficient 1 ( ,  ), ( 1, 2, ,  ),i jA B i nρ∗ = �  where Ai (i = 1, 2, …, n) are the diagnosis results.

–– Step 3: For every patient Bj (j = 1, 2, …, m), select the diagnosis result 
0i

A  in A most close to the patient Bj, i.e., 
1 0 1( , ) max{ ( , ) | }.i j i j iA B A B A Aρ ρ∗ ∗= ∈  Hence, it can be asserted that the diagnosis result of patient Bj is 

0
.iA

Example 3 ([14]): To make a proper diagnosis A for a patient with the given values of symptoms C, a 
medical knowledge base is necessary that involves elements described in terms of IFSs. The set of symptoms is

1 2 3 4 5{ , , , , } { , ,  , ,  },C C C C C C Temperature Headache Stomach pain Cough Chest pain= =

the set of diagnosis is

1 2 3 4 5{ , , , , } {  , , ,  ,  }A A A A A A Viral fever Malaria Typhoid Stomach problem Chest problem= =

and the set of patients is

1 2 3 4{ , ,  ,  } { , ,  ,  }.B B B B B Al Bob Joe Ted= =

ω = (ω1, ω2, …, ω5)T is the weight vector of symptoms, let 1 2 5
1 .
5

ω ω ω= = = =�  The data are given 

in  Table 1 – each symptom is described by a pair of parameters (μ, ν), i.e., the membership μ and the  
non-membership ν. The symptoms are given in Table 2. We need to seek a diagnosis for each patient 
Bj (j = 1, 2, 3, 4).

Table 1: Symptoms Characteristic for the Considered Diagnoses.

  A1  A2  A3  A4  A5

C1   (0.4, 0.0)  (0.7, 0.0)  (0.3, 0.3)  (0.1, 0.7)  (0.1, 0.8)
C2   (0.3, 0.5)  (0.2, 0.6)  (0.6, 0.1)  (0.2, 0.4)  (0.0, 0.8)
C3   (0.1, 0.7)  (0.0, 0.9)  (0.2, 0.7)  (0.8, 0.0)  (0.2, 0.8)
C4   (0.4, 0.3)  (0.7, 0.0)  (0.2, 0.6)  (0.2, 0.7)  (0.2, 0.8)
C5   (0.1, 0.7)  (0.1, 0.8)  (0.1, 0.9)  (0.2, 0.7)  (0.8, 0.1)
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First, construct IFSs:

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2

{ , 0.4, 0.0 , , 0.3, 0.5 , ,  0.1, 0.7 , ,  0.4, 0.3 , ,  0.1, 0.7 },

{ , 0.7, 0.0 , , 0.2, 0.6 , , 0.0, 0.9 , , 0.7, 0.0 , , 0.1, 0.8 },

{ , 0.3, 0.3 , ,  0.6, 0.

A C C C C C

A C C C C C

A C C

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 3 4 5

4 1 2 3 4 5

5 1 2 3 4

1 , ,  0.2, 0.7 , ,  0.2, 0.6 , , 0.1, 0.9 },

{ , 0.1, 0.7 , ,  0.2, 0.4 , , 0.8, 0.0 , , 0.2, 0.7 , ,  0.2, 0.7 },

{ , 0.1, 0.8 , , 0.0, 0.8 , , 0.2, 0.8 , , 0.2, 0.

C C C

A C C C C C

A C C C C

〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 5

1 1 2 3 4 5

2 1 2 3 4 5

3 1

8 , ,  0.8, 0.1 },

{ , 0.8, 0.1 , ,  0.6, 0.1 , ,  0.2, 0.8 , , 0.6, 0.1 , ,  0.1, 0.6 },

{ , 0.0, 0.8 , , 0.4, 0.4 , , 0.6, 0.1 , ,  0.1, 0.7 , ,  0.1, 0.8 },

{ , 0.8

C

B C C C C C

B C C C C C

B C

〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 2 3 4 5

4 1 2 3 4 5

,  0.1 , ,  0.8, 0.1 , ,  0.0, 0.6 , , 0.2, 0.7 , ,  0.0, 0.5 },

{ , 0.6, 0.1 , ,  0.5, 0.4 , , 0.3, 0.4 , , 0.7, 0.2 , ,  0.3, 0.4 }.

C C C C

B C C C C C

〉 〈 〉 〈 〉 〈 〉 〈 〉

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

Then, we utilize the improved correlation coefficient to derive a diagnosis for each patient Bj (j = 1, 2, 3, 4). 
Let c = 3 in Formula (4). Then, all the diagnosis results for the considered patients are listed in Table 3.

Finally, from the arguments in Table 3, we derive a proper diagnosis as follows:

Al developed malaria; Bob had some problems with his stomach; Joe got typhoid; Ted got viral fever.

Based on the correlation coefficient (1), Xu’s diagnosis results [19] (Al suffered from malaria, Bob from 
a stomach problem, and both Joe and Ted from viral fever) are different from the results obtained by the 
improved correlation coefficient (4). Because the improved correlation coefficient has a wider scope of appli-
cation and can solve the problems of the existing correlation coefficient (mentioned in Remark 2), the diag-
nosis results obtained by the improved correlation coefficient (4) are more reasonable. Furthermore, Vlachos 
and Sergiadis [16] made diagnosis utilizing the symmetric discrimination information measure DIFS(A, B) and 
pointed out that the diagnosis results of DIFS(A, B) were more effective than the results of distance-based 
methods and the similarity-dissimilarity measure. The diagnosis results obtained by DIFS(A, B) were as 
follows: Al got viral fever, Bob had some problems with his stomach, Joe got typhoid, and Ted got viral fever, 
which are also different from those by the improved correlation coefficient (4). The differences are because 
that the results derived using DIFS(A, B) are prone to the influence of unfair arguments with too high or too low 
values, while the improved correlation coefficient (4) can relieve the influence of these unfair arguments by 
emphasizing the role of the considered arguments as a whole [21].

Table 2: Symptoms Characteristic for the Considered Patients.

  C1  C2  C3  C4  C5

B1   (0.8, 0.1)  (0.6, 0.1)  (0.2, 0.8)  (0.6, 0.1)  (0.1, 0.6)
B2   (0.0, 0.8)  (0.4, 0.4)  (0.6, 0.1)  (0.1, 0.7)  (0.1, 0.8)
B3   (0.8, 0.1)  (0.8, 0.1)  (0.0, 0.6)  (0.2, 0.7)  (0.0, 0.5)
B4   (0.6, 0.1)  (0.5, 0.4)  (0.3, 0.4)  (0.7, 0.2)  (0.3, 0.4)

Table 3: Correlation Coefficients of Symptoms for Each Patient.

A1 A2 A3 A4 A5

B1 0.7727 0.7860 0.7557 0.4740 0.4697
B2 0.6136 0.4717 0.6896 0.8848 0.5828
B3 0.7132 0.6221 0.7713 0.5296 0.4805
B4 0.7864 0.7227 0.6747 0.5600 0.4987
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4.2  �The Application in Clustering

In the following, we will show that the improved correlation coefficient (4) is more effective than correlation 
coefficients (1) and (2) in clustering.

For the object sets Ai (i = 1, 2, …, m), suppose that the weight vector of xi (i = 1, 2, …, n) is ω = (ω1, ω2, …, ωn)T, 
then we discuss the clustering steps:

–– Step 1: Utilize Eq. (4) to calculate the correlation coefficient 1 ( ,  )i jA Aρ∗  between object sets Ai and Aj 
(i, j = 1, 2, …, m), and construct association matrix ( ) ,ij m mC ρ ×=� �  where 1 ( , ) ( , 1, 2, , ).ij i jA A i j mρ ρ∗= =� �

–– Step 2: Obtain equivalence association matrix ( )ij m mC ρ ×=� �  by finite times compositions of ( )ij m mC ρ ×=� �  
and construct λ-cutting matrix ( )ij m nC

λ
λρ ×=�  of the equivalence association matrix .C�

–– Step 3: For the λ-cutting matrix ,C
λ
�  if all the elements of the ith row or column are the same with the jth 

row or column, we assert object sets Ai and Aj are in the same class.

Example 4 ([28]): A car market is going to classify five different cars. Every car has six evaluation factors: 
(1) G1 − fuel consumption; (2) G2 − degree of friction; (3 )G3 − the price; (4) G4 − degree of comfort; (5) G5 − 
design; (6) G6 − security. The information of every car under each evaluation factor is represented by intui-
tionistic fuzzy numbers, which are shown in Table 4.

If the weight vector of the element xi (i = 1, 2, …, 6) is 
T

1 1 1, ,  ,  ,
6 6 6

ω
 

=   �  let c = 3, then we can classify the 

cars by the improved correlation coefficient 1 ( ,  ).i jA Aρ∗

First, we utilize the improved correlation coefficient 1 ( ,  )i jA Aρ∗  to calculate the correlation between each 
pair of IFSs Ai and Aj (i, j = 1, 2, …, 5), and construct an association matrix:

1 0.8422 0.8203 0.7981 0.6885

0.8422 1 0.8634 0.8109 0.8096

0.8203 0.8634 1 0.8047 0.7535

0.7981 0.8109 0.8047 1 0.7073

0.6885 0.8096 0.7535 0.7073 1

C

 
 
 
 

=  
 
 
 
  

Then, we obtain an equivalent association matrix by finite times compositions of C. For

2

1 0.8422 0.8422 0.8109 0.8096

0.8422 1 0.8634 0.8109 0.8096

0.8422 0.8634 1 0.8109 0.8096

0.8109 0.8109 0.8109 1 0.8096

0.8096 0.8096 0.8096 0.8096 1

C C

 
 
 
 

=  
 
 
 
  

�

Table 4: Information.

  x1  x1  x3  x4  x5  x6

A1   (0.3, 0.5)  (0.6, 0.1)  (0.4, 0.3)  (0.8, 0.1)  (0.1, 0.6)  (0.5, 0.4)
A2   (0.6, 0.3)  (0.5, 0.2)  (0.6, 0.1)  (0.7, 0.1)  (0.3, 0.6)  (0.4, 0.3)
A3   (0.4, 0.4)  (0.8, 0.1)  (0.5, 0.1)  (0.6, 0.2)  (0.4, 0.5)  (0.3, 0.2)
A4   (0.2, 0.4)  (0.4, 0.1)  (0.9, 0.0)  (0.8, 0.1)  (0.2, 0.5)  (0.7, 0.1)
A5   (0.5, 0.2)  (0.3, 0.6)  (0.6, 0.3)  (0.7, 0.1)  (0.6, 0.2)  (0.5, 0.3)
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4 2

1 0.8422 0.8422 0.8109 0.8096

0.8422 1 0.8634 0.8109 0.8096

0.8422 0.8634 1 0.8109 0.8096 ,

0.8109 0.8109 0.8109 1 0.8096

0.8096 0.8096 0.8096 0.8096 1

C C

 
 
 
 

= = 
 
 
 
  

we get the equivalent association matrix C2, denoted by .C�
Finally, due to the fact that the confidence level λ has a close relationship with the elements of the equiva-

lent association matrix ,C�  we give a detailed sensitivity analysis with respect to the confidence level λ and get 
all the possible classifications of the five cars Ai (i = 1, 2, 3, 4, 5).

1.	

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1if 0 0.8096,

1 1 1 1 1

1 1 1 1 1

C
λ

λ

 
 
 
 

≤ ≤ =  
 
 
 
  

�

then the cars are of the same type: {A1, A2, …, A5};

2.	

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0if 0.8096 0.8109,

1 1 1 1 0

0 0 0 0 1

C
λ

λ

 
 
 
 

< ≤ =  
 
 
 
  

�

then the cars are classified into the following two types: {A1, A2, A3, A4}, {A5};

3.	

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0if 0.8109 0.8422,

0 0 0 1 0

0 0 0 0 1

C
λ

λ

 
 
 
 

< ≤ =  
 
 
 
  

�

then the cars are classified into the following three types: {A1, A2, A3}, {A4}, {A5};

4.	

1 0 0 0 0

0 1 1 0 0

0 1 1 0 0if 0.8422 0.8634,

0 0 0 1 0

0 0 0 0 1

C
λ

λ

 
 
 
 

< ≤ =  
 
 
 
  

�

then the cars are classified into the following four types: {A1}, {A2, A3}, {A4}, {A5};
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5.	

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0if 0.8634 1,

0 0 0 1 0

0 0 0 0 1

C
λ

λ

 
 
 
 

< ≤ =  
 
 
 
  

�

then the cars are classified into the following five types: {A1}, {A2}, {A3}, {A4}, {A5}.

From the above analysis, we know that the improved correlation coefficient (4) can be applied in the clus-
tering of IFSs effectively. Moreover, there are five situations based on the association matrix, which is con-
structed by the improved correlation coefficient (4), while only three situations were obtained in Ref. [28]. It 
can be seen that the improved correlation coefficient has higher accuracy in clustering.

5  �Conclusion
The existing correlation coefficients did not meet some desirable properties in the IFS theory. In order to 
solve this problem, we have introduced an improved correlation coefficient of the IFSs. We have shown the 
advantages of the improved correlation coefficient by comparing with the correlation coefficients proposed 
by Xu [19, 21]. Then, we have further generalized it to the IVIFS environment. Finally, the improved correla-
tion coefficient has also been applied effectively in medical diagnosis and clustering.
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