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Abstract: We propose a method for task allocation to multiple physical agents that works when tasks have
temporal and spatial constraints and agents have different capacities. Assuming that the problem is over-
constrained,weneed to findallocations thatmaximize thenumber of tasks that canbedonewithout violating
any of the constraints. The contribution of this work is the study of a new multi-robot task allocation prob-
lem and the design and the experimental evaluation of our approach, an iterated local search that is suitable
for time critical applications. We created test instances on which we experimentally show that our approach
outperforms a state-of-the-art approach to a related problem. Our approach improves the baseline’s score on
average by 2.35% and up to 10.53%, while responding in times shorter than the baseline’s, on average, 1.6 s
and up to 5.5 s shorter. Furthermore, our approach is robust to run replication and is not very sensitive to
parameters tuning.
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1 Introduction
Task allocation to physical agents addresses the problem of which agent should execute which tasks, so that
the total cost is minimized and/or the total reward is maximized. Applications include robotic missions for
surveillance or exploration (e.g. NASA’s rovers sent to Mars); multiple vehicles routing and scheduling, such
as for delivery of goods [20]; and an emergency response, which deals with important social issues, such as
natural disaster mitigation [8] or law enforcement at the city scale [1].

Task allocation tomultiple physical agents has been formulated inmanyways, depending on the applica-
tion, and solved using different methods. Our work is motivated by emergency response, but the formulation
we give is relevant to other applications. Considering the intractability of the problem and the need of rapid
response, we are interested in a fast and competitive heuristic for the problem. Themain contributions of the
paper are the following:
(i) a formalization of a practical multi-robot task allocation problem, where there is a limited number of

agents that have heterogeneous capacity to execute tasks, and a relatively large number of tasks that are
geographically scattered with deadlines;

(ii) the development of an efficient and effective metaheuristic, iterated local search (ILS) [12], based on a
preliminary study of the baseline approach [21] when applied to our problem [15];

(iii) the generation of a test set and the experimental evaluation of the proposed method on it.
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The task allocation problem we deal with falls into the ST-SR-TA:TW (Single Task robot, Single Robot task,
Time-extended Assignment, TimeWindows) deterministic category according to Nunes et al.’s taxonomy [17].
Our proposed approach is easy to implement; though not optimal, it computes good solutions fast, as shown
in our experimental results. Hence, it is suitable for time critical applications, where solution quality is traded
off for prompt response time. The experimental results show that our approach has limited sensitivity to
parameter tuning and is robust to run replication.

The paper is organized as follows. In Section 2, we briefly review the literature on task allocation to mul-
tiple physical agents. We define our task allocation problem in Section 3. In Section 4, we detail a fast and
effectivemetaheuristic approach thatwepropose for theproblem. Section 5describes the experimental setup,
the test instances, and the experimental resultsweobtained. Section6 concludes and suggests future research
directions.

2 Related Work
Task allocation to multiple physical agents is mainly studied by the artificial intelligence and robotics com-
munities, where it is usually referred to as multi-robot task allocation (MRTA). Major applications of MRTA
are, but not limited to, emergency response, such as urban search and rescue; exploration of hostile environ-
ments, such as theMars planet byNASA’s twin geologist rovers; and surveillance of hazardous environments,
such as surveillance of an enemy’s border territory with unmanned air vehicles. Typically, the objective in a
MRTA problem is tominimize the total distance traveled by robots to accomplish the tasks (because of limited
battery power) or tominimize themission’s time (if it maximizes the reward). The allocation of tasks to robots
is constrained spatially and temporally, as the robots need to travel to tasks which are only available during
a certain, potentially short, period of time. Advanced applications may require further constraints, such as
precedence among tasks or synchronization of their execution [17].

According to the taxonomy of Gerkey andMatarić [5], MRTA problems can be broadly categorized accord-
ing to three axes: (i) how many tasks can a robot perform simultaneously, (ii) does a task require (or permit)
multiple robots working on it simultaneously, and (iii) can all tasks be allocated upfront or as they arrive.

Nunes et al. [17] recently extended the taxonomy third axis by distinguishing between allocation mod-
els where tasks have time windows and allocation models where tasks have precedence or synchronization
constraints. Their taxonomy is further narrowed by subcategorizing task allocation according to hard vs. soft
temporal constraints, deterministic vs. stochastic task arrival, task reward, robot travel time, etc.

With respect to decision making, we distinguish centralized approaches (e.g. [9]) from decentralized
approaches (e.g. [18, 19]). Centralized approaches assume a (single) central decisionmaker that assigns tasks
to agents, while in decentralized approaches there are many independent decisionmakers, usually with lim-
ited awareness of tasks and peer agents. In swarm intelligence, (e.g. [3, 4]), task allocation can emerge from
simple and independent behaviors of single robots. When using decentralized constraint optimization, tasks
are allocated through a distributed algorithm run by multiple robots that communicate with each other [19].
Decentralized task allocation is useful in dynamic environments, to provide fault tolerance and adaptability,
or when communication is limited. Centralized approaches have a single point of failure; however, they are
more effective in observable environments and more suitable when optimality is desirable.

Lagoudakis et al. [11] provide auction-based multi-robot algorithms for robots to visit tasks. The algo-
rithms have performance guarantees, but they do not include temporal constraints. Melvin et al. [14] devel-
oped auction-based methods that run fast and perform well on MRTA problems with reward for task comple-
tion. Their problemdoes not require the visit of all targets, and the approach is restricted to taskswith disjoint
time windows. Task allocation in emergency response is modeled as an extended generalized assignment
problem by Scerri et al. [19]. The agents diverge in efficiency and availability of resources. The tasks require
different amounts of resources and may have interdependencies during execution. The problem formulation
captures many aspects of task allocation to robots; however, it does not consider spatial or temporal con-
straints on tasks, and the agent capacity is considered as a reward rather than a constraint. Ramchurn et al.
[18] approached the emergency response issuewith teamsof agents, of different joint capabilities,whichband
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(and disband) to work simultaneously together on tasks that have workload, time, and location constraints.
While such a formulation may be effective, it comes at the cost of increased computational complexity.

Other formulations relevant to the problemwe address are routing and scheduling problems, such as the
vehicle routing problemwith timewindows [20], the team orienteering problemwith timewindows (TOPTW)
[2], and the multiple repairman problem with time windows [13].

Theseproblems fallwithin the time-extended task allocation class (see [17] for details on further problems
that fall in this class).

3 Problem Statement
We assume a number of cooperative physical agents that have to travel to execute dispersed tasks. The agents
and the tasks are known upfront and do not change during the allocation. We assume the ST-SR-TA alloca-
tion model [5], where an agent does at most one task at a time, each task requires one agent only, and task
assignments are planned over time spans. Our MRTA model is deterministic with hard temporal constraints
[17]. We assume a single type of task and a single type of agent.

3.1 Basic Definitions

Let A = {a1, . . . , an} be the set of agents. Each agent a ∈ A has an initial location l0a ∈ LA at time t = 0,
where LA is the set of initial locations of the agents on the Euclidean plane. Let K = {k1, . . . , km} be the set
of tasks. A task k ∈ K has a fixed location lk ∈ LK, a deadline dk by which it should be finished, and a work-
load wk which is an estimate of the amount of work necessary to complete k. Each agent a has a capacity pa,
which is the number of units of work that a can perform in one unit of time. Differences in capacity among
agentsmay be due to skill, experience, or specific tools. We assume that time is discrete and agents can travel
and do tasks in measurable units of time (e.g., seconds or minutes) starting from a reference time t = 0. We
define ρ : (LA ∪ LK) × LK → [0 . . .∞] to be the agent travel time function. For simplicity, we assume that
paths are free of blockages and traffic jams, the agents have the same constant velocity and will always take
the shortest path between two consecutive tasks.

3.2 Problem Constraints

The tasks have to be allocated without violating any temporal or capacity constraint. Temporal constraints
restrict the time by which tasks have to be completed, while capacity constraints affect the number of tasks
that can be processed and their processing time. An agent-task assignment that respects the capacity and
temporal constraints is said to be feasible. Formally, the assignment of agent a to task k at time t is feasible,
if and only if

t + ρ(lta , lk) + ⌈wk/pa⌉ ≤ dk (1)

where lta is the location of agent a at time t. The constraint above ensures that an agentwill only travel to a task
it can reach and finish before the deadline, given the agent’s location, its capacity, and the task’s workload.

3.3 Search Space

We denote by τa→k
t1 ,t2 the assignment of agent a to task k, during the period of time [t1, t2]. We define F, the set

of all feasible assignments, as

F = {τa→k
t1 ,t2 |t1 = t + ρ(lta , lk), t2 = t1 + ⌈wk/pa⌉,

t2 ≤ dk}a∈A,k∈K,t∈{0,...,dk} (2)



350 | H. Mitiche et al.: ILS for MRTA with Temporal and Capacity Constraints

Feasible assignments of agent a to task k are within the time window [0, dk] (Eq. (2)). An assignment
start time, t1, corresponds to the time of arrival of a to task k. It depends on a’s location at time t, which is 0
at the beginning, or the time by which a finishes the previous assignment. The assignment completion time,
t2, should meet k’s deadline (Eq. (2)). A candidate solution, denoted by Γ, is a subset of F that we define as

Γ = {{τa→k
t′,t′′ } ⊆ F|∀τa1→k1

t1 ,t2 , τa2→k2
t′1 ,t′2 ∈ Γ : k1 ̸= k2,

a1 = a2 ⇒ {t1 . . . t2} ∩ {t′1 . . . t′2} = ∅} (3)

The first condition (Eq. (3)) ensures that every task is at most assigned to one agent and once. The second
condition guarantees that each agent is assigned to nomore than one task simultaneously. The search space,
Γ, is defined as: Γ = ∪Γ.

3.4 Objective Function

The goal of our task allocation problem is to maximize the number of tasks that are completed (by their
deadlines). It can be expressed as follows:

argmaxΓ∈Γ
∑︁
k∈K

δ(k, Γ) (4)

where δ(.) is the task selection function defined over the set of tasks and candidate solutions. For k ∈ K and
Γ ∈ Γ, we have

δ(k, Γ) =

{︃
1 if ∃a ∈ A, t, t′ : τa→k

t,t′ ∈ Γ
0 otherwise

(5)

The function δ(.) returns 1 if and only if task k is present in one of the assignments of the candidate
solution (Γ).

To the best of our knowledge, the problem we have defined has not been studied. It bears similarity to
TOPTW [2] and particularly to theMRTA problem in [18]; however, we assume single-robot tasks and capacity
for agents rather than coalitions. We refer to our problem as multi-robot task allocation with temporal and
capacity constraints (MRTA/TC).

4 A Metaheuristic Approach
We found that the MRTA/TC problem is NP-hard and relates to the TOPTW. To tackle the problem complex-
ity, we propose an anytime approach so that it returns quickly a (suboptimal) solution, yet can find a better
solution if run longer. The approach is an enhanced ILS that builds upon ILS [21], based on the preliminary
study we did in [15]. The metaheuristic runs in two phases: construction, which generates local optima, and
perturbation, which tries to escape them to find a global optimumor at least a local optimumof better quality.
We will designate an agent’s assignment by visit and an agent’s set of assignments by tour.

4.1 Construction Step: Insertion-Based Heuristic

This phase builds a candidate solution, from somepartial solution, based on a heuristic that inserts visits into
all tours simultaneously. Let si, fi, and Ti respectively denote the start time, the finish time, and the service
time of visit i. Based of Eq. (1), the service time of visit i can be computed as Ti = ⌈wai /pai⌉, where ai is the
agent corresponding to the tour in which visit i is considered for insertion. We denote – with some abuse of
notation – by ρ(h, i), the travel time between locations of visits h and i and by ρ(−1, h) the travel time between
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the tour start location and (h), the location of the first visit in the tour. The insertion of visit i between h and j
delays j and the visits that follow j, in the tour, by shifti as follows:

shifti = ρ(h, i) + Ti + ρ(i, j) − ρ(h, j). (6)

Given that the tasks have deadlines, before considering to delay a visit, we ensure that the visit remains
feasible after the insertion under consideration. For that, we computemaxshiftj, themaximum allowed delay
of visit j, as follows:

maxshi�j = max

⎧⎨⎩0,

⎧⎨⎩dj − (sj + Tj) if j is the last

min {dj − (sj + Tj),maxshi�j+1} otherwise

⎫⎬⎭
⎫⎬⎭ (7)

where dj is the deadline of visit j (with some abuse of notation) and maxshiftj+1 is the maximum delay that
can be applied on the visit that follows j. A visit can be delayed as much as its task’s deadline permits, when
it is the last in the tour. Otherwise, the visit can be delayed no later than its task’s deadline and nomore than
the maximum shift of the visit that follows (Eq. (7)).

The insertion of visit i between h and j is feasible if and only if i is feasible (Eq. (1)) and the resulting
delay of j and, consequently, the delays of the visits that follow j are less than or equal to the maximum
allowable:

shi�i ≤ maxshi�j (8)

A visit may be inserted in many tours and in many positions in a tour. The desirability of the insertion
of visit i, noted as desirabilityi, is inversely proportional to the resulting delay (Eq. (9)). Let F denote – with a
slight change of notation – the set of possible visits to currently not allocated tasks,Kpending. Let Fk denote the
set of feasible visits to task k ∈ Kpending. Then F* denotes the set composed of themost desirable insertion for
every pending task (F* ⊆ F). We look for i*k , the most desirable visit to task k in the current tours (Eq. (10)).
Then we select for insertion i*, the visit with the highest desirability among the best visits to the pending
tasks (Eq. (11)).

desirabilityi = 1/shi�i (9)

i*k = argmax
i∈Fk

{desirabilityi} (10)

i* = argmax
i∈F*

{desirabilityi} (11)

Algorithm 1: Construction Step.

Input: partial solution S, set of tasks Kpending
Output: new solution S′

1 S′ ← S
2 while Kpending ̸= ∅ do
3 forall k ∈ Kpending do
4 Compute all possible visits to task k (Eqs. (1) and (8))
5 Find the best visit to task k (Eq. (10))
6 Find the best visit to insert, i* (Eq. (11))
7 if i* = null then Return S′
8 else Insert i* into S′ and update Kpending
9 Compute the start time si* and the finish time fi*

10 forall the visits j after i* do Update sj, fj andmaxshi� j (Eqs. (12) and (7))
11 Computemaxshi� i*

12 forall the visits h before i* do Updatemaxshi�h
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After an insertion, we update themaximum shift for all the visits in the tour. For the visits that come after
the insertion, we further update their start times and finish times, by adding the insertion delay (Eq. (12)).

sj = sj + shi�i fj = fj + shi�i (12)

The construction step iterates until all tasks are visited, or no further insertion is possible (Algorithm 1).
Each time, Algorithm 1 inserts the best visit among the possible visits to the pending tasks. Then, it updates
the set of pending tasks and the tour where the insertion took place by recomputing the visits’ start times, fin-
ish times, andmaximum shifts. The maximum shifts are updated in the inverse order of visits, as required by
Eq. (7).

4.2 Perturbation Step: Alteration of the Current Solution

This phase modifies the current solution so that the construction phase can find another solution. The
perturbation strength and the perturbation start define the modification to make. The adjustment of these
perturbation parameters affects the search tendency (exploration or exploitation) [12]. To perturb the solu-
tion, we remove from each tour r sequential visits, starting from some visit x, in a circular way. That is, we
remove visits from index x to x + r − 1. When we reach the end of the tour, we continue from the beginning
(i.e. from 0 to y = (x + r) % tl − 1, where % is the remainder of division operator and tl is the length of the
tour). The perturbation strength is then nr. Removing visits requires a backward shift, backshiftx,r, of the visits
that follow the removal, unless the visits removed are at the tour end:

backshi�x,r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x + r = tl
y∑︁

i=0
[ρ(i − 1, i) + Ti] + ρ(y, y + 1) − ρ(−1, y + 1) if x + r > tl

x+r−1∑︁
i=x

[Ti + ρ(i, i + 1)] + ρ(x − 1, x) − ρ(x − 1, x + r) otherwise

(13)

When visits are removed from the beginning or the middle of the tour, the visits that follow are shifted
toward the beginning. The start and finish times of the shifted visits are updated as follows (where i ∈
{x + r . . . tl − 1} when x + r < tl and i ∈ {y + 1 . . . x − 1} when x + r > tl),

si = si − backshi�x,r (14)

fi = fi − backshi�x,r (15)

The removal of visits requires to update the maximum shifts of the visits that remain. When visits are
removed from the middle of the tour (i.e. when x + r < tl), the maximum shifts of the visits i that follow the
removal (i ∈ {x + r, . . . , tl − 1}) are computed as follows:

maxshi�i = maxshi�i + backshi�x,r (16)

Algorithm 2: Perturbation Step.

Input: current solution S, free parameter perturbationStrengthCoef
Output: partial solution S′

1 r ← (score(S) × perturbationStrengthCoef )/n
2 S′ ← S
3 forall tour ∈ S′ do
4 x ← random number ∈ [0, length(tour))
5 Remove the r first visits starting at index x in tour and update Kpending
6 Compute backshi�x,r in tour (Eq. (13))
7 forall the visits j ≥ x + r do Update sj, fj andmaxshi� j (Eqs. (14)–(16))
8 forall the visits i < x do Updatemaxshi� i (Eq. (7))
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Algorithm 3: Enhanced Iterated Local Search.

Input:maxIter, perturbationStrengthCoef
Output: best-found solution S*

1 S′ ← ∅
2 S* ← S′
3 iter ← 1
4 while iter ≤ maxIter do
5 S ← Construction(S′) (Algorithm 1)
6 if score(S) > score(S*) then S* ← S
7 S′ ← Perturbation(S) (Algorithm 2)

Our perturbation (Algorithm2) removes fromevery tour a number of visits that is proportional to the num-
ber of visited tasks, score(S), the perturbation strength coefficient, perturbationStrengthCoef, and the number
of agents n. Thus, the perturbation strength is evenly divided among the tours and is adapted to the search
progression and the difficulty of the problem instance (number of agents, task/agent locations, and dead-
lines/capacities distribution). Namely, the perturbation strength at the tour’s level increases as more tasks
get visited (hence, the tours get longer). The perturbation start index, x, is selected randomly (Algorithm 2).
By doing so, the perturbation is very likely to output a different solution S′, if it happens to have again solu-
tion S as input. Consequently, our ILS should avoid cycles and better explore the search space compared to
ILS [21].

4.3 The Metaheuristic: Enhanced ILS

Enhanced ILS (Algorithm 3) is configured with two parameters: (1) the maximum number of iterations (max-
Iter) which, contrary to maxTrials of ILS [21], enables the control of the runtime and (2) a coefficient that
controls the perturbation strength at the tour level (perturbationStrengthCoef ). Enhanced ILS iterates until
all tasks are visited or the maximum number of iterations is reached. Each time, it constructs a new solution,
S, from a partial solution, S′ (initially empty), that is based on the current solution, S. The best solution found,
S*, is updated with new solution S if necessary. Then, S is altered so that the next iteration may escape the
local optimum towards a possibly better one.

5 Experimental Evaluation
We experimentally evaluated our approach to the MRTA/TC problem on instances we generated based on
instances of the related problem (TOPTW) and against a competitive approach to the related problem.

The comparison of the state-of-the-art approaches to TOPTW was conducted by Hu and Lim [7] and
recently by Gunawan et al. [6]. The authors adapted the computation times of the competitors methods
according to their CPU speeds. The comparisons were carried out on two TOPTW benchmarks with up to four
tours. We only consider the benchmark based on Solomon’s instances as our test set. We compare the perfor-
mance averaged per group of instances similarly to [6, 7]. The iterative three-component heuristic [7] tends to
get the lowest gap to the best-known solutions; however, it has a high computation time. The hybridization of
Simulated Annealing with ILS [6] is comparable to the iterative three-component heuristic but only for long
computation times. ILS [21] is appropriate for real time, since it can in the order of seconds return solutions
with a low score gap to the best-known – the average score gap was only 1.76% and 2.34%, respectively, for
the second group and the first group of Solomon’s instances (Gunawan et al. [6], thoughmore recently, report
ILS score gaps that are even lower than Hu and Lim [7]), while the average response time is tens to hundreds
times faster than the ant colony system [16] and the iterative three-component heuristic. The hybrid meta-
heuristic of Labadi et al. [10] is a few times slower than ILS but has a slightly better average score gap (about
1.2% better on average in each instance group [7]).
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The metaheuristics of [10] and [21] are suitable baselines for time critical applications, since both have
prompt response times and low score gaps compared to the best-known. Nonetheless, ILS [21] has the best
response time and will be the baseline for evaluating our approach.

5.1 Experimental Instances and Setup

We generated two groups of problem instances. In group 1, instances admit solutions with tours of small to
moderate length; whereas in group 2, instances can have solutions with tours that are relatively long. There
is a fixed number of tasks, 100, while the number of agents varies as follows: 2, 3, 5, and 7. The map is a
100 × 100 grid. The agents’ initial locations and the tasks’ locations are drawn uniformly at random. The
travel velocity is commonly set at a unitary value. Agent a’s capacity pa ∈ {1, 2}, such that about one third
of the agents are twice more efficient at work than the rest.

The task workload is set at 20. Task k’s deadline, dk, is normally drawn from [dlowk , dhigh] for 25%, 50%,
75%, or 100% of the tasks. The remaining tasks take dhigh (the slackest deadline). The tightest deadline, dlowk ,
is set such that task k would be feasible as first task for any agent. The value dhigh is set such that, assuming
10 agents and a travel distance between any pair of tasks of at most 25 units (1/4 of the longest distance), if
dhigh was the deadline for all tasks, they could all be visited. We experimentally found that this setting of
dhigh enables long tours, whereas setting it at half its original value enables relatively short tours.

By combining the number of agents with the percentage of normally sampled deadlines, we get 16
different problem configurations per group. We sample three instances per problem (configuration) to get
96 instances (the test instances are available on theWeb at http://tinyurl.com/taptc15in). An instance named
r23a501, for example, is in group 2, has 3/4 tasks with normally distributed deadlines, five agents, and is the
second instance of the problem configuration.

We coded the enhanced ILS and the baseline in Java. We ran the experiments on a laptop equipped with
an Intel(R) Core(TM) i7 CPU clocked at 2.20 GHz, 8 GB of volatile memory, and running under Linux Ubuntu
14.04. We replicated enhanced ILS run on a problem instance 10 times.

5.2 Parameter Tuning

We manually tuned the algorithms in a trial-and-error fashion. We stopped tuning when the quality of the
solution no longer improvedwithout significantly increasing the computation cost.We found the best param-
eters setting for ILS (maxTrials,maxPerturbationStrengthCoef ) to be (600, 1/2) and (600, 2/5), respectively, for
group 1’s and group 2’s instances. Based on the run replication with the median score, we found the best
parameters setting for enhanced ILS (maxIter, perturbationStrengthCoef ) to be (3000, 1/3) and (5000, 1/8),
respectively, for group 1’s andgroup 2’s instances.We foundmarginal improvements beyond 15 s of execution.

5.3 Results

Table 1 summarizes the results of the experimental comparison of enhanced ILS and ILS. The score gap is
reported in percentage (%) and the computation time gap in milliseconds (ms) per problem (Eq. (17)).

ScoreGap = (scoreenhILS − scoreILS) ÷ scoreILS × 100%

TimeGap =

⎧⎨⎩timeILS − timeenhILS if ScoreGap = 0

(runtimerunner−up − timewinner) otherwise
(17)

where scoreenhILS and scoreILS are the solution qualities of the proposedmetaheuristic and the baselinemeta-
heuristic, respectively. The computation time that is actually necessary to find the final solution is noted
timeILS and timeenhILS. As to runtimerunner−up, it is the runtime of the metaheuristic that underperformed,
while timewinner is the computation time of the metaheuristic that performed best on the problem at hand.

http://tinyurl.com/taptc15in
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Table 1: Performance of Enhanced ILS vs. Baseline ILS, Average Per Problem.

Problem Score gap (%) Time gap (ms)

Median Best Worst Median Best Worst

r11a2 0.0 0.0 0.0 9 15 15
r12a2 1.38 2.76 0.0 1558 1464 4
r13a2 1.43 1.43 1.43 1174 1366 1364
r14a2 5.18 5.18 3.63 1080 1141 1202
r11a3 3.1 3.1 3.1 2760 2783 2717
r12a3 4.23 4.23 3.26 2480 2418 2497
r13a3 5.21 6.51 1.95 1418 1607 2368
r14a3 3.8 3.8 1.52 2133 2122 2083
r11a5 2.68 3.25 1.34 4688 3532 4917
r12a5 0.0 1.9 −0.76 −313 3883 5389
r13a5 2.56 2.56 0.0 3358 4143 259
r14a5 3.31 4.02 1.65 2097 2968 3969
r11a7 1.3 1.3 −0.52 3443 3878 11,234
r12a7 0.0 0.95 −0.41 −207 5221 8287
r13a7 0.97 1.94 0.55 4973 3401 2927
r14a7 2.64 2.64 1.09 5547 7041 6591
Average 2.36 2.85 1.11 2262 2936 2378
Minimum 0.0 0.0 0.0 −313 15 4
Maximum 5.21 6.51 3.63 5547 7041 6591
r21a2 1.56 1.56 −0.67 1303 1901 3815
r22a2 4.02 4.73 1.65 1290 1539 2508
r23a2 1.74 1.74 0.99 1428 1315 2232
r24a2 7.21 7.21 5.11 1143 1024 1330
r21a3 1.11 1.58 0.0 −215 1678 125
r22a3 2.59 3.73 0.97 14 −657 1892
r23a3 1.72 2.4 0.69 2183 1751 2890
r24a3 0.8 1.99 −1.19 2526 3236 2893
r21a5 2.4 2.4 1.67 −102 −699 1294
r22a5 2.84 3.6 2.18 879 −975 552
r23a5 3.11 4.3 2.39 1930 2118 2996
r24a5 2.23 3.15 0.52 1544 1437 2972
r21a7 0.0 0.0 0.0 15 15 15
r22a7 0.0 0.0 0.0 17 10 18
r23a7 0.0 0.0 −0.3 −12 −476 2417
r24a7 2.49 3.12 2.08 487 1013 1577
Average 2.11 2.59 1.01 902 889 1569
Minimum 0.0 0.0 −0.67 −215 −975 15
Maximum 7.21 7.21 5.11 2526 3236 2996

Then the time gap, TimeGap, measures how much extra time the runner-up approach was given to catch up
with the superior approach, if any (Eq. (17)).

In Table 1, column 1 lists the problems, and columns 2–4 report the score gaps obtained from themedian,
best, and worst run replications of enhanced ILS, respectively. Columns 5 through 7, respectively, report the
time gap for enhanced ILS run replications with the median, best, and worst score gaps. The results are aver-
aged over the problems instances. Positive score gaps account for our approach having a performance better
than the baseline’s. When the time gaps are positive as well, our approach could find better solutions in
shorter response times (Eq. (17)).

Compared to ILS, enhanced ILS generally finds solutions of better quality, within shorter times (Table 1).
Even in the worst run replication, enhanced ILS is generally better (it is at least as effective as ILS on 13 out of
the 16 problems, in each group). In the median case, enhanced ILS is on average 2.24% and up to 7.21%more
effective in allocating tasks than ILS. When we consider all run replications, enhanced ILS almost always
improves the solution quality (it did not only on two problems in group 2). The total average score gap is
slightly improved in the best run replication; nonetheless, the score is improved on half of the problems.
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Enhanced ILS tends to have a response time that is shorter than ILS’s (Table 1). In themedian run replication,
ILS is given, on average, 1 s and up to 5.5 s to catch up with enhanced ILS.

Adapting the perturbation strength to the current solution and problem instance, and including ran-
domness into the perturbation phase, is better than doing cyclic incremental deterministic perturbations
(the case of ILS). We think, likewise, that search recycling is very unlikely. Interestingly, enhanced ILS’s

Table 2: Detailed Performance of Enhanced ILS (Median Run) Versus ILS.

Instance Score Gap (%) Time (ms) Instance Score Gap (%) Time (ms)

Computation Run Computation Run

r11a200 23.0 0.0 42 1732 r21a200 46.0 0.0 2764 5019
r11a201 23.0 0.0 13 1581 r21a201 46.0 2.22 9 4117
r11a202 23.0 0.0 2 1832 r21a202 45.0 2.27 927 3854
r11a300 31.0 3.33 119 2481 r21a300 59.0 0.0 170 7068
r11a301 38.0 2.7 185 4243 r21a301 72.0 1.41 1762 7638
r11a302 31.0 3.33 4 2594 r21a302 61.0 1.67 103 6865
r11a500 52.0 1.96 1210 5962 r21a500 97.0 2.11 918 7448
r11a501 52.0 1.96 701 6297 r21a501 97.0 4.3 1993 8056
r11a502 57.0 3.64 1200 9261 r21a502 100.0 1.01 214 441
r11a700 78.0 2.63 8069 13,987 r21a700 100.0 0.0 14 15
r11a701 79.0 1.28 3952 14,358 r21a701 100.0 0.0 15 22
r11a702 76.0 0.0 643 10,956 r21a702 100.0 0.0 15 17
r12a200 22.0 4.76 10 1114 r22a200 44.0 7.32 615 3172
r12a201 21.0 0.0 525 1077 r22a201 43.0 0.0 2026 3298
r12a202 23.0 0.0 9 1954 r22a202 45.0 4.65 119 3392
r12a300 30.0 3.45 22 2129 r22a300 60.0 5.26 281 5428
r12a301 36.0 2.86 16 3790 r22a301 71.0 2.9 1558 6769
r12a302 30.0 7.14 1513 2177 r22a302 59.0 0.0 551 5695
r12a500 50.0 −1.96 532 5683 r22a500 93.0 4.49 596 6889
r12a501 52.0 1.96 764 5244 r22a501 94.0 3.3 634 7439
r12a502 56.0 1.82 3270 8873 r22a502 96.0 1.05 1801 7904
r12a700 73.0 2.82 4845 9382 r22a700 100.0 0.0 15 16
r12a701 76.0 0.0 1090 9440 r22a701 100.0 0.0 40 20
r12a702 73.0 −1.35 2809 9412 r22a702 100.0 0.0 15 17
r13a200 22.0 0.0 2 934 r23a200 41.0 0.0 1614 2767
r13a201 22.0 4.76 7 1063 r23a201 41.0 2.5 642 2774
r13a202 20.0 0.0 261 851 r23a202 41.0 2.5 770 2738
r13a300 31.0 3.33 76 1815 r23a300 55.0 1.85 1708 3859
r13a301 35.0 6.06 240 2836 r23a301 67.0 1.52 2417 5254
r13a302 31.0 6.9 430 1871 r23a302 56.0 1.82 1019 3862
r13a500 50.0 4.17 464 4621 r23a500 81.0 3.85 3570 6004
r13a501 52.0 4.0 1397 5472 r23a501 89.0 4.71 1082 6227
r13a502 54.0 1.89 1056 5433 r23a502 89.0 1.14 2973 5886
r13a700 73.0 −1.35 1759 8799 r23a700 100.0 0.0 23 24
r13a701 75.0 2.74 7782 8854 r23a701 100.0 0.0 1757 61
r13a702 71.0 1.43 6043 8527 r23a702 100.0 0.0 15 17
r14a200 21.0 10.53 397 864 r24a200 36.0 9.09 149 1702
r14a201 20.0 0.0 4 755 r24a201 35.0 2.94 123 1609
r14a202 20.0 5.26 10 1064 r24a202 36.0 9.09 233 1754
r14a300 25.0 8.7 32 1998 r24a300 46.0 0.0 2111 3036
r14a301 31.0 3.33 73 3036 r24a301 56.0 0.0 3255 3982
r14a302 26.0 0.0 22 1928 r24a302 50.0 2.04 7 3309
r14a500 42.0 2.44 85 3879 r24a500 76.0 0.0 1453 6973
r14a501 43.0 2.38 2069 5034 r24a501 77.0 4.05 1478 6595
r14a502 46.0 4.55 698 5761 r24a502 81.0 2.53 1317 6322
r14a700 67.0 3.08 829 8711 r24a700 99.0 2.06 234 8220
r14a701 64.0 1.59 3477 9961 r24a701 98.0 3.16 631 7608
r14a702 67.0 3.08 5681 9556 r24a702 99.0 2.06 2151 8337
Average 2.52 1342 4983 Average 2.1 998 4157
Maximum 10.53 8069 14,358 Maximum 9.09 3570 8337
Minimum −1.96 2 755 Minimum 0.0 7 15
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perturbation proved particularly helpful on instances with short tours. Enhanced ILS achieved at least 2.5%
score improvement in nine problems of group 1, compared to five problems of group 2 (Table 1).

Table 2 details the median performance results of enhanced ILS. The columns from left to right, respec-
tively, lists the problem instances names, the solution quality, the score gap (enhanced ILS vs. ILS), enhanced
ILS’s computation time, and runtime. Strictly positive score gap values, which account for the superiority of
our metaheuristic, are noted in bold. Enhanced ILS finds solutions of better quality than ILS solutions, about
68% of the time (or on 65 out of the 96 instances). Enhanced ILS fell shorter than the baseline only on three
instances: r12a500, r12a702, and r13a700 (Table 2). The score improvement is up to about 10%. On average,
enhanced ILS performs slightly better on instances with tight deadlines (group 1). Since both ILS algorithms
find the optimal solution of at least 10 instances of group 2 (when 100 tasks are allocated), such instances
may be easy; thus, we cannot compare the approaches on them. Enhanced ILS runs, on average, in less than
5 s and no more than 15 s. However, the response times are lesser than the runtimes (Table 2).

To further evaluate our approach, we plot the score gap evolution over time. For that, we consider
enhanced ILS’s median run and ILS run on the 96 problem instances. Figure 1 shows four representative
patterns of score gap evolution over time – we omit a fifth pattern, with 26% of occurrences, since therein
the score gap is null and does not evolve over time. Enhanced ILS is superior to ILS all over the runtime more
than half of the time (Figure 1A). Specifically, in 56.3% of the instances, not only does enhanced ILS return a
better solution, but it can also do that any time. Less frequently (11.5% of the time), enhanced ILS achieves
a better score by the end, while being generally superior during the runtime (Figure 1B). Enhanced ILS ties
with ILS by the end of the run in 29% cases (Figure 1C). Interestingly, when enhanced ILS underachieves by
the end (3% of the cases), it is still competitive with ILS along the runtime (Figure 1D). We can conclude that
enhanced ILS is likely to achieve a score better than ILS’s, even if interrupted at different cutoff times.
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Figure 1: Patterns of Score Gap Evolution Over Time (Enhanced ILS vs. ILS). (A) enhILS superior all over the runtime; (B) enhILS
superior over most of the runtime; (C) enhILS similar, better along the runtime; and (D) enhILS inferior, competitive along the
runtime.
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Figure 2: Probability that Enhanced ILS Improves Solution Quality of ILS.

For our statistical study on the performance of our approach, we consider 30 observations per problem
configuration, obtained from running enhanced ILS on the problem instances. Specifically, we compute the
probability that enhanced ILS will improve, not improve, or deteriorate, respectively, the solution quality
achieved by ILS (Figure 2). Enhanced ILS is at least 50% likely to improve ILS’s solution in most problems
in each group. Enhanced ILS is overall 95% likely to perform at least as well as the baseline; we practically
never get a score worse than ILS’s, particularly for group 2 instances (Figure 2). Therefore, though stochastic,
enhanced ILS is practically better than ILS when run once. It is further better if we do multiple runs.

5.4 Sensitivity to Parameters Setting

A metaheuristic’s performance partly depends on how its free parameters are set. So to evaluate the impact
of free parameters setting our approach’s performance, wemeasure the sensitivity of the score gap to the free
parameters setting (Figure 3). The free parameters settingswe considered to configure enhanced ILS, noted as
config in Figure 3, are given by Table 3.We configured ILS the best we could (Section 5.2). Enhanced ILS gener-
ally performs better than ILS, independently of how its free parameters are set. Specifically, it performsworse
than ILS only in four problems and with a few free parameters settings in each group (Figure 3). On average,
parameters tuning resulted in a score gain of 2.23% only. Therefore, enhanced ILS’s performance is barely
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Figure 3: Enhanced ILS vs. ILS (Tuned as in §5.2) Score Gap Sensitivity to Free Parameters Setting (Config), with the Median
Runs of Enhanced ILS.



H. Mitiche et al.: ILS for MRTA with Temporal and Capacity Constraints | 359

Table 3: Some Free Parameters Settings Tried During Enhanced ILS Tuning.

Configuration Group 1’s instances Group 2’s instances

maxIter maxPerturbationStrengthCoef maxIter maxPerturbationStrengthCoef

0 6000 0.1 1000 0.5
1 5000 0.125 3000 0.125
2 4000 0.2 2000 0.25
3 3000 0.25 1500 0.4
4 3000 0.33 4500 0.1
5 2100 0.4 1700 0.33
6 1500 0.5 4000 0.125
7 – – 5000 0.125
8 – – 4000 0.2

affected by the free parameters setting, and, generally, its superiority to the baseline’s best performance does
not result from parameters tuning.

6 Conclusions and Future Work
We have introduced MRTA/TC, a task allocation problem where tasks have temporal constraints and agents
have capacity constraints. We presented an enhanced ILS which is suitable for time critical applications. We
experimentally evaluated our approach on test instances that we generated. Our approach produces better
quality solutions than the baseline while showing amore prompt response time. Our solution is barely sensi-
tive to parameter tuning, and it is fairly robust to run replications. Theproposed approachperformswellwhen
it is interrupted at different cutoff times. Future directionswill investigate the use of sophisticated acceptance
criterion, multiple construction heuristics, and/or adaptive parameter selection.
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