
J. Intell. Syst. 2020; 29(1): 1388–1407

Ayad Tareq Imam* and Ayman Jameel Alnsour

The Use of Natural Language Processing
Approach for Converting Pseudo Code to
C# Code
https://doi.org/10.1515/jisys-2018-0291
Received July 3, 2018; previously published online April 16, 2019.

Abstract: Although current computer-aided software engineering tools support developers in composing a
program, there is no doubt that more flexible supportive tools are needed to address the increases in the
complexity of programs. This need can be met by automating the intellectual activities that are carried out
by humans when composing a program. This paper aims to automate the composition of a programming lan-
guage code from pseudocode, which is viewed here as a translation process for a natural language text, as
pseudocode is a formatted text in natural English language. Based on this view, a new automatic code gener-
ator is developed that can convert pseudocode to C# programming language code. This new automatic code
generator (ACG), which is called CodeComposer, uses natural language processing (NLP) techniques such as
verb classification, thematic roles, and semantic role labeling (SRL) to analyze the pseudocode. The resulting
analysis of linguistic information from these techniques is used by a semantic rule-based mapping machine
to perform the composition process. CodeComposer can be viewed as an intelligent computer-aided software
engineering (I_CASE) tool. An evaluation of the accuracy of CodeComposer using a binomial technique shows
that it has a precision of 88%, a recall of 91%, and an F-measure of 89%.

Keywords: ACG, I-CASE, NLP, SRL, thematic role, verb classification.

1 Introduction
Software manufacturing can be enhanced in terms of both its quality and quantity by means of computer-
aided software engineering (CASE) tools, which are a set of software systems for fully or partially automating
certain activities of the software development process. These tools are available either separately or as a pack-
age. A well-known example of CASE tools is Rational Rose. Figure 1 illustrates a typical architecture for a set
of CASE software tools [39, 51].

The composition of a program is a fundamental phase in the software development life cycle (SDLC) that
can be automated via code generation CASE tools [39]. Software engineering (SE) terms this phase implemen-
tation, and it follows the design phase. The conversion of a certain design to a programming language code
is a relatively straightforward task compared to the other software development tasks [51].

Composing the source code of a program (or composing any program) is one task among many asso-
ciated with computer programming activity, such as testing, debugging, and maintaining a source code. In
addition to being an engineering discipline, good program writing is also viewed as an art [11]. In general,
there are two techniques for writing the source code of a program: updating an existing code and creating a
new source code. Obviously, the composition of source codes requires proficiency in specialized algorithms
that are based on a knowledge of the application area [21].

*Corresponding author: Ayad Tareq Imam, Department of Computer Science, Faculty of Information Technology, Isra University,
Amman 11622, Jordan, e-mail: alzobaydi_ayad@iu.edu.jo. https://orcid.org/0000-0002-9942-4772
Ayman Jameel Alnsour: Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam
Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia

Open Access. ©2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

https://doi.org/10.1515/jisys-2018-0291
mailto:alzobaydi_ayad@iu.edu.jo
https://orcid.org/0000-0002-9942-4772

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1389

Project

repository

Design

editor

Design

translator

Program

editor

Design

analyser

Code

generator

Report

generator

Figure 1: Architecture of CASE Software Tools.

The composition of a program is realized by converting an algorithm (or, more generally, a design) into
a programming language code. The choice of an algorithm to solve a given problem is the responsibility of
professional programmers [11].

Conversion of an algorithm, which is initially created as pseudocode, flowchart, or another form, into a
programming language code is achieved manually or automatically [3]. The problem addressed in this paper
is how to automate the process of composing a program by converting the pseudocode to the C# program-
ming language. The solution proposed here is the use of the semantic role labeling (SRL) of natural language
processing (NLP) in an automatic code generator (ACG).

1.1 Pseudocode

This is an informal (i.e. in natural language rather than in a programming language), formally styled, and
detailed description of an algorithm. Pseudocode forms of a solution are not executable on computers,
although they form a kind of template for developing an executable program by converting it to a certain
programming language [53].

As it takes the form of natural language, the pseudocode offers the software development team a tool to
verify that the solution matches the specifications of the design, with no need to learn a specific description
language. Thediscovery of logical errors at this stage costs less thandiscovering such errors in the subsequent
stages of the development process, and the pseudocode is therefore considered to be a CASE (non-software)
tool [48].

On the other hand, unlike programming languages and other artificial languages such asMath, the pseu-
docode has no defined set of words, and it is left to the developer to choosewords that can deliver a particular
solution. As there is no agreed, standardized style or format, forms of pseudocode vary widely from each
other. The representation of input, output, and processing activities can be achieved using any word that
serves this goal. For example, the word “input” can be used instead of the word “read”, or the word “display”
can be used in place of the word “write” [37].

Although it has a structure, the pseudocode tends to be in the style of natural language and, hence,
inherits problems related to the use of natural language in everyday communication, such as the ambigu-
ity resulting from different interpretations of a word, a statement, or speech, in general. The problems of
the absence of standards and the very few rules used by the pseudocode are two of its main shortcomings
[48]. As the pseudocode is not limited to particular words, the mapping of the syntax to C# semantics (which
are C# statements) poses a challenge. Maintaining a lookup table would not be helpful, due to the fact that

1390 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Function average

Begin

Counter = 0, sum = 0

While counter < 5

Begin

Read mark

Sum = sum + mark

Counter = counter + 1

EndWhile

Average = sum / 5

Print average

1.

2.

3.

4.

5.

6.

7.

Function average

Begin

Read 5 marks

Calculate the sum of the 5 marks

Divide the result of step (4) by 5

Print the result of step (5)

End

Figure 2: Two Different Pseudocodes for a Given Algorithm.

words other than those defined in the lookup table may be used, and this is critical problem that needs to be
addressed. Hence, NLP should be used. Figure 2 illustrates two different pseudocodes for a single algorithm.

1.2 C# Programming Language

C# is a high-level programming language that was designed and developed by Microsoft. Both the Interna-
tional Standards Organisation (ISO) and the European Computer Manufacturers Association (ECMA) have
approved this language. C# is analogous to Java in that it is a general-purpose, object- and component-
oriented part of the .Net Framework, which is a platform that supports the writing of various types of modern
applications, such as windows, web applications, and web services and is designed for common language
infrastructure (CLI) [7].

C# is distinguished from closely related, traditional, high-level languages, such as C, C++, and Java, by
the extra features of the constructs it has, such as automatic garbage collection, a standard library, properties
and events, delegation and event management, indexers, simple multithreading, integration with windows,
and others [7].

Of the various specifications of C#, this research is primarily interested in its syntax and constraints. This
is because an algorithm represented by pseudocode aims to describe a plan for a process, which corresponds
to a method in C# terminology. The syntax and constraints of C# can be found in Ref. [7].

1.3 Automatic Code Generator

ACGs are a class of CASE software tools that automate the process of composing a program or, in other words,
the use of programs to generate source code that humans would otherwise have to write [52]. The use of
ACG saves time and effort in addition to improving the software quality, productivity, consistency, accuracy,
and abstract coding. One of the most popular examples of automatic code generation is the conversion of a
designed graphical user interface (GUI) to an executable code in a visual programming environment such as
Visual Studio [39].

ACGs are either passive or active. Apassive code generator produces a code that needs some sort of human
adjustment ormodification,while anactive codegenerator is embedded in the softwaredevelopmentprocess,
and its execution is repeated in order to generate a new code [23, 29].

Forward/reverse engineering software tools (which are integrated with software modeling tools), code
wizards, and compilers are typical examples of the approaches used by an ACG to accomplish its function,
regardless of its type. Examples of software that convert an algorithm into a programming language code
include the conversion of an algorithm to code by the method in Ref. [3], Code Master (algorithm-to-code
converter) presented in Ref. [43], the AthTek Flowchart to Code [50], Flowgorithm [19], and many more.

Although the available ACGs have had remarkable successes, most ACG software tools require human
intervention to design a solution (algorithm or a system) as a prior step. This shortcoming is accepted as

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1391

normal, as design is a creativity-based skill that is an exceptionally hard task to automate. Based on this
fact, some have expressed doubts about the possibility of developing software tools to automate the design
task [15].

1.4 Natural Language Processing

NLP is a type of artificial intelligence (AI) processing that aims to allow a computer to understand human nat-
ural language. NLP extends text processing beyond simple syntactic processing tomajor and critical semantic
processing, which is a human natural ability [27, 32]. There are several different AI approaches that are used
by NLP applications to accomplish the task of understanding (inferring) the intended meaning of human
speech. A traditional rule-based approach involves inference rules that use predefined criteria (conditions)
to map the syntax to a suitable semantics [32], while a connectionist approach uses a learning strategy to
develop amapping (or classifying) machine. With the advancements inmachine learning applications, more
flexible, intuitive learning algorithms were defined that can allow a computer to discover the intent of a
speaker. Deep learning, as it is termed, requires enormous amounts of labeled data (called examples) to train
the computer prior to utilizing it for a particular application. This training process aims to allow the computer
to automatically discover relevant correlations among input patterns and output classes. This strategy is sim-
ilar to the way a baby begins to learn a human language. NLP uses deep learning to apply understanding to
the developed program [32].

It is worth mentioning here that the development (or composition) of an algorithm is another task that
is classified as problem solving. Although the composition of an algorithm and a program are separate tasks
in a complex programming project, they are combined in simpler ones [11]. This combination is considered
as one of algorithm’s notations (representation techniques) [48], and hence, this composing tends to be a
problem-solving issue (i.e. design of a solution) more than a compiling issue (i.e. converting a design into
a source code). Software for automation of a design activity is classified as an intelligent computer-aided
software engineering (I-CASE) tool [24].

This paper contributes ACGs using the SRL aspect of NLP together with a semantic rule-based (logic-
based) approach to generate a source code (or compose a program). The results of our proposed ACG aremore
detailed than those resulting from ACGs using visual programming integrated development environment
(IDE) SW tools that convert the design of a GUI to a code, which are limited to the header of the method and
empty braces in the method’s body, and do not involve programming statements in the body of the method.

2 Related Approaches and Works
An investigation of previous relatedworks shows that it is possible to develop programs for converting (trans-
lating) a pseudocode algorithm into a specific programming language [3, 53]. An interesting list of code
generation tools is given in Ref. [52] as a part of comparison study between code generation tools. In this com-
parison, especially the technical one, the data model is used as an input technique in these code generation
tools. Unfortunately, their processing techniques are not mentioned.

A text processing approach (Text processing is the electronic creation ormanipulation of a text thatmakes
no use of NLP phases [27].) is a well-known and possibly the simplest approach for accomplishing the task
of code generation in terms of a translation from one linguistic (possibly artificial) form to another. In this
approach, a lookup table is maintained, and a blind mapping is performed based on this table. In practice,
this approach is not feasible, as the translation of a text from one linguistic form to another requires more
than a blind mapping [27].

Model-driven engineering (MDE) (MDE is a synonym for model-driven architecture (MDA), which uses
models as amajor artifact for software development, unlike processes that utilize source code as amajor arti-
fact [30].) methods and tools are used to automate the generation of a software code [30]. One example of a
work based on this approach uses a class diagram in unified modeling language (UML) to generate source

1392 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

codes for programs [49]. Although it has been used, this approach requires developers to have significant
abstraction capacity to develop MDE-based tools, so that many users can take advantage of these tools [16].

Generating a programming code from a pseudocode (as a source code) can be viewed as a code genera-
tion task that can be achieved by a machine translation (MT) system. This approach is distinguished by the
use of an interlingual (intermediate) representation for the source code, which is used to generate the target
code. This approach is a framework that encompasses two monolingual components: the analysis process,
which works on the source language to produce an intermediate form (interlingual form), and the generation
process, which works on interlingual forms and produces the target language form [54]. A compiler software
is an example of an interlingual MT system. Although it aims to produce an executable code, i.e. a low-level
language (LLL) from the high-level language (HLL) of a program [1], a compilation approach (i.e. one that is
used to develop a compiler software) can also be used to generate one HLL program from another, as shown
in Refs. [4] and [22]. As we noted, while the good structuring process it has, this approach works successfully
with artificial languages (that are the programming languages), but it is hard to be used successfully with
natural language like the pseudocode. In our case, as the source language, i.e. the pseudocode, is in fact a
natural language form, it is important to focus on an AI-based (or knowledge-based) interlingual MT, which
includes NLP in the form of lexical, syntax, semantic, and pragmatic knowledge, in addition to knowledge
acquisition and an optimization process.

Language-basedMT (LBMT) is a type ofMT thatmay be either lexeme-oriented or grammar-oriented. In a
lexeme-oriented approach, translation is achieved by relying on the principle of lexical equivalence, inwhich
the units of translation are words and specific phrases only [54]. In a grammar-oriented approach, the unit
of translation is a set of structural attributes of the source text and is limited to intra-sentential structures.
Despite the differences between these two types of LBMT approach, both give little insight into the use of
context, representing a domain of discourse such as social, medical, or financial discourse [17, 27, 54].

In view of the huge body of hand-coded lexical knowledge, the semantic roles that are linked with cer-
tain syntactic patterns, and background knowledge (ontology and domain models), knowledge-based MT
(KBMT) was defined to perform the translation process taking into account the meaning of the source text
[14]. Figure 3 illustrates the standard knowledge-based MT system [54].

One example of a system that uses this approach is KANT. However, the potential achievements of KBMT
depend on the presence of a well-defined model of conceptual domains across a diversity of cultures and a
linguistic mapping model that can discover the meaning of syntactic forms [31].

In order to address the complexity of meeting the conditions for the KBMT’s potential achievements,
the example-based MT (EBMT) approach was proposed. The EMBT achieves a translation using collected
examples of previous translation processes, for which these examples form a specific body of knowledge.

Source

text
Syntax

analysis

Structure

of the

sentence

Sentence

structure

of target

form

Disambiguated

interlingual text

Selection
generator
of lexical
structure

Sentence

generator

Text in

the

target

form

Increment
Text in interlingual

form

Interpretation

rules

Figure 3: Knowledge-Based MT System.

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1393

Translation is performed using the similarity in the annotation of the surface descriptions that is assigned
to each example that forms the knowledge. The surface description annotation encompasses, for example,
patterns of word classes, certain strings, the dependencies of words [46], and frames of predicate [26] that
are used for joining the translated units. EBMT gives an extended role to AI in composing a program, as can
be seen in the artificial neural network (ANN) (ANN is a computational approach based onmapping an input
pattern to one of a set of defined decisions [32].) approach. Although it is a classification approach used par-
ticularly with distorted data, ANN was used to compose a source code from a pseudocode, as described in
Refs. [37] and [34]. As the EBMT’s mapping process is implemented using the principle of approximate rea-
soning, it means that instead of a single exact translation, degrees of acceptability (based on probability and
distance measures) are used to select a translation among a set of possible translations [20]. Of course, more
alternatives are produced as a more complex solution is required, which shows the complexities that EBMT
should have to reach its goal.

In all types of MT listed above, the resources required to develop an interlingual MT system are, in
general [54]:
– Linguistic lexicons, which are used in the lexical detection of tokens of the source text and in the lexical

generation of the target text;
– Syntactic grammars, which are used to analyze the structures of the source text and to generate the

structures of the target text;
– A conceptual lexicon related to a specific domain, which is used to understand the text by recognizing

entities and events; and
– Semantic (projection) rules to define relationships between events and entities.

Logic-based approach, which is implemented as rule-based, experience-based, and case-based systems is
another technique that have been used to develop converting application from a pseudocode to a program-
ming code. Examples of these applications include a logic-based approach to reverse engineering tool pro-
duction [13], the reuse assessor and improver system (RAIS) [42], a fuzzy logic-based approach for software
testing [56], a tile logic-based approach for software architecture description analysis [2], an expert code gen-
erator using rule base and frame knowledge representation techniques [23], and many more. These works
illustrate the diversity of the logic used (binary, fuzzy, etc) and how this diversity is utilized in developing
logic-based systems.We noted that the problemwith these works is that they do not consider NLP (especially
the semantic part) as a main requirement in the converting process.

Deductive and inductive (Deductive reasoning is an approach that is used to prove the soundness of a
theory. Inductive reasoning is an approach that starts with initial data and proceeds until a goal is reached
[32].) approaches are two other forms of AI reasoning that are used to solve the problem of composing the
code of a program in terms of the design of a solution [12, 15]. Based on these reasoning approaches, fully
automated deductive programming (DP) and inductive programming (IP) can be used to generate parts of
algorithms using UML diagrams and program synthesis. These parts of the algorithms are later used by an
ACG in the process of composing aprogramcode that includes loops or recursion. A semi-automatic induction
approach, implemented as an intelligent agent, utilizes exemplary performance and end-user programming
to identify recursive policies [15, 29]. The research work in Ref. [5] is a good example of the use of a machine
learning approach to accomplish a repair task. Another AI approach, the genetic algorithm (GA), is used also
in composing programs. The AI programming system proposed in Ref. [10] is an interesting example that
demonstrates the use of an AI approach to accomplish intellectual tasks such as composing a program. It is
clear from the above that these approaches are used as parts of a whole process to automate the generation
of a solution for a problem, and they do not convert pseudocode to programming code by their alone.

The NLP approach is an advanced topic of text processing that takes into account semantic processing to
provide more flexibility when performing the mapping of text from one form to another. It is used with the
KBMT and LBMT. This approach was used (partially) to develop an interpreter for converting algorithms writ-
ten in natural English language to C code [35]. As we noted, the previous works based on this approach did
not consider verb classification, thematic role, and SRL – the advanced topics of natural language semantic
processing.

1394 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

In this paper, the composition of a program is achieved using a hybrid approach that consists of SRL
with logic-based (semantic) mapping rules. No previous related work has employed this approach, and this
is, therefore, an original contribution of this paper. This approach is computerized to form the process-
ing machine of a proposed ACG called CodeComposer, which is a system for composing programs from a
pseudocode.

3 CodeComposer
In this paper, the proposed CodeComposer system is an MT system that translates pseudocode statements
into programming language statements. The CodeComposer ACG is different from similar works in that it
uses SRL and NLP with a semantic rule-based approach to generate a programming language source code.
As illustrated in Figure 4, the processing flow of CodeComposer consists of several components, which are
described below.

3.1 Natural Language Processing Step

In addition to conditional and repetition control statements, the pseudocode involves a set of natural lan-
guage descriptions of the instructions that are used to write an algorithm [48]. While control statements
(conditional and looping statements) are relatively clear and are similar to those used in a programming
language, the units that should be focused on in the conversion process are the instructions, which are verbs
in a linguistic sense.

A verb, which is a key part of the structure of a sentence, is used to identify a state or an event in which
participants are involved, and hence, the meaning of a verb is considered key to the meaning of the sen-
tence. As verbs are polysemous, the problem of resolving the lexical ambiguity of verbs can be tackled by
considering their semantics [47]. In general, recognizing the semantics of a verb is a very difficult task due
to the nature of verbs, which involves linguistic ambiguity (for example, a verb may have different semantics
but a similar role in different phrases). A role-centered approach to lexical semantic representation has been
suggested for studying the meanings of a verb. In this approach, the meaning of a verb can be represented
using semantic role labels that are given to the verb’s arguments. A well-known example of this approach,
which reveals the difference between the verbs “break” and “hit”, is given by Fillmore: “break” has the argu-
ments (agent, instrument, object), while “hit” has the arguments (agent, instrument, place) [18]. Using a
role-centered approach, several verb representation techniques were proposed such as grouping of verbs,

Natural language processing step

Pseudo code

statement

Linguistic analysis of

the pseudo code

statement

List of attributed

words

Verb

classification

Class of the verb

Semantic

rule-based

mapping machine

C# programming

language code

Figure 4: The Processing Flow of CodeComposer.

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1395

the argument roles of verbs, the structuring of instances’ argument, a semantic frame, and semantic relation-
ships. A corpus is available for the automatic recognition of the semantic roles of a verb, in which each item
uses a one typical verb representation technique, for example:
– The VerbNet (VN) corpus uses a verb grouping representation technique. The VN corpus is the largest

known online corpus and is constructed using Levin classes of verbs, which are enriched with new
classified verbs [47].

– The Proposition Bank (PropBank) corpus uses a representation technique based on the argument roles of
verbs. PropBank annotates 1 million English words with labels for the argument roles of verbs, defined by
a supported lexicon [28].

– The Noun Bank (NomBank) corpus uses the structuring of instances’ argument representation technique.
NomBank supplies structures of instances argument for about 5000 English language nouns [33].

– The FrameNet corpus uses a semantic frame representation technique [8].
– The WordNet corpus uses a semantic relationships representation technique [55].

In our approach, as illustrated in Figure 4, a pseudocode statement forms the input to the natural language-
processing stage of the pseudocode statement, which encompasses the following sub-steps:
1. Applying linguistic (lexical, syntax, and semantic) analysis to attribute eachword of the pseudocode state-

ment. This attribution of a pseudocode statement to words is important in order to isolate a verb and its
parameters.

2. Verb classification, that is, searching for a verb entry that contains the syntax, semantics, thematic roles,
and relations obtained in step (1), in which the verb entry class is the class of the verb within a pseudocode
statement. The importance of this step lies in unifying the class of multi-form verbs to a single class, which
can facilitate the mapping process to a C# statement.

The output of the natural language-processing step is a list (an internal representation) of a verb class
and its attributes, which will be used as input for the following step, the semantic rule-based mapping
machine.

3.1.1 Linguistic Analysis of the Pseudocode Statement

This step is achieved automatically using SRL software tools. Essentially, SRL is a natural language, high-
level semantic process that is commonly used in information extraction, question answering, and similar
systems. SRL is a process that discovers thepredicate–argument structure of eachpredicate in a sentence. SRL
identifies all components of a verb in a statement, where these components fill the semantic roles/thematic
roles/theta roles that are required by the verb [27].

In this paper, an online software application called the SRL Demo [41] is used to reveal the thematic
roles of a verb’s components in a pseudocode of a solution. SRL typically uses symbolic notations rather
than names to describe the semantic roles of the arguments; for example, [A0] represents an agent, and [A1]
represents a patient. Table 1 illustrates the symbolic annotation of the semantic roles using syntactic forms.
It should also be noted that it is difficult to determine a global set of semantic roles; hence, the number
of semantic roles defined by linguistics may be different, and there may be between eight and 16 standard
roles [40].

Table 1: Syntax, Semantic, and Symbolic Annotations.

Syntactic token Semantic role Annotation

Subject of a verb Agent [A0]
Object of verb Theme (or patient) [A1]

Indirect object [A2]
Location of the event AM-LOC

Verb Action or event [V]

1396 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

To illustrate how this step is performed, consider the following pseudocode:
1. Function RecArea
2. Begin
3. Read length and width
4. Area = length * width
5. Print Area
6. End

Each pseudocode statement was manually (This was manually input using a technique involving copying
from a pseudocode file and pasting it into a data field in the online SRL software application.) input into
the SRL Demo software to perform a linguistic analysis of the statement. Figure 5 illustrates an example that
represents the results of analyzing the pseudocode statements: “read length and width”.

Note the similarity in the analysis of the (lexical and semantic) information in both statements, despite
the different verbs used. Note also that the verb has no semantic annotation,which requires the identification
of the verb’s class to be sought. These annotated words (tokens) are used to identify the class of verb.

The results of the linguistic analysis are structured as amatrix, inwhich each row contains analysis infor-
mation about a word in the submitted pseudocode statement. Figure 6 illustrates the structure of the matrix,
which has a cell for eachword alongwith its lexical annotation, semantic annotations, and a cell for the class
of the verb, which is filled in later in the identification process. The size (number of rows) of the matrix will
differ according to the size (number of words) of the analyzed pseudocode statement.

Figure 5: Linguistic Analysis Resulting from SRL Demo [41].

Figure 6:Matrix Structure for Linguistic Analysis of the Information in a Pseudocode Statement.

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1397

Figure 7: Excel File Showing the Structure of the Linguistic Matrix.

Thismatrix is filled in and saved in anExcel filemanually. Figure 7 shows a screen shot of a file containing
the “list of attributed words” of the pseudocode given above.

3.1.2 Identifying Class of Verb

From the corpora listed earlier, in this paper, we chose the VN corpus [45] as a tool for recognizing the seman-
tics of a verb, treating the classes of verbs in VN as the semantics. This view is supported by previously
implemented MT applications that were developed using Levin’s classes of verbs [17]. In this step, the identi-
fication of the class of the verb is achieved by searching for the entry for a verb. This search is carried out by
comparing the verb’s attributes identified using SRL with the thematic roles and restrictions and the seman-
tics fields for each verb entry in the library of the VN project. An example is given in Table 2, which shows a
VN entry for class Hit-18.1. VN groups English language verbs using thematic roles and selectional restrictions
for arguments, and defines frames as discussed below [45].
– Thematic roles and restrictions: Also called thematic roles or theta roles, they are assigned to each verb in

a statement. Table 3 presents a representative set of semantic roles [18].
Selectional restrictions are used to denote the general semantic boundaries that are imposed by a predicate
(The predicate here is the verb.) on its defined arguments [25], where a predicate is “the part of a sentence
that contains the verb and gives information about the subject” [38]. A failure to achieve compatibility

Table 2: Simplified VN Entry for the Hit-18.1 Class.

Class name Hit-18.1

Thematic roles and restrictions Agent[+int_control] Patient[+concrete] Instrument[+concrete]
Members Bang, bash, hit, kick, . . .
Frame’s name Basic transitive
Syntax Agent V Patient
Semantics Cause (agent, E) manner (during (E), directed motion, agent)! contact (during (E), agent,

patient) manner (end (E), forceful, agent) contact (end (E), agent, patient)
Example James hits the ball

1398 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

Table 3: Table 3 Some Semantic/Thematic Roles.

Semantic role Definition

Agent Instigator of an event
Counter-agent Force of resistance or against the action
Object Entity involved in an action
Result Entity resulting from an action
Instrument Physical cause of an event
Source Place something moves from
Goal Place something moves to
Experiencer Entity that accepts, receives, undergoes, or experiences the effect of an action
Actor Agent’s super type that controls, performs, instigates, or affects a predicate’s situation

between these restrictions and the types of arguments leads to a semantic clash. Selectional restrictions
play the role of a semantic grammar. Figure 8 shows the selectional restrictions associated with thematic
roles [6].

– Frame name: This is used to describe the role of the verb. Examples are resultative, transitive, intransitive,
and prepositional phrases [45].

– Syntax: This is a description that is used to recognize the structure of a verb’s arguments and has
importance in composition, including allowed prepositions.

– Semantics: This involves predicates of the restrictions that are used to impose thematic role types on the
arguments of a verb and is also used to specify the possible syntactic nature of the arguments that are
associated with these thematic roles. Examples of semantic restrictions are animate, human, and organi-
zational. Conjunction predicates of Boolean semantics, such as “cause” or “contact”, are associated with
each frame for connecting it with other frames. An event variable denoted as E is also included in the pred-
icate in order to specify when the predicate is true. Complete lists of the thematic roles, selectional and
syntactic restrictions, and predicates are available on the Unified Verb Index Reference Page [44]. In this
paper, a library of 328 verb entries is used, containing .XML files; this is offered by the VerbNet project,
which is hosted at the University of Colorado Boulder [45]. Figure 9 shows the contents of an .XML file for
a VN verb entry that is sought to find the class of the verb.

SelRestr

Concrete

Time

State

Abstract

Scalar

Currency

Location Place

RegionPP

Communication

Sound

Idea

Substance

Shape

Solid

Phys-obj

Natural

Int-control

Force

Machine

Animate

Plant

Comestible

Artifact

Rigid

Pointed
Elongated

Non-rigid

Tool

Garment

Machine

Body-part

Animal

Human

Vehicle

ObjectOrganization

Figure 8: Selectional Restrictions Associated with Thematic Roles [44].

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1399

Figure 9: XML File for a Sample VN Verb Entry [45].

The file containing the linguistic analysis information for the pseudocode statements, which results from the
linguistic analysis of the pseudocode statement, is read using the “Load” button in the CodeComposer pro-
gram interface. Recall that the linguistic information is structured as a matrix, in which each row represents
analysis information about a pseudocode statement. The contents of each row are used to guide the process
of searching for the verb’s class. This search is performed as a comparison between a row and each of the
.XML files in the VN verb entry library. When a match is found, the class name for the verb entry is assigned
to the cell in the row representing the class of the verb. The algorithm used to find the verb’s class is given
below:

String Function FindVerbClass (Row) (PRED, ArgType, and VNCLASS are names of tags in the XML file for the verb entry.)
Begin
While not end of VN_Verb_Entry_Library_Files

Begin
Read next file
Get PRED tag value from the file
Get ArgType.ThemRole.Value from the file
If (PRED tag value = = Row.Word) and
(ArgType.ThemRole.Value = = Row.SemanticAnnotation)
Then begin

Row.VerbClass = VNCLASS.ID
Exit
End

End
End.

1400 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

Recall here that the ultimate output of the NLP step (via its two sub-steps) is a frame (internal repre-
sentation) that encompasses the verb class (obtained from the verb classification step) and its parameters
(obtained using the SRL online software in the linguistic step), which will be used as input to the following
step, which is the semantic rule-based mapping machine. Table 4 shows a typical structure for the class of a
verb and its accompanying semantic roles.

The result of performing this step (using the data shown in Figure 7) is shown in Figure 10, in which the
“verb’s class” cell is assigned with a value that represents the class of the verb in its row.

3.2 Semantic Rule-Based Mapping Machine

A logic-based approach used here to develop the mapping process is called a semantic rule-based mapping
machine. The criteria or conditions used to govern the mapping process are the linguistic classes of verbs
extracted in the step described in Section 3.1. These classes are used by a set of “if–then” production rules to
map each pseudocode statement to its instruction in C#.

From a functionality point of view, the instructions of an algorithm (pseudocode) can be classified into
three main categories: the first is the input statements, the second, the output statements, and the third, the
processing statements [43]. The semantic role of each category is different from the semantic roles of the other
categories. Table 5 lists the classes of pseudocode, their semantic roles, and the possible C# statements. The
semantic rule-based mapping machine uses the resulting tokens and their attributes to identify a verb class
and its related parameters.

Table 4: Class of a Verb and its Accompanying Semantic Roles.

Linguistic Verb Class Accompanied Semantic Roles

Transfer a message <object>*
Change of possession <object><indirect object>
Alternating verbs <object><indirect object>
Removing verbs <object><source><indirect object>
Verbs for change of state <object><object>
Say verbs <manner><temporal>
Scribble verbs <object>

*Means multiplicity, in that more than one object may exist with this verb class.

Figure 10: Excel File Showing the Structure of Finding Verb’s Class.

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1401

Table 5: Programming Statements Classes Versus Verb Classes.

Pseudocode instruction class Verb class C# statement/symbol

Input verbs (enter, input, read, get, . . .) Transfer a Message Console.ReadLine()
Processing instruction
Assignment verbs (assign, move, set, initialize, store,. . .) Change of possession =
Arithmetic verbs

– Add, append, total. . . . Alternating verbs +
– Subtract, take, . . . Removing verbs –
– Multiply Verbs for change of state *
– Divide Verbs for change of state /
– Calculate Verbs for change of state No opposite statement

Looping statements (repeat/until, do/while) Say verbs for (. . . .)
Output verbs (write, print) Scribble verbs Console.WriteLine()

The semantic rule-based mapping machine performs a composition task, in addition to selecting a suit-
able C# statement for the pseudocode statement. For example, the mapping for transferring a message verb
class is performed as follows:

If (Row.VerbClass is “Transfer a Message”)
Then begin

CSharpStatement= “ Console.ReadLine (”
While (Row.Word<> “EOS”

If (Row.SemanticAnnotation is “object”)
Then CSharpStatement += Row.Word
End if

End while
CSharpStatement += “);

End if

Figure 11: The Output of Testing a Pseudocode Using CodeComposer.

1402 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

Theoutput of this step is illustrated in Figure 11, and this also forms theultimate output of CodeComposer.
This output can be saved in a text file using the “Save As” button given in the GUI of CodeComposer. Although
the pseudocode statements are submitted manually to SRL, which is the first step in CodeComposer, these
pseudocode statements will be displayed in the interface of the CodeComposer program to give the reader a
visual comparison between the pseudocode and the resulting C# programming language code.

4 Testing and Results
CodeComposer was run using multiple examples to test and demonstrate its performance. To calculate the
binomial classification accuracy of CodeComposer, we use binomial classification accuracy [36], as follows:
– Precision: This is the proportion of actually translated items relative to the full number of items to be

translated, and is calculated as

Precision = TP/(TP + MsT) (1)

– Recall: This is the proportion of successfully retrieved items to the full number of demanded items, and is
calculated as

Recall = TP/(TP + NoT) (2)

– F-measure: This is the harmonic mean of recall and precision, and is calculated as

F-measure = (2 * Precision * Recall)/(Precision + Recall) (3)

where:
TP is the true positive, i.e. the number of translations that are free of errors
MsT is the mistranslated, i.e. the number of mistranslated pseudocode statements
NoT is the non-translated (NoT), i.e. the number of pseudocode statements that are not translated

Table 6 and Figure 12 show the results of running CodeComposer using 60 different forms of each of the
pseudocode instruction classes illustrated in Table 5 as case studies. CodeComposer’s results were evaluated

Table 6: CodeComposer Translation of Different Forms of Pseudocode Verb Classes.

Verb type TP MsT NoT

Input verbs 53 5 2
Assignment verbs 50 7 3
Addition operation verbs 43 9 8
Subtraction operation verbs 49 7 4
Multiplication operation verbs 45 9 6
Division operation verbs 44 9 7
Looping statements 48 5 7
Output verbs 56 3 1

10

5

0

TP MST

Input Assign Addition

Subtraction Multiplication Division

NOT

Statistics for codecomposer translation of different
forms of pseudocode verbs classes

Figure 12: Effectiveness of CodeComposer.

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1403

manually to count TP, Mst, and NoT parameters. These results were used to evaluate the effectiveness of
CodeComposer. The binomial classification accuracy of CodeComposer is reported in Table 7 and illustrated
in Figure 13.

5 Discussion
The RelatedWorks section of this paper focuses on the approaches used by related works, which are reported
here in the form of examples of the processing approaches used. Templates, classes, generic frames, aspects,
and prototypes are common ontological models used by generative programs and are integrated using pro-
cessing tools such as template processors and pattern replacers that are governed by defined simple rules. A
combination of these was used in an example of a source code generator [9]. Our proposed CodeComposer
can be considered as a semi-automated approach that involves a combination of NLP software and an MT to
perform the process of encoding a pseudocode.

The role of the theoretical concept of usingNLP in the conversion of a pseudocode to C# code is crucial, as
many of the words in the pseudocode are in natural English language and give rise to a great deal of complex-
ity when automating the process of converting it to a programming language code. The use of a verb class is
themost important part of this work, as the instructions in the pseudocode are verbs, which have no semantic
roles as nouns, and hence need to be properly semantically mapped to their equivalent C# statements. The
positive effect of this concept in developing CodeComposer is proven by its binomial classification accuracy.

The effectiveness of CodeComposer was measured using binomial classification accuracy, in terms of
precision, recall, and F-measure. The overall precision of CodeComposer was 88%, which shows the wide
linguistic area it covers. The recall of CodeComposer was 91%, indicating its strong ability to generate a valid
translation. The F-measure of CodeComposer was 89%, demonstrating its accuracy.

In this work, we used the binomial classification accuracy method to evaluate CodeComposer instead of
making comparison with the previous related works that are reported in this paper. This is because the com-
parison requires the use of the same data that were used by those systems, and obtaining such data is a very
difficult thing. Therefore, we considered the manual converting of pseudocode to C# programming language

Table 7: Binomial Classification Accuracy of CodeComposer.

Verb type Precision Recall F-measure

Input verbs 91% 96% 94%
Assignment verbs 88% 94% 91%
Addition operation verbs 83% 84% 83%
Subtraction operation verbs 88% 92% 90%
Multiplication operation verbs 83% 88% 86%
Division operation verbs 83% 86% 85%
Looping statements 91% 87% 89%
Output verbs 95% 98% 97%
Overall 88% 91% 89%

Binomal translation accuracy

1

100%

80%

60%

2 3

Precision Recall F-measure

4 5 6 7 8

Figure 13: Binomial Classification Accuracy of CodeComposer.

1404 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

Table 8: SRL Approach Used by CodeComposer Versus Other Approaches.

Other approach Problem CodeComposer

Text processing Blind mapping Semantic (intelligent) mapping

MDE Requires developers to have significant abstraction capacity to
develop MDE-based tools

Free of abstraction

MT Hard to be used successfully with natural language like
pseudocode

Works successfully with pseudocode
(see binomial classification accuracy)

LBMT Poor semantic processing Based mainly on semantic processing

KBMT The potential achievements of KBMT depend on the presence of
a well-defined model of conceptual domains

Need no conceptual domain

EMBT Has complexities to achieve its goal Three steps to achieve its goal

Logic based Consider no advanced topics of NLP (specially the semantic
part) as a main requirement in the converting process

Count on the advanced topic of
semantic processing verb classification,
thematic role, and SRL

Deductive and
inductive

Each one of these two approaches is used as a part of a process
that automates the generation of a solution for a problem, as
these two approaches do not convert pseudocode to
programming code by their own

Convert pseudocode to programming
code by its alone

NLP Does not consider verb classification, thematic role, and SRL;
the advanced topics of natural language semantic processing.

Count on the advanced topic of
semantic processing: verb
classification, thematic role, and SRL

as a benchmark that is used to evaluate the achievement of CodeComposer. The binomial classification accu-
racy technique follows this evaluation method to measure the accuracy of a system, which motivated us to
use it in measuring the achievement of CodeComposer.

The simplicity of the mapping for the linguistically analyzed statements of the pseudocode justifies the
use of if–then rules rather than other complex approaches such asANNandGA that are used in relatedworks.

Table 8 abbreviates a comparison between CodeComposer, which consider verb classification, thematic
role, and SRL; the advanced topics of natural language semantic processing, and other approaches reported
in Section 2 (Related Approaches and Works) of this paper.

As shown in Table 8, CodeComposer contributes the work on this field by using the advanced topic of
semantic processing: verb classification, thematic role, and SRL. However, there are several criticisms of the
NLP computation that should be noted. Aspects such as the use of slang, redundancy, multiple syllables, and
complex ambiguity limit the success of development of such translation programs. The SRL software that is
used to reveal the thematic roles of the tokens corresponding to the verbs still needsmorework in terms of the
number of thematic roles and the size of the corpus used. Tokens other than verbs pose no difficulties in terms
of translation, as they contain less ambiguity and, hence, can be translated directly to their corresponding
C# statements.

6 Conclusion and Future Work
Code generation by a computer extends the usefulness of an algorithm’s design. Developers can benefit from
the automatic conversion of their pseudocode into a programming language code that can be put to work
immediately.

In this paper, we contribute methodologies for ACG through the use of a natural language translation
approach, which includes a semantic rule-based machine for generating a C# code from a pseudocode. Our
suggested approach to using a semantic rule to achieve translation from a pseudocode to a programming
code is based on the fact that a pseudocode is a natural language that needs semantic processing to solve the
typical ambiguity problems of natural language. A software tool of SRL is used to discover the meaning of
an algorithm’s instructions (linguistic verbs) using the semantic roles associated with the verb and, hence,
to specify the verb’s class, which in turn helps in the accurate mapping of the algorithm’s instruction to the

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1405

correct programming statement. The VerbNet project library [45] was the cornerstone used in determining the
class of the verb.

The CodeComposer software was developed using the approach described above, with C# as a language
and .Net as an integrated environment; both of these offer a successful development environment for the
implementation of CodeComposer as many of their properties support modern development requirements.
CodeComposer is considered an I-CASE tool, as it utilizes NLP, an aspect of AI, in its work. Although there
was some room for improvement, the results yielded by CodeComposer demonstrated the soundness and
effectiveness of this approach in generating programming language codes. The resultant C# code for each
example of input pseudocode shows the need for human revision to check the completeness of the transla-
tion from pseudocode to C# code. This is required due to several errors arising in the C# code, which may be
of two types: mistranslated (MsT) and non-translated (NoT). An evaluation of CodeComposer was carried out
using a binomial accuracy classification technique. We believe that this technique is realistic as it compares
the output of CodeComposer to a manual output and, thus, describes the accuracy of CodeComposer relative
to the accuracy of a human being in the conversion process.

It is important to mention that the key aspects of this work were the SRL tools. The shortcomings of the
SRL software tools are quite clear in the dealing with the text that is missing good formation, such as slang,
complex ambiguity, and redundant words. Therefore, we highly recommend the development of amore accu-
rate and effective SRL software tool that can take onmore semantic roles. Such a software tool would increase
the quality of CodeComposer. Other recommendations for improving CodeComposer include both a compar-
ative study of CodeComposer and other systems, and a feasibility study of CodeComposer in order to probe
and evaluate its benefits and usefulness in the software industry. Another suggestion would be to re-design
CodeComposer as a client–server application for commercial purposes.

Bibliography
[1] A. V. Aho, M. S. Lam, R. Sethi and J. Ullman, Compilers principles, techniques, and tools, 2nd ed., Addison Wesley, USA,

2008.
[2] F. B. K. B. Aïcha Choutri, A tile logic based approach for software architecture description analysis, J. Softw. Eng. Appl. 3

(2010), 1067–1079.
[3] Ajhais, Converting algorithm to code, Slashdot Media, NY, USA, 2013.
[4] M. R. Amal, C. V. Jamsheedh and L. S. Mathew, Pseudocode to source programming language translator, IJCSITY 4 (2016),

21–29.
[5] H. Ammar, W. Abdelmoez and M. S. Hamdi, Software engineering using artificial intelligence techniques: current state

and open problems, in: First Taibah University International Conference on Computing and Information Technology,
Al-Madinah Al-Munawwarah, Saudi Arabia, 2012.

[6] N. Asher, Selectional restrictions, types and categories, J. Appl. Logic 12 (2014), 75–78.
[7] E. C. M. Association, C# language specifications, Ecma International, Geneva, Swiss, 2006.
[8] C. F. Baker, C. J. Fillmore and J. B. Lowe, The Berkeley FrameNet Project, in: The 17th International Conference on

Computational Linguistics, Montreal, Quebec, Canada, 1998.
[9] M. M. Baskaran, J. Ramanujam and P. Sadayappan, Automatic C-to-CUDA code generation for aflne programs, in: The 19th

joint European conference on Theory and Practice of Software, international conference on Compiler Construction, Paphos,
Cyprus, 2010.

[10] K. Becker and J. Gottschlich, AI programmer: autonomously creating software programs using genetic algorithms, Cornell
University, NY, USA, 2017.

[11] D. Bell, Software engineering for students: a programming approach, 4th ed., Longman Group, London, United Kingdom,
2005.

[12] D. C. Brown, Artificial intelligence for design process improvement, in: Design Process Improvement: A Review of Current
Practice, pp. 158–173, Springer-Verlag London, London, UK, 2005.

[13] G. Canfora, A. Cimitile and U. D. Carlini, A logic-based approach to reverse engineering tools production, IEEE Trans.
Softw. Eng. 18 (1992), 1053–1064.

[14] G. N. Carlson, A unified analysis of the English bare plural, Linguist. Philos. 1 (1977), 413–455.
[15] Y. Danilchenko and R. Fox, Automated code generation using case-based reasoning, routine design and template-based

programming, in: 23rd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati, Ohio, USA, 2012.
[16] V. G. Díaz, E. N. Valdez, J. Espada, B. P. García-Bustelo, J. C. Lovelle and C. Marín, A brief introduction to model-driven

engineering, Tecnura J. 18 (2014), 127–142.

1406 | A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion

[17] B. J. Dorr, Translation, large-scale dictionary construction for foreign language tutoring and interlingual machine,Mach.
Transl. 12 (1997), 271–322.

[18] C. J. Fillmore, Types of lexical information, in: Semantics: An Interdisciplinary Reader in Philosophy, Linguistics and
Psychology, pp. 370–392, Cambridge University Press, London, U.K., 1971.

[19] flowgorithm.org, “flowgorithm,” 2017. [Online]. Available: http://www.flowgorithm.org/index.htm. [Accessed 15 10 2017].
[20] O. Furuse and H. Iida, An example based method for transfer driven MT, in: 4th International Conference on Theoretical

and Methodological Issues in MT , Montreal, Canada, 1992.
[21] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns elements of reusable object-oriented software, 1st ed.,

Addison-Wesley Professional, USA, 1994.
[22] A. T. Imam, PAS2C: a new trend of translating program, J. Educ. Sci. 31 (1998), 91–96.
[23] A. T. Imam, S. Aljawarneh and T. Rousan, An expert code generator using rule-based and frames knowledge represen-

tation techniques, in: 5th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan,
2014.

[24] A. T. Imam, A. J. Al-Nsour and A. Al-Hroob, The definition of intelligent computer aided software engineering (I-CASE)
tools, J. Inf. Eng. Appl. 5 (2015), 47–56.

[25] R. Jackendoff, Semantic structures, MIT Press, Cambridge, MA and London, 1990.
[26] D. B. Jones, Analogical natural language processing (studies in computational linguistics), UCL Press, London, UK, 1996.
[27] D. Jurafsky and J. H. Martin, Speech and language processing, vol. 3, Pearson London, London, 2014.
[28] P. Kingsbury and M. Palmer, From TreeBank to PropBank, in: Third International Conference on Language Resources and

Evaluation, Las Palmas, Canary Islands, Spain, 2002.
[29] E. Kitzelmann, Inductive programming: a survey of program synthesis techniques, in: Third International Workshop on

Approaches and Applications of Inductive Programming, Edinburgh, UK, 2009.
[30] J. Klein, H. Levinson and J. Marchetti,Model-driven engineering: automatic code generation and beyond, Software

Engineering, Carnegie Mellon University, USA, 2015.
[31] D. Lonsdale, T. Mitamura and E. Nyberg, Acquisition of large lexicons for practical knowledge-based MT,Mach. Transl. 9

(1994), 251–283.
[32] G. F. Luger, Artificial intelligence: structures and strategies for complex problem solving, 6th ed., Pearson, London, UK,

2008.
[33] A. Meyers, R. Reeves, C. A. Macleod, R. Szekely, V. Zielinska, B. Young and R. Grishman, The NomBank project: an interim

report, Association for Computational Linguistics, Massachusetts, USA, 2004.
[34] S. Mukherjee and T. Chakrabarti, Automatic algorithm specification to source code translation, IJCSE 2 (2011), 146–159.
[35] S. Nadkarni, P. Panchmatia, T. Karwa and S. Kurhade, Semi natural language algorithm to programming language inter-

preter, in: 2016 International Conference on Advances in Human Machine Interaction (HMI), Doddaballapur, India,
2016.

[36] D. L. Olson and D. Delen, Advanced data mining techniques, 1st ed., p. 38, Springer, Berlin, Germany, 2008.
[37] V. Parekh and D. Nilesh, Pseudocode to source code translation, JETIR 3 (2016), 47–52.
[38] C. U. Press, “Meaning of “predicate” in the English Dictionary,” 2018. [Online]. Available: https://dictionary.cambridge.

org/dictionary/english/predicate.
[39] R. S. Pressman and B. R. Maxim, Software engineering: a practitioner’s approach, 8/e, McGraw-Hill Global Education

Holdings, LLC, NY, USA, 2015.
[40] V. Punyakanok, D. Roth and W.-T. Yih, The importance of syntactic parsing and inference in semantic role labeling,

Comput. Linguist. 34 (2008), 257–287.
[41] V. Punyakanok, D. Roth and W. Yih, “Demo,” 20 9 2017. [Online]. Available: http://cogcomp.org/page/demo_view/srl.
[42] M. Ramachandran, Automated improvement for component reuse, Software Process: Improvement and Practice 11 (2006),

591–599.
[43] D. S. Reddy, Algorithm to code converter, Weebly, Bharat Nagar, India, 2011.
[44] C. L. a. E. Research, “A Class-Based Verb Lexicon,” University of Colorado, 11 8 2017. [Online]. Available: http://verbs.

colorado.edu/~mpalmer/projects/verbnet.html.
[45] C. L. a. E. Research, “Unified Verb Index,” University of Colorado, 15 8 2017. [Online]. Available: http://verbs.colorado.

edu/verb-index/vn3.3/vn/class-h.php.
[46] S. Sato, CTM: an example-based translation aid system, in: COLING ’92 Proceedings of the 14th Conference on Computa-

tional Linguistics, Nantes, France, 1992.
[47] K. K. Schuler, Verbnet: a broad-coverage, comprehensive verb lexicon, University of Pennsylvania, PA, USA, 2005.
[48] R. Sedgewick and K. Wayne, Algorithms, 4th ed., Pearson Education, Inc, p. 4, Boston, MA, USA, 2011.
[49] J. Sejans and O. Nikiforova, Problems and perspectives of code generation from UML class diagram, Scientific Journal of

Riga Technical University. Computer Sciences 47 (2011), 75–84.
[50] A. Software, “AthTek flowchart to code,” 2017. [Online]. Available: http://www.athtek.com/flowchart-to-code.html#

.WehMhY-CyM9. [Accessed 15 10 2017].
[51] I. Sommerville, Software engineering, 9th ed., Pearson, London, UK, 2010.

http://www.flowgorithm.org/index.htm
https://dictionary.cambridge.org/dictionary/english/predicate
https://dictionary.cambridge.org/dictionary/english/predicate
http://cogcomp.org/page/demo_view/srl
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/verb-index/vn3.3/vn/class-h.php
http://verbs.colorado.edu/verb-index/vn3.3/vn/class-h.php
http://www.athtek.com/flowchart-to-code.html#.WehMhY-CyM9
http://www.athtek.com/flowchart-to-code.html#.WehMhY-CyM9

A.T. Imam and A.J. Alnsour: Natural Language Processing for Code Conversion | 1407

[52] L. M. Surhone, M. T. Tennoe and S. F. Henssonow, Comparison of code generation tools, Betascript Publishing, GmbH,
2010.

[53] I. TechTarget, “Pseudocode,” 10 10 2017. [Online]. Available: http://whatis.techtarget.com/definition/pseudocode.
[54] J. Tsujii and S. Ananiadou, Knowledge based processing in MT, in: The 1st International Conference on Knowledge Bases

and Knowledge Sharing, Tokyo, Japan, 1993.
[55] P. University, “What is WordNet?,” 2015. [Online]. Available: http://wordnet.princeton.edu/wordnet/.
[56] Z. Zhang and Y. Zhou, A fuzzy logic based approach for software testing, Int. J. Pattern Recognit. Artif. Intell. 21 (2007),

709–722.

http://whatis.techtarget.com/definition/pseudocode
http://wordnet.princeton.edu/wordnet/

	The Use of Natural Language Processing Approach for Converting Pseudo Code to C# Code
	1 Introduction
	1.1 Pseudocode
	1.2 C# Programming Language
	1.3 Automatic Code Generator
	1.4 Natural Language Processing

	2 Related Approaches and Works
	3 CodeComposer
	3.1 Natural Language Processing Step
	3.1.1 Linguistic Analysis of the Pseudocode Statement
	3.1.2 Identifying Class of Verb

	3.2 Semantic Rule-Based Mapping Machine

	4 Testing and Results
	5 Discussion
	6 Conclusion and Future Work

