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Abstract: In this modern world, a massive amount of data is processed and broadcasted daily. This includes
the use of high energy, massive use of memory space, and increased power use. In a few applications, for
example, image processing, signal processing, and possession of data signals, etc., the signals included can
be viewed as light in a few spaces. The compressive sensing theory could be an appropriate contender to man-
age these limitations. “Compressive Sensing theory” preserves extremely helpful while signals are sparse or
compressible. It very well may be utilized to recoup light or compressive signals with less estimation than cus-
tomary strategies. Two issues must be addressed by CS: plan of the estimation framework and advancement
of a proficient sparse recovery calculation. The essential intention of this work expects to audit a few ideas
and utilizations of compressive sensing and to give an overview of the most significant sparse recovery cal-
culations from every class. The exhibition of acquisition and reconstruction strategies is examined regarding
the Compression Ratio, Reconstruction Accuracy, Mean Square Error, and so on.

Keywords: Compressive Sensing; Signal Processing; Data Acquisition; Reconstruction; Compression ratio;
Reconstruction accuracy; Mean Square error
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1 Introduction

Compressive sensing (CS) has since taken into consideration extensively in the arts and science and engineer-
ing departments by proposing that the traditional farthest reaches of sampling theory may be conceivable [28].
CS expands upon the essential certainty that numerous signals utilizing just a couple of non-zero coefficients
in an appropriate premise or word reference [29-31]. Nonlinear improvement can be able to empower recu-
peration of such signals from not very much estimation. This paper aims to give a chronological survey of the
CS theory and its essential properties. After a concise, authentic review, the exchange of sparsity and other
low-dimensional signals are described [32]. The recoup of a huge configuration signal from a little arrange-
ment of estimations and give execution certifications to an assortment of signal reconstruction algorithms
are also important in CS theory [33-37].

CSis a three-step process which mainly comprises of sparse representation, sampling, and reconstruction
algorithms. The main aim of CS is to encode the minimum information obtained from relatively few samples
as possible. This technique is known as signal compression, where the signals sampled are represented by
the letter s obtained from the minimal subset, i.e., used for coding. The signal is processed to produce s trans-
formed values from the sample signal itself. SM is the sensing matrix representation of dimension N x s. Then
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the Sensing Matrix is applied to an uncertain signal vector v to obtain the measurement value x. The dictio-
nary matrix (¢ ) represents the domain in which the vector signal v tends to accept the sparse representation
as depicted in equation (1)

v= ¢0 0))]

x= SMy )]

The optimization process is accomplished by considering the n components present in 8 as nonzero values,
ie.

min

PP II6ll;, where x = SM¢0 3)

The resultant matrix SM¢ formed complies with the Restricted Isometry Property (RIP) and every mea-
surement made. The value v is stored and can be retrieved when needed, with the help of the 8 value. The
measurement value x; varies from 1, 2,...... , N. The measurement value can be obtained directly using the
analog signal v (t), from the minimum samples(s!) obtained. The step shown above describes how the CS com-
bines data acquisition and compression procedures. The measurement matrix can be obtained to generate
the product which should satisfy the conditions specified in RIP. The sensing matrix is generated by following
the steps shown below [57].

e If ¢ is an orthonormal value and SM is the sensing matrix, then it forms a product SM¢ that obeys the
conditions present in RIP.

¢ If there exists another orthonormal matrix @, where its column value has low coherence compared to
the orthonormal matrix ¢, this is similar to considering as a Discrete Fourier Transform Matrix and ¢
as an identity matrix. Then the values of N in @ is chosen randomly to form the sensing matrix S, where
Sis a N xs matrix where the coordinates N is chosen uniformly at random. The low coherence value of
the sensing and basis matrices is closely linked to the RIP. The basis matrix is an encoding matrix that
follows the conventional two out of two schemes. If both the matrices possess low coherence, then only
a minimum number of measurements are needed to satisfy RIP.

A signal vector v is said to be compressible during expansion utilizing a basis matrix only if it produces
few large coefficients 6;, and the rest of the coefficients are small. Some basis matrices form sparse vector
signals as described in the equation (4)

min

gcgs ™ IOl where |x - SM@6|5 C & @)

The sensing matrix and basis matrix integrates the information at the encoder side, which serves as an
input to the CS system. Because the encoder is one which selects the signal of interest. The signal of inter-
est has a sparse representation. The sensing matrix helps to reconstruct the original signal entirely at the
end(decoder’s side) by reducing the number of encoding measurements used. Approximate care should be
taken when choosing a sensing matrix as it expresses the adverse effects in the CS system’s accuracy and
processing time. The reconstruction algorithm used is also a core concept in CS. It mainly depends on how
the high dimensional data is reconstructed from the low dimensional data

2 Review of Recent researches

2.1 Compressed Sensing techniques

CS is a widely used image reconstruction technique which can reconstruct an original image from its reduced
sample itself. The computational time taken by CS algorithms for image reconstruction is usually higher than
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the state-of-art reconstruction techniques. Sang-Hoong Jung et al. [56] introduced a greedy algorithm to over-
come this complexity by using an iteration approach. The greedy algorithm used is Orthogonal Matching
Pursuit (OMP), and it provides a high dimensional image quality in a short period of time. The high rate data
applications consist of ambiguity such as heavy noise, interference, outliers, and channel fading present in
the information to be broadcasted. In these types of applications, long term wideband sensing is quite costly
to be applied. Jie Zhao et al. [54] has proposed a method of scheduling sequential CS sensing to solve the above
problem. This approach is a combination of CS and sequential periodic detection techniques, which give the
following outcomes, such as improved sensor quality, reduced CS recovery overhead, and appropriate wide-
band sensing. To provide optimal performance, CS techniques incorporate random structures, and they are
widely applied to restore the missing signal samples. Christina Knill et al. [55] used CS post-processing for
enhancing the Multi-Input Multi-Output (MIMO) approach, which leads to an effective regain of the full pro-
cessing of the state-of-art Orthogonal Frequency-Division Multiplexing (OFDM). This method makes benefits
for the information present in the CS, which leads to effective reconstruction, accelerated processing, and low
computational complexity.

The Agriculture, Forestry, and Urban Planning field make use of high-resolution remote sensing images.
These images exhibit the texture and features of the images in a more clear representation. The processing of
these images includes various levels of complexities, such as texture Similarity, Massive Storage Space, and
Information Leakage. A method called a finite-state chaotic CS cloud remote sensing image registration [62]
is used to solve these complexities. The problem of texture similarity is overcome by using improved Scale-
Invariant Feature Transform(SIFT) for both local and global information. CS is also applied to Hyperspectral
Image(HSI) Reconstruction. The main problem to be solved is to identify the key characteristics present in the
HSIimage. Li Wang et al. [63] proposed a CS reconstruction algorithm for HIS images using spectral unmixing
characteristics. The HIS image is sampled both spatially and spectrally. The reconstruction of the HIS image is
obtained iteratively by solving a joint optimization problem which consists of the endmember and abundance
matrix.

Zhitao et al. [1] have presented a method for medical signal compression in which Electro Cardiogram
(ECG) information is compressed using “Set Partitioning In Hierarchical Trees (SPIHT)” method. The signals
were selected from the “open source database, and the performance analyzed that their proposed codec was
fundamentally more productive in compression and calculation than existing techniques. It is currently out-
standing that one can recreate sparse or compressible signals precisely from a very set number of estimations,
conceivably contaminated with noise. Emmanuel et al. [2] have proposed a procedure known as "compressed
sensing" or "compressive sampling" depends on properties of the sensing grid, for example, the confined
isometry property. In this note, we build up new outcomes about the exactness of the recreation from under
sampled estimations, which enhance before appraisals and have the benefit of being progressively exquisite.
Fred Chen et al. [3] have proposed a signal “Agnostic CS” obtaining framework is exhibited that tends to send
telemetry data under the exchange capacity limitations of remote sensors. Luisa F.Polania et al. [4], has dis-
played by utilizing wavelet transform and iterative threshold technique; at that point, CS is accomplished to
build the information-packed. In the wake of performing CS, “Bayesian CS (BCS)” is utilized to reproduce the
first data. Standard Wavelet Dictionaries [17] is used to compress and decompress ECG signals which provide
low-computational complexity for encryption and decryption. One-bit quantization CS [27] technique pre-
serves the single sign information resulting in less storage cost and hardware complexity where the sparse
signals can be reconstructed with high probability.

2.2 Medical Signal Compression methods

CS is another methodology for the obtaining and recuperation of a thin signal that empowers examining
rates essentially underneath the traditional Nyquist rate. Anna M.R. Dixon et al. [5] have proposed a CS-
based methodology for signal compression. ECG signal, for the most part, show excess between contiguous
heartbeats because of its quasi-periodic structure. They demonstrated that their repetition inferred a huge
division of regular help among successive heartbeats. In empowering nonstop remote cardiovascular observ-
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ing in Wireless body sensor systems (WBSN), they can accomplish improved personalization and nature of
consideration, expanded capacity of counteractive action and early conclusion, and enhanced patient au-
tonomy, portability, and wellbeing. Amongst them, power productivity can be improved through implanted
ECG compression, to diminish broadcast appointment above energy-hungry remote connections. Hossein
Mamaghanian et al. [6], have evaluated the capability of the developing CS signal acquisition worldview for
low-multifaceted nature energy effective ECG compression on the cutting edge Shimmer WBSN bit. Curiously,
their outcomes demonstrate that CS speaks to an aggressive choice to cutting edge “Digital Wavelet Transform
(DWT)” - based ECG compression arrangements. All the more explicitly, while expectedly displaying second
rate compression execution than its DWT-based partner for a given recreated signal quality, its significantly
lower multifaceted nature and CPU processing time empowers it to ultimately outperform their technique as
far as by and large energy productivity.

CS is a quickly rising signal handling method that empowers the exact catch and reproduction of sparse
signals from just a small amount of Nyquist rate tests, altogether decreasing the information rate and system
power utilization. ZHANG Hong-xin1 et al. [7] suggested an in-depth relative inquiry into the current best
estimates of class CS recovery. Reliability, accuracy, resistance to noise, time of calculation, and are used as
primary measures. Besides, ECG signals are studied to investigate the execution of real-world bio-signals. Fred
Chen et al. [8] showed an evaluated and authorized the capability of the developing CS worldview for ongoing
power-efficient Electro Cardiogram (ECG) compression on resource-constrained sensors. In their research,
they are applying sparsity models to exploit basic data in recovery algorithms. More precisely, returning to
known sparse reconstruction algorithms, they identified creative scheme-based adjustments for the vigorous
recovery of reduced signals such as ECG.

AnnaM. R. Dixon et al. [9] present the utilization of CS calculations for information compression in remote
sensors to address the energy and telemetry data transfer capacity in regular to remote sensor hubs. Conse-
quences of the examination demonstrate that an advanced usage is fundamentally high power products for
the remote sensor space wherever signal needs maximum gain and minimum to high goals. WBANs comprise
of little insightful biomedical remote sensors appended on or embedded in the body to gather crucial biomed-
ical information from the human anatomy giving continuous physical fitness monitoring systems [10]. Be that
as it may, the utilization of regular ECG framework is confined by the patient’s versatility, transmission limit,
and physical size. Along these lines, Monica Fira et al. [11] have improved remote ECG frameworks. Because
of these, CS methodology as another sampling approach and the coordinated effort of sensing matrix selec-
tion algorithm dependent on unique thresholding approach were utilized to give a hearty low- robust low-
complexity detection calculation in portals and passageways with high likelihood and enough precision. Jee-
van K et al. [12], have proposed to utilize the block sparse Bayesian learning system to compress/remake non-
inadequate crude FECG chronicles. Especially, every segment of the network can contain just two nonzero
passages. This demonstrates the system, contrasted with different calculations, for example, current CS cal-
culations and wavelet calculations can enormously decrease code execution in CPU in the data compression
stage.

2.3 Data Acquisition Techniques

In this correspondence, Anurag Singh and S. Dandapat et al. [13], have proposed and talk about similarly a
few procedures for ECG signal compression propelled from the basics of CS theory, concentrating on securing
systems, projection lattices and remaking word references and on the impacts of the preprocessing included.
The primary methodology for ECG signal compression depends on the immediate CS securing of the signal
with no preprocessing of the waveforms before taking the projections, neither for the development of the
word references. This "certified" CS we will call patient-specific classical compressed sensing (PSCCS) since
the word reference is worked from patient starting accounts. The second methodology executes a particular
preprocessing stage intended to upgrade sparsity and improve recoverability, because of dividing the signal
into single heart thumps (otherwise called cardiovascular examples) - signified further as cardiac patterns
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compressed sensing — (CPCS) since for this situation the gained signal and the word reference atoms are
preprocessed portioned heart pulsates without or with focusing of the R wave.

The signal recovery algorithm [14] depends on limiting the pseudo-norm of the second-order difference,
called the pseudo-norm, of the signal. The enhancement included is done utilizing a sequential conjugate-
gradient algorithm. The lexicon learning calculation utilizes an iterative system wherein a signal reproduc-
tion, and a word reference update steps are rehashed until an assembly standard is fulfilled. The signal repro-
duction step is actualized by utilizing the proposed signal recovery algorithm and the word reference update
step is executed by utilizing the Linear Least-Squares strategy. Broad recreation results exhibit their calcula-
tion defers improved reproduction execution for transiently associated ECG signals with respect to the cutting
edge - regularized least squares and Bayesian learning-based calculations.

In this work, Anurag Singh et al. [15], proposed a Distributed Compressive Sensing (DCS) is to develop the
fundamental connection structure between various channels of Multi-channel ECG signals. The joint remak-
ing capacity of DCS lessens the number of compacted estimations required for precise reproduction without
influencing the contortion level. Luisa F. Polania et al. [16], has inspected the fusion of CS with an effective
lossy compression technique on ECG signals. The utilization of word reference figuring out how to naturally
make the lexicon is depicted. Two strategies for word reference creation were presented: Patient Agnostic and
specific. A comprehensive analysis of both methodologies is portrayed. Considering mobile ECG checking as
an application, every system is broke down for a wide scope of CR.

Ongoing outcomes in telecardiology demonstrate that CS is a promising instrument to bring down energy
utilization in WBAN for ECG monitoring. In this paper, Dana Al Akill et al. [18], have proposed to abuse the
structure of the wavelet portrayal of the ECG signal to support the exhibition of CS-based strategies for com-
pression and reproduction of ECG signals. Benyuan Liu et al. [19], have exhibited the structure of a low-power
and territory proficient equipment motor for multi-channel compression of electrocardiogram (ECG) signals.
CS is especially appropriate for low-control executions since it can drastically lessen circuit intricacy for com-
pression tasks. Another element of the proposed design is that it is reasonable for multi-channel frameworks.
The structure is actualized in a specific group of Field-Programmable Gate Arrays (FPGA) which are appro-
priate for low-control applications. Their estimation results demonstrate a compelling decrease in intensity
utilization between 20 to 40 percent at various working frequencies utilizing a power gating system. The
power utilization of a 4-channel framework and the 8-channel framework is expanded uniquely by 7.1% and
11.2% individually, contrasted with the single-channel framework. These frameworks cannot be structured to-
gether because there are a few limitations to be followed. Energy Utilization, Information Compression, And
Gadget Cost are the significant requirements considered, which helps in developing an information compres-
sion system.

Andrianiaina Ravelomanantsoa et al. [20], have proposed to utilize a created CS calculation which can
recoup such non-inadequate physiological signal. In this paper, Yishan Wang et al. [21] have recommended
that the measurement of signal reconstruction quality, for example, PRD, isn’t sufficient for the compression
method inspired by CS theory, particularly when neglecting the sampling rate of the crude signal. Among
the current uses of WBSNs, a Wearable Health Monitoring System (WHMS) is the most significant. In com-
mon WHMS, scaled-down remote biosensors joined to or embedded in the human body, gather bio-signal,
to give constant and consistent wellbeing checking. Yuvraj V. Parkale et al. [22], have exhibited a CS-based
way to deal with compress and recuperate the detected physiological data from the remote biosensors. The
CS encoding procedure has a minimum execution difficulty and is appropriate for use in energy-compelled
frameworks, for example, WHMS.

This plan results in a decrease of capacity necessity and low power utilization of framework contrasted
with the Nyquist sampling theory, where the examining recurrence must be at any rate twofold the most
extreme recurrence present in the data signal for the accurate recreation of the data. This paper, Nidhi R,
Bhadravati et al. [23], have introduced a top to bottom investigation on late patterns in CS concentrated on
ECG compression. Giulia Da Poian et al. [24] have exhibited a wearable, and wireless ECG framework is right
off the bat structured with Bluetooth Low Energy (BLE). It can recognize a 3-lead ECG signal, and it is remote.
Besides, the advanced CS is actualized to build the energy effectiveness of a remote ECG sensor. The distinctive
sparsifying premise, different compression proportions, and a few remaking calculations are recreated and
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reviewed. At long last, the recreation is done by the Android Application (App) on advanced mobile phones
to show the signal progressively [25].

2.4 Analog to Digital Conversion

The analog-to-digital conversion (ADC) phase is one of the fundamental bottlenecks of rapid media communi-
cations frameworks. This part shows a study of various plausible simple to advanced transformation systems
that are appropriate to conquer these challenges and to get the Software-Defined Radio (SDR) worldview,
where most functionalities, rather than being performed in the simple area (i.e., channels and blenders), are
performed in the computerized space. In SDR, the analog-to-digital transformation is executed following the
reception apparatus, and the radio frequency (RF) signal is straightforwardly changed over to advance with
no past blending stage. Since it is not possible to approach this thought with the conventional ADC from cur-
rent business gadgets, this section depicts a few systems that might be utilized. Even though the proposed
frameworks have progressively prohibitive determinations, these arrangements lessen the last multifaceted
nature, as will be itemized in this section. Three diverse promising procedures, such as sub-sampling, inter-
leaving, and CS, helps to perform this function efficiently.

3 Signal and Image Reconstruction methods

The ordinary methodology of remaking signals from handled information watches the Shannon sampling
theory, which advises that the sampling rate ought to be the most astounding recurrence twice (i.e., fs >
2fm). Numerous quantities of tests are required for this methodology. Also, the fundamental theory of linear
variable based math recommends that the number of estimations of a discrete, limited dimensional signal
ought to be at any rate as huge as its measurement to guarantee recreation. As such, the over two regular
theory are legitimately corresponding to the number of occurrences precisely, i.e., and more example implies
increasingly exact outcomes. In any case, these days, the innovation of a delightful system named CS yields
another way to deal with remake signals utilizing a base number of cases at a lower rate. CS likewise resolves
image processing and computer representation issues [64—68].

3.1 Convex Relaxation

With the advancement of quick strategies for Linear Programming in the eighties, the possibility of convex
relaxation turned out to be encouraging. These class calculations take care of a curved improvement issue
through linear programming to get recreation [41]. The quantity of estimations required for accurate recre-
ation is little. However, techniques are computationally unpredictable. “Basis Pursuit”(BP) [44, 45], “Basis
Pursuit De-Noising (BPDN),” “Least Absolute Shrinkage and Selection Operator (LASSO)” and “Least Angle
Regression (LARS)” are a few instances of such calculations. BP is a standard for breaking down a signal into
an "ideal" superposition of word reference components, where ideal methods having the littlest 11norm of co-
efficients among every such disintegration. BP, in exceptionally over complete lexicons, prompts enormous
scale streamlining issues [53].

3.2 Non-Convex Minimization Algorithms

Numerous viable issues of significance are non- convex, and most non- convex issues are hard (if certainly
feasible) to explain precisely in a sensible time. In substitute minimization systems [38], the optimization
is done with certain factors that are held fixed in recurrent style and linearization strategies, in which the
destinations and limitations are changed (or approximated by a convex work) [39]. Different procedures in-
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corporate inquiry calculations (for example, hereditary calculations), which depend on basic arrangement
update principles to advance.

3.3 Greedy Iterative Algorithm

Because of the quick reconstruction and low complexity of numerical structure, a group of iterative ravenous
calculations has been generally utilized in compressive sensing as of late. These class calculations take care
of the remaking issue by finding the appropriate response, well ordered, in an iterative style. The quick and
exact reproduction calculations have been the focal point of the investigation of CS, they will be the key
advancements for the utilization of CS. At present, the most important greedy algorithms include matching
pursuit and gradient pursuit [43]. The thought is to choose sections of © voraciously. At every emphasis, the
segment of @ that associates most with is chosen. “Matching Pursuit” (MP) [58, 59], “Orthogonal Matching
Pursuit” (OMP) [48-50] and “Compressive Sampling Matching Pursuit” (CoSaMP)” [51] are the normally uti-
lized ravenous iterative calculations because of their low usage cost and fast of reconstruction [43].

3.4 Combinatorial / Sublinear Algorithms

This class of calculations recovers sparse signals through gathering testing. They are incredibly quick and
efficient, when contrasted with convex relaxation or greedy calculations yet require specific design in the
estimations, @ should be sparse. Agent calculations are Fourier Sampling Algorithm; Chaining Pursuit proper
is an iterative algorithm, Heavy Hitters on Steroids (HHS) [42].

3.5 lterative Thresholding Algorithms

These algorithms are faster than other types of algorithms. Here, right estimations are recuperated by delicate
or hard thresholding, beginning from uproarious estimations given the signal is inadequate [40]. Its capacity
relies on number cycles and issues setup within reach.

These calculations can provide hypothetical certification with its execution, which can be appeared in
the specific one. The fundamental thought of the thresholding method is to pursue a decent possibility for the
gauge of help set, which fits the estimation. “Message Passing (MP)” calculations are a significant modifica-
tion of iterative thresholding calculations in which fundamental factors are related to coordinated diagram
edges. “Expander Matching Pursuits,” “Sparse Matching Pursuits,” and “Sequential Sparse Matching Pur-
suits” areas of late proposed calculations in this space accomplish close straight recuperation time.

3.6 Adaptive Filtering

Adaptive filtering techniques are outstanding, while CS is a mainstream point as of late, so it is astonishing
that no writing utilizes an adaptive filtering structure in CS remaking issue. The reason may be that the point
of CS is to remake a sparse signal while the answers for general adaptive filtering calculations are not sparse.
A few LMS varieties, with some sparse limitations, included their cost capacities, exist in inadequate frame-
work distinguishing proof. Subsequently, these techniques can be connected to take care of the CS issue. We
propose another method for adaptive proof of sparse frameworks dependent on the CS theory. We control the
transmitted pilot (input data) and the received data signal with the end goal that loads of adaptive filtering
approach the compressed form of the inadequate framework rather than the first framework. To this end, we
utilize irregular channel structure at the transmitter to shape the estimation lattice as per the CS system. The
ordinary recuperation calculations can remake the first sparse framework. Thus, the denoising property of
CS can be conveyed in the proposed strategy at the recuperation arrange.
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3.7 Distributed Sensing and Processing

In the DCS issue, we are normally keen on improving the recuperation exactness of xl, or the necessities on
the estimation gadget, contrasted with the solo-sensor case by accepting that the information among sensor
hubs in a system have corresponded. The thought is then that by gathering or sharing some data among
the hubs and misusing this relationship, and we can accomplish better execution. The signal connection is
generally displayed contrastingly, relying upon the application.

4 Analysis of Results

This segment introduces a nonexclusive correlation of certain calculations recently referenced, and some pre-
sentation examination found in writing. A presentation correlation between calculations from every class is
broke down beneath. The accompanying figures clarify the assessment proportions of existing investigate
from 2000 to 2018. In this manner, the present utilization of the sensor hub with CS is estimated using met-
rics like compression proportion (CR), Mean square error (MSE), Complexity, and different measures. The
strategies, for example, SPIHT, ASEC, HTA, SPSA from different explores, are broke down.

4.1 Evaluation Measures of 2000-2018 Review paper

The performance of various acquisition and reconstruction methods is analyzed here in Figure 1 to Figure 5.
From the results (2000-2018), we can conclude that the SPSA with noise is quite difficult to minimize because
of the nonlinear nature of the recovered noise. In graph 1, graph 2, graph 3, and graph 4 we have analyzed the
performance measures such as compression ratio, compressed signal reconstruction, compression sensing
and compression measures based on the algorithms such as Simultaneous Perturbation Stochastic Approx-
imation (SPSA), Health Technology Assessment(HTA), Analysis by Synthesis ECG compressor (ASEC) and
SPIHT to be reviewed and the measures to be analyzed in the graphical representation.

100
80 wﬁ
60 - | =4—SPIHT
40 == ASEC
HTA
20
=3é=SPSA
0 T T T 1
Compression Compresssion Compresed  Compresed Signal
Sensing Ratio Measures reconstruction
Figure 1: Graphical representation of 2000-2010 review papers
Compresed Signal reconstruction
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Compresed Measures
mHTA
Compression Ratio EASEC
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Compression Sensing
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Figure 2: Graphical representation of 2011-2013 review results
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An exhibition examination of the normal standardized mean square error (NMSE) between calculations
from every classification is investigated underneath. From the Convex Relaxation classification, FISTA calcu-
lations are actualized. The BCS was executed, speaking to the Non-convex optimization classification. Lastly,
from the Greedy calculations, the MP and OMP were executed. The near examination is given in Figure 5.

2014-2016

Compresed Signal reconstruction

Compresed Measures m SPSA
EHTA
Compression Ratio m ASEC
uSPIHT

Compression Sensing

0 20 40 60 80 100

Figure 3: Graphical representation of 2014-2016 review results

It very well may be seen that the exhibitions of the considerable number of calculations increment when
the quantity of estimations M increments. In any case, it tends to be seen that a low M esteem (M < N) enables
the calculations to recover the inadequate signal bringing about low NMSE values. Among the calculations
investigated, the BCS presents the best execution.
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Figure 4: Graphical representation of 2017-2018 review papers
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4.2 Analysis of Various Reconstruction methods in CS

The significant element of CS is that it requires proficient reconstruction calculations. The reproduction of
compressed inspected signals includes an arrangement of an underdetermined system of direct conditions
and, like this, has limitlessly numerous arrangements. The signal reconstruction procedure is basically to
pick the best gauge of the first signal from all the potential arrangements acquired from the above converse
condition. This might be accomplished by the raised improvement calculation. Different reconstruction cal-
culations utilized for the reproduction of compressed samples signal might be delegated (Table 1),

¢ Convex Relaxation

¢ Non-Convex minimization
Greedy Iterative
Combinatorial

e [terative Thresholding

Table 1: Analysis of reconstruction methods in Compressive Sensing

Methods Convex Non-Convex Greedy lterative Combinatorial Iterative

Relaxation minimization thresholding

[39] v

[40] v

[42] v

[43] v

[44] v

[45] v

[46]

(47]

(48]

[49]

(50]

[51]

NN NN R

4.3 Complexity analysis of algorithms

The complexity of reconstruction methods are presented in Table 2,

Table 2: Complexity of reconstruction methods

Methods Complexity
BP [44, 45] oN’)

MP [46,47]  O(MN N;)
CoSaMP[51] O(MN)
SP[52] O(sMN)
OMP [48-50] O(s M N)
StOMP [53] O(N log N)
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4.4 Performance Evaluation Metrics for CS

The CS system’s efficiency is measured by the following performance evaluation metrics [58-61] illustrated,
as shown below.

e Compression Ratio: It calculates the degree to which the algorithm used removes the unwanted (redundant)
data. The Compression ratio obtains the information as shown in equation (5)

ODB,
CDB.

)

CompressionRatio =

Where ODB, is the number of bits taken to represent the original signal, and CDB is the number of
bits taken to represent the compressed signal. If the compression ratio’s output value is high, then less
memory space is required to store the data. The output value also consists of additional information
related to the original signal, which helps in retrieving it later for processing.

e Mean Square Error(MSE): MSE is the average square difference between the original and reconstructed
signal. The output of MSE is always a non-negative integer and neither zero. If the model’s MSE output
value is close to zero, then the model offers significant performance.

l K

2
MSE = ¢ 2 [Ao(K) - Ar(K)] (6)

—

-1

e Percentage Root Mean Square Difference (PRMSD): PRMSD measures the acceptable level of fidelity
and degree of distortion undergone by the algorithms used for compression and decompression. Visual
Inspection is required to determine the adequacy of the reconstructed signal. Here the reconstructed
signal’s distorted level is compared with the original signal with the following equation (6)

K
5™ (Ao(k) - Ar(K))?
PRMSD in % = 100 x | X1 - @)
kz(Ao(k))z
=1

Where A, is the reconstructed signal, and A, is the original signal.

¢ Normalized Percentage Root Mean Square Difference (NPRMSD): 1t is the normalized value of PRMSD,
which does not consider the mean value of the signal(A). The information of the signal lies in the vari-
ance. It can offer accurate error estimates when compared to PRMSD. The reconstructed signal fidelity
issue cannot be solved from the mean value of the data obtained.

K
o(k) - Ar(k))

NPRMSD in % = 100 x | X (8)

(A
-1
K —2
> (Ao(k) - A)
k=1

¢ Quality Score(QS): The quality score rates the overall performance of the compression technique used.
If a higher value is obtained for QS, then the performance is said to have a potential effect in the signal
compression. It is stated as the ratio between the Compression Ratio(CR) and PRMSD.

_ CR

- PRMSD

® Root Mean Square Error(RMSE): 1t calculates the quantity of error present in the reconstructed signal
when compared to the original signal. The RMS method preserves the original signal quality, which
serves as an added advantage. This method is more effective when compared to PRMSD.

Qs )

K 2
>~ (Ao(k) - Ar(K))

s 0h = k=1
RMSE in % = 100 x &1 (10)
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¢ Normalized Root Mean Square Error(NRMSE): The NRMSE of RMSE is similar to the PRMSD value ob-
tained, except the multiplication done by a hundred.

K
S° (Ao(k) - Ar(K))*
NRMSE(-) = |X1 - (11)
kz(Ao(k))z
=1

e Covariance: The correlation between the original signal and the reconstructed signal is measured using
the covariance function.

Covariance = E[(Aq - E(40))(Ar - E(AN)] (12)

Where E is the expected value for the original and reconstructed signal obtained.

o Signal to Noise Ratio(SNR): The difference between the original and reconstructed signal is taken as the
noise. The SNR compares the reconstructed signal with its background noise. The measurement used
to express SNR is a logarithmic decibel scale. When compared with PRMSD and NPRMSD, the output
value of SNR can predict the accuracy of the system more clearly.

K 5
> (Ao(k) - A)
k=1

SNR indB = 10.log;, (13)

K
> (Ao (k) - Ar(k))?
k=1
e Peak Signal to Noise Ratio(PSNR): PSNR can be represented as the ratio between the maximum intensity
of the signal and the background noise. This is used to estimate the quality of the reconstructed signal.
A higher PSNR value indicates a high-quality signal.

2
PSNR = 10 log 10 (MAX )

MSE (14)

In equation (14), the value MA used is constant and denotes the maximum intensity of the signal.

5 Conclusion

The compressive sensing and its sparse reconstruction calculations are utilized in a few regions and have
been widely considered in this work. With developing interest for less expensive, quicker, and increasingly
productive gadgets, the handiness of CS theory is continuously more prominent and progressively significant.
This paper has given a survey of this theory. From this study, the two significant moves routed to compressive
sensing are the plan of the estimation grid and the improvement of a proficient reconstruction calculation.
CS theory can give valuable and promising strategies in the future. Without a doubt, this subject is in note-
worthy and wide improvement in a few applications. Be that as it may, despite everything, it faces various
open research difficulties. For instance, to decide the appropriate estimation grid and build up a sparse re-
construction calculation that does not know the signal’s sparsity and can be adaptive to time-shifting sparsity.
Besides, signal measurable data can be included the CS securing or CS remaking to diminish the measure of
required assets.

References

[1] Zhitao Lu, Dong Youn Kim, and William A. Pearlman, "Wavelet Compression of ECG Signals by the Set Partitioning in
Hierarchical Trees Algorithm," In Proceedings of IEEE Transaction on Biomedical Engineering, Vol. 47, No. 7, July 2000.



324 —— |.MishraandS.Jain DE GRUYTER

[2]

E]

(4]

[5]

(6]

(7]

(8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Emmanue, "The restricted isometry property and its implications for compressed sensing", In Proceedings of ELSEVIER
Journal of Applied & Computational Mathematics, Vol. 346, No. 9-10, pp. 589-592.May 2008.

Fred Chen, Anantha P. Chandrakasan, "A Signal-agnostic Compressed Sensing Acquisition System for Wireless and Im-
plantable Sensors", In Proceedings of IEEE Custom Integrated Circuit Conference, pp. 1-4, Sept 2011.

Luisa F.Polania, Rafael E.Carrillo, "Compressed Sensing Based Method For ECG Compression", In Proceeding of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 761-764, May 2011.

Anna M.R. Dixon, Emily G. Allstot, "Compressed Sensing Reconstruction: Comparative Study with Applications to ECG
Bio-Signals", In Proceeding of IEEE International Symposium of Circuits and Systems (ISCAS), pp. 805-808, 2011.

Hossein Mamaghanian, Nadia Khaled, "Structured Sparsity Models for Compressively Sensed Electrocardiogram Signals: A
Comparative Study", In Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 125-128, 2011.
ZHANG Hong-xin1, WANG Hai-ging, "Implementation of compressive sensing in ECG and EEG signal processing", In Proceed-
ings of ELSEVIER journal of China Universities of Post and Telecommunictions, Vol. 17, No. 6, pp. 122-126, Dec 2010.

Fred Chen, Anantha P. Chandrakasan, "Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for
Data Compression in Wireless Sensors", In Proceeding of IEEE Journal of Solid state Circuit, Vol. 47, No. 3, pp. 744-756, Mar
2012.

Anna M. R. Dixon, Emily G. Allstot, "Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors", In
Proceedings of IEEE Transaction on Biomedical Circuit And Systems, Vol.6, No. 2, pp. 156-166, April 2012.

Zhilin Zhang, Tzyy-Ping Jung, "Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via
Block Sparse Bayesian Learning", In Proceedings of IEEE Transaction on Biomedical Engineering, Vol. 60, NO. 2, FEB 2013.
Monica Fira, Liviu Goras, "On Projection Matrices and Dictionaries in ECG Compressive Sensing - a Comparative Study”, In
Proceedings of IEEE 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), pp. 1-6, Nov 2014.
Jeevan K. Pant, Sridhar Krishnan, "Compressive Sensing of Electrocardiogram Signals by Promoting Sparsity on the Second-
Order Difference and by Using Dictionary Learning", In Proceedings of IEEE Transactions On Biomedical Circuits And Systems,
Vol. 8, No. 2, April 2014.

Anurag Singh and S. Dandapat, "Distributed Compressive Sensing for Multichannel ECG Signals over Learned Dictionaries",
In Proceedings of IEEE India Conference (INDICON), pp. 1-6, 2014.

D. Craven, B. McGinley, L. Kilmartin, M. Glavin and E. Jones, "Impact of compressed sensing on clinically relevant metrics for
ambulatory ECG monitoring", In Proceedings of IET Journal and Magazine, Vol. 51, No. 4, 2015.

Anurag singh and Dandapat,"Distributed compressive sensing for multichannel ECG signals over learned dictionaries", In
Proc. of the Annual IEEE Conference (INDICON), pune, 2014.

Luisa F. Polania, "Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems", In Proceedings of IEEE Journal
of Biomedical and Health Informatics, Vol. 19, No. 2, pp. 508-519, 2015.

Monica Fira, "Applications of Compressed Sensing: Compression and Encryption", In Proceedings of IEEEE 18th International
Conference on Communication Technology (ICCT), pp. 1203-1207, 2018.

Dana Al Akill and Raed M. Shubair, "On the Efficient Application of Compressive Sensing of Physiological Signals in Medical
Diagnostics", In proceedings of IEEE International Conference on Electronic Devices, Systems and Applications (ICEDSA), pp.
, Dec 2016.

Benyuan Liu, Zhilin Zhang, "The Distortion of Data Compression via Compressed Sensing in EEG telemonitoring for the
Epileptic", In Proceedings of 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 512-515, 2016.
Andrianiaina Ravelomanantsoa, Amar Rouane, Hassan Rabah1, "Design and Implementation of a Compressed Sensing
Encoder: Application to EMG and ECG Wireless Biosensors", In Proceedings of Springer journal of Circuit System and Signal
Processing, Vol. 36, pp. 2875-2892, No. 7, July 2017.

Yishan Wangl & Sammy Doleschell & Ralf Wunderlich1 & Stefan Heinen, "Evaluation of Digital Compressed Sensing for
Real-Time Wireless ECG System with Bluetooth low Energy"”, In Proceedings of International Springer Journal, pp. 1-7, Jul 2016.
Yuvraj V. Parkale and Sanjay L. Nalbalwar, "Application of Compressed Sensing (CS) for ECG Signal Compression: A Review",
In Proceedings of the International Journal of Springer on Data Engineering and Communication Technology, pp. 53-65, Aug
2016.

Nidhi R, Bhadravati, Karnataka, India, "Fusion of Compressed Sensing Algorithms for ECG Signals", In Proceedings of
International Journal of Computer Science Trends and Technology (JCST), Vol. 5, N. 5, pp. Sept 2017.

Giulia Da Poian, Christopher ) Rozell3, , "Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measure-
ments", In Proceedings of IEEE Transaction on biomedical Engineering, Vol. 65, No. 6, pp. 1349-1358, June 2018.

Mauro Mangia, Valer"Low-Complexity Biosignal Compression Using Comio Cambareri, pressed Sensing", In Proceedings of
Compressed Sensing for Effective Hardware Implementaions, pp. 211-254, July 2018.

Hamza Djelouat1(B), Mohammed Al Disi1, "Compressive Sensing Based ECG Biometric System", In proceedings of International
Springer Journal of Intelligent Systems and Applications, pp. 126-137, 2018.

Zhilin LI, Wenbo XU, "A survey on one-bit compressed sensing: theory and applications", In proceedings of Springer journal
of Frontiers of Computer Science, Vol. 12, No. 12, pp. 217-320, April 2018.

Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.-S.: The internet of things for health care: a comprehensive survey.
IEEE Access 3, 678-708 (2015).



DE GRUYTER Soft computing based compressive sensing techniques in signal processing = 325

[29]

(30]
(31]

(32]
(33]
[34]
(35]
[36]
(37]
(38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

[59]

[60]

Cand‘es, E.J., Romberg, )., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency
information. IEEE Trans. Inf. Theor. 52(2), 489-509, 2006.

Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289-1306 (2006).

Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf.
Theor. 52(12), 5406-5425 (2006).

Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum.
Measur. 50(3), 808-812 (2001).

Irvine, )., Wiederhold, B., Gavshon, L., Israel, S., McGehee, S., Meyer, R., Wiederhold, M.: Heart rate variability: a new biometric
for human identification. In: Proceedings of the International Conference on Atrtificial Intelligence (IC-Al01), pp.1106-1111
(2001).

Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289-1306 (2006).

Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf.
Theor. 52(12), 5406-5425 (2006).

Donoho D L. Compressed sensing. IEEE Transanctions on Information Theory, 52(4): 1289-1306, 2006.

R.G. Baraniuk et al, Model-based compressive sensing. In Proceedings of IEEE Trans. Inf. Theory 56(4), pp. 1982-2001, 2010.
Qiang Wang, Chen Meng, Weining Ma, Cheng Wang, Lei Yu,"Compressive sensing reconstruction for vibration signals based
on the improved fast iterative shrinkage-thresholding algorithm", Measurement Journal, 2019.

R. Chartrand, 2007, Exact reconstruction of sparse signals via nonconvex minimization IEEE Signal Process. vol. 14, pp.
707-710.

A. Maleki, 2009, Coherence analysis of iterative thresholding algorithms, in Communication, Control, and Computing, pp.
236-243, IEEE, 2009.

Donoho D. L., Maleki, A., 2009, Message Passing Algorithms for Compressed Sensing.

S. Muthukrishnan, March. 2006, Combinatorial algorithms for Compressed Sensing. In Proc. 40th Ann. Conf. Information
Sciences and Systems, Princeton.

S. Budhiraja, 2015, A Survey of Compressive Sensing Based Greedy Pursuit Reconstruction Algorithms, vol.10, no. 10, pp.
1-10.

S.S.Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Journal on Scientific Computing,
vol. 20, pp. 33-61, 1998.

R. Garg and R. Khandekar, “Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted
isometry property,” Proceedings of the 26th Annual International Conference on Machine Learning, pp. 337-344, 2009.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal Processing, vol.
41, no. 12, pp. 3397-3415, Dec 1993.

A. K. Mishra and R. S. Verster, Compressive Sensing Based Algorithms for Electronic Defence. Springer, 2017

J. Wen, Z. Zhou, ). Wang, X. Tang, and Q. Mo, “A sharp condition for exact support recovery of sparse signals with orthogonal
matching pursuit,” in 2016 IEEE International Symposium on Information Theory (ISIT), July 2016, pp. 2364—-2368.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Transactions on Information
Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.

D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,”
Found. Comput. Math., vol. 9, no. 3, pp. 317-334, Apr. 2009.

D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” California Institute
of Technology, Pasadena, Tech. Rep., 2008.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Transactions on Information
Theory,vol. 55, no. 5, pp. 2230-2249, May 2009.

D. L. Donoho, Y. Tsaig, |. Drori, and J. L. Starck, “Sparse solution of underdetermined systems of linear equations by stagewise
orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 1094-1121, Feb 2012.

J. Zhao, Q. Liu, X. Wang and S. Mao, "Scheduled Sequential Compressed Spectrum Sensing for Wideband Cognitive Radios,"
in IEEE Transactions on Mobile Computing, vol. 17, no. 4, pp. 913-926, 1 April 2018.

C. Knill, F. Roos, B. Schweizer, D. Schindler, and C. Waldschmidt, "Random Multiplexing for an MIMO-OFDM Radar With
Compressed Sensing-Based Reconstruction," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 300-302,
April 2019.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, "High-Resolution Millimeter-Wave Ground-Based SAR Imaging via
Compressed Sensing," in IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, March 2018, Art no. 9400504.

Paulo S.R. Diniz, Johan A.K. Suykens, Rama Chellappa, Sergios Theodoridis, “Introduction to Machine Learning,” Academic
Press Library in Signal Processing: Volume 1 - Signal Processing Theory and Machine Learning, pp. 3-1506, 2014.

Data analytics in medicine: concepts, methodologies, tools, and applications. Hershey, PA: I1GI Global, Medical Information
Science Reference, 2020.

Arjoune, Y., Kaabouch, N., El Ghazi, H., & Tamtaoui, A. (2018). A performance comparison of measurement matrices in
compressive sensing. International Journal of Communication Systems, 31(10), e3576.

Némcova, A., Smisek, R., Mar§anova, L., Smital, L., & Vitek, M. (2018). A Comparative Analysis of Methods for Evaluation of
ECG Signal Quality after Compression. BioMed Research International, 2018, 1-26.



326 —— |I.MishraandS.)ain DE GRUYTER

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Manikandan, M. S., & Dandapat, S. (2008). Wavelet threshold based TDL and TDR algorithms for real-time ECG signal
compression. Biomedical Signal Processing and Control, 3(1), 44—66.

Z.liu, L. Wang, X. Wang, X. Shen, and L. Li, "Secure Remote Sensing Image Registration Based on Compressed Sensing in
Cloud Setting," in IEEE Access, vol. 7, pp. 36516-36526, 2019.

L. Wang, Y. Feng, Y. Gao, Z. Wang and M. He, "Compressed Sensing Reconstruction of Hyperspectral Images Based on Spectral
Unmixing," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 4, pp. 1266-1284,
April 2018.

Vinu S, (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal
Communications, 104(1), 173-197

Rejeesh, M. R. (2019). Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools
and Applications, 78(16), 22691-22710

Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable
step size firefly algorithm. International Journal of Intelligent Engineering and Systems, 9(3), 117-126.

Vinu Sundararaj, (2019). Optimised denoising scheme via opposition-based selfadaptive learning PSO algorithm for wavelet-
based ECG signal noise reduction. International Journal of Biomedical Engineering and Technology, 31(4), 325

Sundararaj, V., Muthukumar, S. and Kumar, R.S., 2018. An optimal cluster formation based energy efficient dynamic scheduling
hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, pp.277-288.



	1 Introduction
	2 Review of Recent researches
	2.1 Compressed Sensing techniques
	2.2 Medical Signal Compression methods
	2.3 Data Acquisition Techniques
	2.4 Analog to Digital Conversion

	3 Signal and Image Reconstruction methods
	3.1 Convex Relaxation
	3.2 Non-Convex Minimization Algorithms
	3.3 Greedy Iterative Algorithm
	3.4 Combinatorial / Sublinear Algorithms
	3.5 Iterative Thresholding Algorithms
	3.6 Adaptive Filtering
	3.7 Distributed Sensing and Processing

	4 Analysis of Results
	4.1 Evaluation Measures of 2000-2018 Review paper
	4.2 Analysis of Various Reconstruction methods in CS
	4.3 Complexity analysis of algorithms
	4.4 Performance Evaluation Metrics for CS

	5 Conclusion

