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Challenging the increased resistance of
regular hash functions against birthday attacks
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Abstract. At Eurocrypt 2004, Bellare and Kohno presented the concept of a regular hash
function. For a hash function to be regular, every hash value must have the same number
of preimages in the domain. The findings of their paper remained unchallenged for over
six years, and made their way into several research papers and textbooks. In their paper,
Bellare and Kohno claim that regular hash functions are more resistant against the birthday
attack than random hash functions. We counter their arguments, by showing that the
success probability of the birthday attack against a regular hash function can be made
arbitrarily close to that of a random hash function (for the same number of trials). Our
analysis uses the fact that the choices of the attacker can be limited to any subset of the
domain. Furthermore, we prove that it is not possible to construct a hash function that is
regular for only a small fraction of subsets of the domain. In order to avoid these problems,
we propose to model hash functions as random functions. Compared to regular functions,
we argue that the statistics of random functions are more similar to hash functions used in
practice, regardless of how the attacker chooses the domain points.

Keywords. Hash function, balance, regularity, birthday attack, (linear) subset regularity,
random function.
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1 Introduction

Let hD;R W D ! R be a function, where both the domain D and the range R
are finite sets. Denote jDj by d and jRj by r . If d > r , hD;R is referred to as
a hash function. Although strictly not required, D is finite for commonly used
hash functions; e.g. for SHA-1, D consists of all strings of length at most 264 � 1
bits [8].
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Any pair .x; y/, where x; y 2 D for which x ¤ y and hD;R.x/ D hD;R.y/, is
denoted as a collision for hash function hD;R. A possibly trivial collision is a pair
.x; y/, where x; y 2 D for which hD;R.x/ D hD;R.y/. That is, unlike for a col-
lision, it is allowed that x D y. Among other requirements [14], a cryptographic
hash function should be collision resistant, i.e. it should be computationally infea-
sible to find a collision. In this paper, a “hash function” does not necessarily refer
to a “cryptographic hash function”. For any choice of h, a generic birthday attack
can be used to find a collision.

In a birthday attack, points x1; : : : ; xq are picked fromD. For i D 1; : : : ; q, we
compute yi D hD;R.xi /. We say that the birthday attack is successful, if we find
hD;R.xi / D hD;R.xj /, where 1 � i < j � q. We refer to q as the number of
trials of the birthday attack.

There are several variants of the birthday attack, that differ in the way that
the points x1; : : : ; xq are chosen. In their analysis [1, 2], Bellare and Kohno only
consider the case where the domain points are chosen independently and uniformly
at random from allm-bit strings (therefore jDj D 2m). Yuval [26] instead suggests
using q minor modifications of a message, in such a way that all messages are
meaningful. Using distinguished points, Quisquater and Delescaille [18] showed
that collisions for meaningful messages can also be found with negligible memory
requirements, i.e. without storing all .xi ; hD;R.xi // for i D 1; : : : ; q. An efficient
parallel implementation of their algorithm was proposed by Van Oorschot and
Wiener [22].

For most applications, only a small subset of all m-bit strings are meaningful.
If, for example, the messages consist of only ASCII characters, a necessary (but
not sufficient) requirement is that the most significant bit of every character is zero.

Let CD;R.q/ be the probability that the birthday attack finds a possibly trivial
collision for hD;R after q trials. If for every domain point, the corresponding range
point of hD;R is chosen uniformly and independently at random from all r range
points, we refer to hD;R as a random function. The success probability of the
birthday attack for a random function is denoted as C $

D;R.q/.
Bellare and Kohno [2] point out that if hD;R is a random function, this does

not necessarily mean that hD;R.x/ is uniformly distributed in R. In order to have
such a uniform distribution in R, every range point must have the same fraction of
preimages under the hash function. We refer to such a hash function as a regular
function, denoted by hreg

D;R. This can be defined more formally as follows.

Definition 1.1 (Balance and regularity). Let hD;R W D ! R be a hash function
with domain D of size d and range R D ¹R1; R2; : : : ; Rrº of size r . For hD;R to
be a hash function, we must have d > r . For 1 � i � r , di D jh�1D;R.Ri /j denotes
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the size of the preimage of Ri under hD;R. The balance of hD;R is then defined as

�.hD;R/ D logr
� d2

d21 C d
2
2 C � � � C d

2
r

�
: (1.1)

A hash function is regular iff�.hD;R/ D 1 (that is, iff di D d=r for all 1 � i � r);
see [2, §5].

If h is a regular function, the success probability of the birthday attack is de-
noted by C reg

D;R.q/. Bellare and Kohno calculate1 that C $
D;R.q/ > .8=5/ �C

reg
D;R.q/,

if d D 2r � 10. Therefore, they conclude that “regular functions fare better than
random functions [against the birthday attack].”

We recall that their reasoning assumes that the attacker chooses the messages
uniformly at random from D. In the following sections, we investigate the case
where the attacker limits the choice of the domain points to subsets ofD. We prove
that it is not possible to construct a hash function that is regular with respect to only
a small fraction of subsets of the domain. For this, we introduce the concepts of
subset regularity and linear subset regularity.

Bellare and Kohno pointed out in their analysis that there is only a small differ-
ence between regular and random functions in their resistance against the birthday
attack. For random functions, the success probability of the birthday attack does
not depend on how the attacker chooses the domain points.

NIST is currently holding a competition in search for a new hash function stan-
dard [15]. Our result may be relevant to the analysis of statistical properties of the
hash functions in this competition.

Organization. This paper is organized as follows. In Section 2, we describe the
birthday problem and its relation to the birthday attack. Section 3 provides a brief
overview of some works that employ the notion of regularity. In Section 4, we
compute the ratio of regular functions to all functions with the same domain and
range. Our notions of subset regularity and linear subset regularity are introduced
in Sections 5 and 6, respectively. The impact of our observations on the birthday
attack is discussed in Section 7, where we show that the success probability of
the birthday attack against a regular hash function can be made arbitrarily close to
that of a random hash function (for the same number of trials). In Section 8, we
describe the relation of regularity to the dictionary problem in computer science.

1 In this proof, the values from the domain are randomly chosen, but with replacement. The
replacement can result in a possibly trivial collision with a collision in the domain. The au-
thors show in [2, §7.2] that the higher success probability is not due to the possibility of such
collisions.
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We propose in Section 9 that, to analyze the complexity of the birthday attack
for commonly used hash functions, we model hash functions as random functions
instead of as regular functions. For random functions, we prove that the success
probability of the birthday attack does not depend on how the attacker chooses the
domain points. We conclude in Section 10. We show in Appendix A how the con-
struction of a 3-to-1 bit linear subset regular hash function fails. In Appendix B,
we calculate the inverse of some matrices that we use in Section 6.

2 The birthday problem

Assume that there are N people in one room. How large must N be, in order
to have a probability of at least 1=2 that two people share the same birthday? It
is assumed that birthdays are independently and uniformly distributed over the
365 days of the year (leap years are ignored). This is the birthday problem (see
Feller [9, §2.3]), which dates back to von Mises [23]. The answer to the problem
is N � 23.

Bloom showed that the probability that two people share the same birthday,
is the lowest when birthdays are uniformly distributed [3]. Nunnikhoven [16]
analyzed the birthday problem for nonuniform birth frequencies.

Based on the mathematics of the birthday problem, Yuval proposed the birth-
day attack for hash functions [26]. In the attack, a large number of messages are
generated, until two messages are found that result in the same hash value. The at-
tack complexity depends on the distribution of the hash values. If the hash values
are uniformly distributed, the analysis of the original birthday problem applies.
In case of a nonuniform distribution, collision probabilities were calculated by
Cachin [5, §3.2.5], as well as Bellare and Kohno [2].

In this paper, we point out that the distribution of the hash values not only
depends on the hash function, but also on how the attacker chooses the input mes-
sages. This is different from the birthday problem, where the probability distri-
bution of the birthdays is fixed in advance (to have a uniform distribution). In
the following sections, we investigate the impact of the attacker’s choice of the
messages.

3 Balance and regularity in existing literature

The results of [2] not only remained unchallenged for over six years, but were
also often cited in papers on cryptographic theory, in cryptanalysis papers and in
textbooks. In this section, we give a brief overview of some of the most notable
results.
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Since Bellare and Kohno introduced their balance measure �.hD;R/ in [1, 2]
(defined in (1.1)), this measure has been applied to several hash functions. Already
in their original paper, the balance measures of truncated variants of SHA-1 were
analyzed. Later, Yoshida et al. calculated the balance of a reduced version of
MAME [25]. Ødegård and Gligoroski recently computed the balance measures of
reduced versions of EDON-R [17].

In each of these papers, hash function balances are calculated. However, the
results show that not a single one of the hash functions variants under consideration
is regular, and the balance measure �.hD;R/ seems to decrease if the number of
output bits of hD;R is increased. The balance of the actual (untruncated) hash
functions is never calculated, because this would be computationally infeasible.
Because of this difficulty, we question the applicability of the balance measure to
analyze practical hash functions.

The notions of balance and regularity also appear in several textbooks. In [11],
Goldwasser and Bellare state: “If hD;R is not regular, it turns out the [birthday]
attack succeeds even faster, telling us that we ought to design hash functions to be
as ‘close’ to regular as possible.” In this paper, we explain why we counter this
design criterion.

Buchmann’s book [4] states: “We assume that strings from [the domain] can be
chosen such that the distribution on the corresponding hash values is the uniform
distribution.” However, it is the attacker who can freely determine how strings are
chosen from the domain. In this paper, we show that there always exists a way for
the attacker to restrict the domain so that the resulting function is not regular.

In the first edition of his book [19], Stinson describes the birthday attack under
the assumption that the hash function is regular. This assumption is dropped in the
second edition [20], in favor of random oracles [10].

In [13], Joux refers to [1] for a more precise analysis of collisions in hash func-
tions for the unbalanced case. Bellare and Kohno provide bounds for this unbal-
anced case [2], which they refer to as “the generalized birthday problem”. The
reader should not confuse this with the generalized birthday problem that Wagner
studied earlier [24].

4 Fraction of regular functions

Recall that the total number of hash functions jhD;Rj is given by rd .

Lemma 4.1. The total number of functions jhreg
D;Rj that are regular is given by

jh
reg
D;Rj D

´
dŠ=..d=r/Š/r if r j d ,
0 if r − d .
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Proof. For a function to be regular, each range point must have the same number
of preimages under the function. This is achieved if and only if r j d . Given
that the function is regular, the first range point that we consider has one of

�
d
d=r

�
possible sets of d=r preimages mapping to it. Here,

�
u
v

�
denotes the quantity

uŠ=.vŠ � .u�v/Š/. Any domain point in the set that maps to this range point cannot
map to any other range point; otherwise the mappings do not constitute a function.
Therefore, the second range point that we consider will have one of only

�d�d=r
d=r

�
possible sets of d=r preimages mapping to it. Similarly, the i -th range point will
have one of

�d�.i�1/�d=r
d=r

�
sets of domain points mapping to it. In total, therefore,

we have
rY
iD1

 
d � .i � 1/ � d=r

d=r

!
D

dŠ

..d=r/Š/r

functions that are regular. Figure 1 illustrates the above arguments with an exam-
ple.

R2
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.

.
. .

.

D R

.
.

.

.
.

Figure 1. In this example, d D 9 and r D 3; the shaded area represents one of the�
9
3

�
possible sets of 3 domain points that can map to the range point R1 given that

the function is regular; for R2 there are only
�
6
3

�
sets.

Theorem 4.2. Assume r j d . The probability that a random function is also a
regular function is given by

jh
reg
D;Rj

jhD;Rj
� 2�.r=2/�log2.2�d=r/:

Proof. Recall Stirling’s approximation:

log2.zŠ/ �
1

2
log2.2�z/C z log2

�z
e

�
: (4.1)
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Using Lemma 4.1, we obtain

log2
� jhreg

D;Rj

jhD;Rj

�
D log2

�
jh

reg
D;Rj

�
� log2.jhj/

D log2
�
dŠ=.d

r
Š/r
�
� log2

�
rd
�

D log2.d Š/ � r log2
�d
r
Š
�
� d log2.r/

�
1

2
log2.2�d/C d log2

�d
e

�
�
r

2
log2.2�d=r/ � d log2

� d
re

�
� d log2.r/

D
1

2
log2.2�d/ �

r

2
log2.2�d=r/

� �
r

2
log2

�2�d
r

�
:

Let us consider a random hash function with d D 2161 and r D 2160. Ac-
cording to Theorem 4.2, the probability2 that this function is a regular function, is
2�2

160:9

. We note that it is therefore extremely unlikely that a hash function cho-
sen uniformly at random from the set of rd hash functions is regular. This relates
to the observations made in the literature study of Section 3, where we discuss
papers that analyze the balance of several hash function variants.

5 Subset regularity

First, we recall a rather obvious point from [2]. Assume that for an n-bit hash
function h, we restrict the input of hD;R to messages of at most m bits. Let gD00;R
be a hash function, such that the domain is restricted to at most m00 bits, where
m00 � m. Suppose gD00;R.x/ D hD;R.x/ for all x with jxj � m. Then, a collision
for hD;R will also be a collision for gD00;R. If gD00;R is SHA-1, then m00 can be
at most 264 � 1. A collision for, say, hD;R W ¹0; 1º161 ! ¹0; 1º160 is a collision
for SHA-1 for any m00 > 161. In other words, as separately stated by Bellare and
Kohno [2, §7.2],

“[A]n adversary attacking a hash function with a very large domain D
might restrict its choices of domain elements to some smaller subset of
D.”

2 Although Stirling’s approximation (equation (4.1)) is used for a small value of z, namely d=r D
2, all digits of the calculated probability using the approximation are correct.
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One possibility is to restrict the domain elements to sets of size 2a, where a 2 N
and 2a > r . In this paper, we assume that the attacker chooses to make such a
restriction. We also assume that jDj is even, and that the size of the restricted
domain is always half the size of D.

For certain applications, the domain D must be restricted to a smaller subset.
For example, if a message consists of ASCII characters, the most significant bit of
every character must be zero.

Definition 5.1 (Subset regularity). Let hD;R W D ! R be a hash function with
domain D and range R D ¹R1; R2; : : : ; Rrº of size d and r respectively. As-
suming jDj is even, the attacker can restrict the elements of D to a subset S such
that jS j D jDj=2. For 1 � i � r , si D jh�1D;R.Ri / 2 S j denotes the size of the
preimage of Ri under hD;R, when the domain is restricted to S . We say that a
hash function is subset regular with respect to S , if it is not only regular, but also
si D d=.2r/ for all 1 � i � r . That is, it must also be regular when the domain is
restricted to subset S . We impose the condition d > 2r , to ensure that jS j > jRj.

We now introduce the following lemma.

Lemma 5.2. The total number of hash functions jhsreg
D;Rj that are subset regular

with respect to S is given by

jh
sreg
D;Rj D

´�
.d=2/Š=..d=2r/Š/r

�2 if 2r j d ,
0 if 2r − d .

Proof. Suppose that jDj is even. Let the domainD be partitioned into two equally-
sized setsD1 andD2, and consider only domain elements in one of these sets (D1
or D2). Then every range point can have the same number of preimages, if and
only if 2r j d . This also implies r j d , which is required for the regularity criterion
on the entire domain. The reasoning now is exactly the same as for Lemma 4.1,
but with d replaced by d=2 as the regularity criterion holds on the smaller domain
as well. Because the subset regularity criterion has to hold on the other subset of
the domain, we square the entire expression. If jDj is not even, it is not possible
that hD;R is subset regular with respect to S .

Theorem 5.3. If 2r j d , the probability that a regular function chosen uniformly
at random is also subset regular with respect to S is given by

jh
sreg
D;Rj

jh
reg
D;Rj

� 2.�r=2/�log2.�d=2r/: (5.1)
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Proof. Using Lemma 4.1 and Lemma 5.2, we obtain

log2
� jhsreg

D;Rj

jh
reg
D;Rj

�
D log2

�
jh

sreg
D;Rj

�
� log2

�
jh

reg
D;Rj

�
D log2

��
d
2
Š=. d

2r
Š/r
�2�
� log2

�
dŠ=.d

r
Š/r
�

D 2 log2
�d
2
Š
�
� 2r log2

� d
2r
Š
�
� log2.d Š/C r log2

�d
r
Š
�

� log2.�d/C d log2
� d
2e

�
� r log2.�d=r/ � d log2

� d

2re

�
�
1

2
log2.2�d/ � d log2

�d
e

�
C
r

2
log2.2�d=r/C d log2

� d
re

�
D
1

2
log2

��d
2

�
C
r

2
log2

� 2r
�d

�
� �

r

2
log2

��d
2r

�
:

Assume that for a regular hash function, d D 2162 and r D 2160. The attacker
decides to restrict the choice of the domain points to a smaller subset, consisting
of 2161 elements. According to Theorem 5.3, the probability3 that a randomly
chosen regular function is also subset regular with respect to S is 2�2

160:5

.
This leads us to conclude that if hD;R is a regular function chosen uniformly at

random (from all regular functions with the same domain and range), the proba-
bility that hD;R is also a regular function for a particular subset is negligible.

6 Linear subset regularity

In Section 5, we showed that a randomly chosen regular hash function is also
subset regular with respect to S with a probability of almost zero. Our calculations
assumed that r was at least reasonably large, otherwise finding collisions using the
birthday attack becomes feasible in practice.

One might therefore propose the design of a hash function h that is not only
regular, but also subset regular with respect to arbitrary subsets. We now prove
that no such h exists, by showing that a hash function can be subset regular with
respect to only a negligible fraction of all

�
d
d=2

�
possible subsets. In order to do

this, we first introduce the definition of linear subset regularity.

Definition 6.1 (Linear subset regularity). Let hD;R W D ! R be a hash function
with d D jDj D 2m and r D jRj. Every element of D consists of m bits,

3 The approximation given by equation (5.1) results in 2�2
160:4

, but we have calculated this value
more accurately by including additional terms in Stirling’s approximation (equation (4.1)).
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which we label from x0 to xm�1, where x0 represents the least significant bit.
The attacker can restrict the elements of D to a smaller subset, including only
domain points that satisfy am�1xm�1 ˚ am�2xm�2 ˚ � � � ˚ a0x0 D 0, where
ai 2 ¹0; 1º. We can therefore construct 2m � 1 subsets of D, for all choices of ai ,
0 � i < m, except the all-zero case. We impose d > 2r , to ensure that each of
these subdomains is larger than the range R. We say that a hash function is linear
subset regular, if it is not only regular for the domain D, but also for each of the
2m � 1 subsets of the domain that we defined.

We first prove that there are no m-to-1 bit hash functions that are linear subset
regular. Using this, we prove that there are also no m-to-n bit hash functions that
are linear subset regular.

Theorem 6.2. There does not exist anm-to-1 bit hash function that is linear subset
regular.

Proof. A necessary condition for a 3-to-1 bit hash function to be linear subset
regular is that exactly four hash values are 0, and that for every linear subset exactly
two hash values are 0. This condition can be described by the following system of
linear equations:2666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 0 0 1 0 1 1 0

3777777777777775

2666666666666664

h.000/

h.001/

h.010/

h.011/

h.100/

h.101/

h.110/

h.111/

3777777777777775
D

2666666666666664

4

2

2

2

2

2

2

2

3777777777777775
: (6.1)

We find that there is only one solution, namely

hD;R.000/ D hD;R.001/ D � � � D hD;R.111/ D 1=2:

As none of these range points is in the set ¹0; 1º, we conclude that there does
not exist a 3-to-1 bit hash function that is linear subset regular. In Appendix A,
we show how the explicit construction of a 3-to-1 bit linear subset regular hash
function fails.

Let the 8 � 8 matrix in equation (6.1) be denoted as A8. By NAd we denote the
matrix that results when the logical negation operator is applied to every element
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of Ad . Matrices Ad can then be constructed as follows:

A1 D
�
1
�
;

Ad D

"
Ad=2 Ad=2

Ad=2 NAd=2

#
; for 1 � log2 .d/ 2 N.

Every row of Ad corresponds to a subset of the domain defined by the linear
expression am�1xm�1 ˚ am�2xm�2 ˚ � � � ˚ a0x0, where ai 2 ¹0; 1º, 0 � i <
m indicates whether or not a linear term is included, and x0 refers to the least
significant bit. By definition, we assume that a linear expression containing zero
terms corresponds to the regularity condition. The values of ai are different for
every row, and Ad is constructed such that the top d=2 rows have am�1 D 0 and
the bottom d=2 rows have am�1 D 1.

In order to extend our result from 3-to-1 bit hash functions to m-to-1 bit hash
functions, we must prove that the following system of equations has no solutions
that consist of only elements in ¹0; 1º:

AdX D
d

4

�
2 1 1 � � � 1

�T
:

We find that X D
�
1 1 � � � 1

�T
=2 is always a valid solution, by counting the

number of ones in every row of Ad . This is the only solution if Ad is invertible. In
Appendix B, we prove that matrices Ad are invertible, by showing their relation
to Hadamard matrices. As none of the elements of X is in the set ¹0; 1º, there are
no m-to-1 bit hash functions that are linear subset regular.

We now show that if no m-to-1 bit linear subset regular hash functions exist,
there exist no m-to-n bit linear subset regular hash functions.

Theorem 6.3. There exists nom-to-n bit hash function that is linear subset regular.

Proof. The proof is by induction on n. Let P.n/ denote the proposition:

There exists no m-to-n bit hash function that is linear subset regular.

The base case P.1/ is true by Theorem 6.2. Let P.i/ be true for some i < n.
Then, we derive the truth table of Table 1.

Now, if a hash function is linear subset regular then it is

� regular, and

� subset regular under all linear conditions, each of which partitions the domain
into two equally-sized sets.
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x‚ …„ ƒ
xm�1 xm�2 � � � x0

0 0 � � � 0

0 0 � � � 1
:::

:::
: : :

:::

0 1 � � � 1

1 0 � � � 0

1 0 � � � 1
:::

:::
: : :

:::

1 1 � � � 1

h.x/‚ …„ ƒ
˛i�1 ˛i�2 � � � ˛0

˛0;i�1 ˛0;i�2 � � � ˛0;0

˛1;i�1 ˛1;i�2 � � � ˛1;0
:::

:::
: : :

:::

˛2m�1�1;i�1 ˛2m�1�1;i�2 � � � ˛2m�1�1;0

˛2m�1;i�1 ˛2m�1;i�2 � � � ˛2m�1;0

˛2m�1C1;i�1 ˛2m�1C1;i�2 � � � ˛2m�1C1;0
:::

:::
: : :

:::

˛2m�1;i�1 ˛2m�1;i�2 � � � ˛2m�1;0

Table 1. Truth table for an m-to-i bit hash function hD;R; j̨;` 2 ¹0; 1º for all
j 2 ¹0; : : : ; 2m � 1º and ` 2 ¹0; : : : ; i � 1º.

Therefore, if a hash function is not linear subset regular then it is either (i) not
regular or (ii) not subset regular with respect to at least one linear condition. Given
case (ii), without loss of generality, let us assume that subset regularity does not
hold for xm�1 D 0. Then, in the truth table in Table 1, at least one of the 2m�1 i -bit
outputs corresponding to xm�1 D 0 appears more than the expected 2m�1=2i D
2m�i�1 times. Again, without loss of generality, let the output ¹0ºi appear t >
2m�i�1 times (i.e., say, j̨;` D 0 for all j 2 ¹0; : : : ; t � 1º and ` 2 ¹0; : : : ; i � 1º
in Table 1). Then, if we append one bit to each of the t output strings ¹0ºi , one
of the strings ¹0ºi k 0 and ¹0ºi k 1 appears strictly more than 2m�1=2iC1 D
2m�i�2 times. Since ¹0ºi k 0 and ¹0ºi k 1 should each appear exactly 2m�i�2

times when the m-to-.i C 1/ bit hash function is subset regular under the linear
condition xm�1 D 0, P.iC1/ is true whenP.i/ is true. Given case (i), following a
similar line of reasoning, replacing 2m�1 with 2m and recalculating the formulas,
we obtain that P.i/ ) P.i C 1/. Therefore, by the principle of mathematical
induction, P.n/ is true.

Let us again consider a regular hash function with d D 2162 and r D 2160. If
we require this function to be linear subset regular as well, the function must be
subset regular for a fraction of d � 1 out of all

�
d
d=2

�
possible subsets consisting

of half of the domain elements. For d D 2162, this fraction evaluates to about
2�2

162

. Therefore, by imposing subset regularity for only an extremely small frac-
tion of the possible subsets that we consider, we prove that no linear subset regular
functions exist.
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In the previous section, we showed that the fraction of subset regular hash func-
tions was negligible. In this section, we obtained an even stronger result: there
does not exist a hash function that is regular for more than a negligibly small frac-
tion of subsets of the domain.

Therefore, in the birthday attack, the attacker can always restrict the domain in
such a way that the resulting hash function is not regular. This counters Bellare and
Kohno’s interpretation of why regular functions fare better than random functions
against the birthday attack. However, we do not dispute the mathematics of their
analysis.

7 Impact on the birthday attack

In the previous sections, we showed how unlikely it is that a hash function is
regular, if the attacker restricts the inputs to a particular subset. We now use this
observation to increase the success probability of the birthday attack against a
regular hash function (for the same number of trials), compared to Bellare and
Kohno’s analysis.

Bellare and Kohno [2, §7.2] see a possibility for the attacker to restrict the do-
main to a smaller subset of d D 2r > 10 elements, and calculate that in this case,
C $
D;R.q/ > .8=5/ � C

reg
D;R.q/. From this, they conclude that regular hash functions

fare better than random hash functions against the birthday attack. However, Bel-
lare and Kohno’s analysis assumes that the attacker restricts the domain in such a
way, that D consists of all strings of length log2.r/C 1 bits.

As Bellare and Kohno already pointed out, C reg
D;R.q/ approaches C $

D;R.q/ if the
length of the input strings increases. Therefore, to increase the success probability
of the birthday attack against a regular hash function with d D 2r (for the same
number of trials q), the attacker can consider long input messages. The attacker
will then restrict these long input messages to a set of d D 2r elements, and per-
form the birthday attack. Therefore, by increasing the length of the input messages
(but still restricting the domain points in the birthday attack to d D 2r elements),
the success probability of the birthday attack against a regular hash function can be
made arbitrarily close to that of a random hash function, for the same number of tri-
als q. This contradicts [2, Proposition 7.4], which states that if jDj D 2jRj � 10,
then C $

D;R.q/ > .8=5/ � C
reg
D;R.q/ for all q satisfying 2 � q � 0:1 � r1=2.
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8 Related work

In 1956, Dumey introduced the concept of (non-cryptographic) hashing [7]. It
was proposed as a solution to the dictionary problem. In the dictionary problem,
a sequence of operations INSERT(k; x), DELETE(k) and LOOKUP(k) are given.
They are used to respectively insert, delete and look up key-value pairs .k; x/,
and are performed on an initially empty table of key-value pairs. The goal is to
minimize the time and memory used by these operations.

Let h0D0;R0 W D
0 ! R0 be a hash function, where both the domain jD0j D d 0

and the range jR0j D r 0 are finite, and d 0 > r 0. The construction known as chained
hashing is then described as follows. We initialize an array AŒ1 : : : r 0�, and let AŒi�
contain a linked list of all key-value pairs .k; x/ for which h0.k/ D i .

Assume that r 0 j d 0. For chained hashing, h0D0;R0 is ideally chosen such that
every AŒi� contains the same number of key-value pairs. This is related to the
notion of a regular hash function by Bellare and Kohno, where every hash value
has the same number of preimages in the domain D0. If D0 is the set of all keys
that are added to the table, then the number of key-value pairs that have to be read
when either of the three operations are performed is at most d 0=r 0. If there exists
anAŒi�with fewer than d 0=r 0 elements, then there also exists anAŒj �where i ¤ j
with more than d 0=r 0 elements. Therefore, regular hash functions obtain the best
performance in the worst-case scenario.

Doing a rigorous analysis of chained hashing is difficult, because the calcula-
tions strongly depend on the sequence of keys k. For example, by the pigeonhole
principle there always exists a sequence of keys k that all map to the same hash
value h0D0;R0.k/. Sometimes assumptions are placed on the sequence of keys k,
but these may be very difficult (or even impossible) to guarantee in practice. This
is also evident from the analysis in our paper.

As a novel solution to the dictionary problem, we mention the universal classes
of hash functions proposed by Carter and Wegman [6]. In their paper, it is pro-
posed that h0D0;R0 is chosen uniformly at random, but not from the set of all possi-
ble functions. The class of hash functionsH 0D0;R0 is chosen in such a way, that the
average performance (for all h0 2 H 0) for the worst case input is bounded.

More formally, let h0D0;R0 W D
0 ! R0 be a hash function, where both the domain

jD0j D d 0 and the range jR0j D r 0 are finite, and d 0 � r 0. A universal class of
hash functions is then defined such that for a randomly chosen h0D0;R0 2 H

0, the
probability that any h0D0;R0.x/ D h0D0;R0.y/ is at most 1=r 0 for any two distinct x
and y.

However, not all protocols allow a hash function to be selected uniformly at
random from a class of hash functions. In that case, the notion of universal classes
of hash functions is not meaningful.
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9 Random functions

Bellare and Kohno showed [2] that several reduced versions of SHA-1 do not
behave as regular functions. This indicates that regular functions may not be a
suitable theoretical model to analyze the collision resistance of commonly used
hash functions. In previous sections, we also made an observation on Bellare and
Kohno’s claim that regular hash functions fare better than random hash functions
against the birthday attack. Based on this, we suggest not to model hash functions
as regular functions.

Instead, we propose to model hash functions as random functions when analyz-
ing the complexity of the birthday attack. We agree with Bellare and Kohno that
“the design principle of attempting to make hash functions have random behavior
[. . . ] is sound and central to security” [2]. We now explain why random functions
do not suffer from any of the problems described in this paper.

A random function can be defined as follows:

Definition 9.1 (Random function). Let F W ¹0; 1º� ! ¹0; 1ºn be a random func-
tion. If xi 2 ¹0; 1ºn has not been queried before, the random function chooses yi
uniformly at random from all 2n range points, and outputs yi D F.xi /. Otherwise,
if xi D xj where j < i , the random function outputs yj D F.xj / D F.xi /.

Unlike for a regular hash function, it is not necessary for a random function to
require that the domain consists of a finite number of elements. Also, it is clear
from the random function definition, that for any subset of the domain, the range
points yi are chosen randomly and independently from a uniform distribution as
well. The statistics of a random function are the same, no matter how the domain
points are chosen. Therefore, for a random function, the success probability of the
birthday attack does not depend on how the domain points are chosen.

10 Conclusions

The notion of a regular hash function was introduced by Bellare and Kohno at
Eurocrypt 2004, and has subsequently appeared in several research papers. It is
defined as a hash function that has the same number of preimages in the domain
for every hash value. In their original paper, Bellare and Kohno state that “regular
functions fare better than random functions [against the birthday attack]”.

We explain that this statement, which until now remained unchallenged, is
based on the assumption that the attacker chooses the domain points uniformly
at random. However, Bellare and Kohno note that “there are several variants of
[the birthday attack] which differ in the way the [domain] points x1; : : : ; xq are
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chosen.” One possible restriction is that domain points correspond to meaningful
messages. For example, if messages consist of only ASCII characters, the most
significant bit of every character must be zero.

For simplicity, we assumed that the choices of the attacker are restricted to
half of the domain points. In that case, we calculate that the probability that the
resulting function is still regular under this restriction is very close to zero.

We then attempt to extend the concept of regularity, and require that a hash
function is also regular under subsets of the domain. We prove that no such hash
function exists, even if we consider only a very small fraction of all possible ways
to divide the domain into subsets.

Thus, the attacker can restrict the domain points in the birthday attack in such
a way that the resulting hash function is not regular. This is our point of disagree-
ment with Bellare and Kohno’s analysis of why regular functions perform better
than random functions against the birthday attack.

We show how the success probability of the birthday attack against a regular
hash function can be increased (for the same number of trials), compared to Bellare
and Kohno’s analysis. Our results hold even for a highly restricted domain.

If hash functions are modeled as random functions, the choice of the domain
points does not change the success probability of the birthday attack.

A Linear subset regularity for 3-to-1 bit hash functions

Here, we will attempt to construct a 3-to-1 bit linear subset regular hash function
hD;R.x/. Let the input x be a binary string, resulting from the concatenation of
the three input bits, such that x  x2 k x1 k x0. We set hD;R.000/ D A, where
A can be either 0 or 1. The other output symbol will then be denoted by B . We
now consider three cases, as shown in Table 2.

Case 1: Assume hD;R.001/ D A. Subset regularity with respect to x2 then
leads to hD;R.010/ D hD;R.011/ D B . Furthermore, subset regularity with
respect to x1 results in hD;R.100/ D hD;R.101/ D B . For hD;R to be regular, we
must have hD;R.110/ D hD;R.111/ D A. However, we now find that restricting
the inputs to x2 ˚ x1 D 0 results in a constant function.

Case 2: Assume hD;R.001/ D B and hD;R.010/ D A. Subset regularity with
respect to x2 then leads to hD;R.011/ D B . Furthermore, subset regularity with
respect to x0 results in hD;R.100/ D hD;R.110/ D B . For hD;R to be regular, we
must have hD;R.101/ D hD;R.111/ D A. However, we now find that restricting
the inputs to x2 ˚ x0 D 0 results in a constant function.

Case 3: Assume hD;R.001/ D B and hD;R.010/ D B . Subset regularity with
respect to x2 then leads to hD;R.011/ D A. Furthermore, subset regularity with
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Case 1 Case 2 Case 3
x2 x1 x0 hD;R.x/ hD;R.x/ hD;R.x/

0 0 0 A A A
0 0 1 A B B
0 1 0 B A B
0 1 1 B B A
1 0 0 B B B
1 0 1 B A A
1 1 0 A B A
1 1 1 A A B

Table 2. Constructing a 3-to-1 bit linear subset regular hash function hD;R.x/, where
x  x2 k x1 k x0; the values in bold were set initially, the others are derived from
the linear subset regular conditions.

respect to x1 ˚ x0 results in hD;R.100/ D hD;R.111/ D B . For hD;R to be
regular, we must have hD;R.101/ D hD;R.110/ D A. However, we now find that
restricting the inputs to x2 ˚ x1 ˚ x0 D 0 results in a constant function.

Consequently, there are no 3-to-1 bit hash functions that are linear subset regu-
lar. Also note that imposing all but one linear subset regular condition in Table 2
leads to an affine hash function. We found by exhaustive search that all 3-to-1
bit hash functions, where all but one linear subset regular conditions are imposed,
result in affine hash functions.

B Calculating the inverses of matrices Ad

In this section, we prove that the matrices Ad of Theorem 6.2 are invertible, by
showing their relation to Hadamard matrices. We give an explicit formula for their
inverses.

Hadamard matrices are square matrices of which all elements are either 1 or
�1. They were initially proposed by Sylvester [21]. Hadamard [12] later showed
that these matrices are the solution to his maximum determinant problem. A d �d

Hadamard matrix Hd can be defined as a matrix satisfying

HdH
T
d D dId ; (B.1)

where Id denotes the d � d identity matrix.
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If d is a power of two, Sylvester [21] proposed the following construction for
Hd :

H1 D
�
1
�
;

Hd D

"
Hd=2 Hd=2

Hd=2 �Hd=2

#
; for 1 � log2.d/ 2 N.

Let Jd be the d � d matrix where every element is equal to one. Matrix Kd
is the d � d matrix where every element of the first column is 1, and all other
elements are zero. Note that KdKTd D Jd : Matrices Ad of Theorem 6.2 satisfy
the equation Hd D 2Ad � Jd . We now show that matrices Ad are invertible, and
calculate their inverse. Using equation (B.1), we obtain

.2Ad � Jd /.2Ad � Jd /
T
D dId

, .2Ad � Jd /.2A
T
d � J

T
d / D dId

, 4AdA
T
d � 2AdJ

T
d � 2JdA

T
d C JdJ

T
d D dId

, 4AdA
T
d � d.K

T
d C Jd / � d.Kd C J

T
d /C dJd D dId

, 4AdA
T
d � dK

T
d � dKd � dJ

T
d D dId

, 4AdA
T
d � dK

T
d � dKd � dKdK

T
d D dId

, 4AdA
T
d D d.Kd C Id /.Kd C Id /

T : (B.2)

As KdKd D Kd , we have

.Kd C Id /.Id �Kd=2/ D Kd �KdKd=2C Id �Kd=2 D Id :

Therefore, .Kd C Id /�1 D Id �Kd=2. From equation (B.2), we then obtain

AdA
T
d .2Id �Kd /

T .2Id �Kd / D dId :

This equation shows that Ad is invertible, and that its inverse is given by

A�1d D
1

d
ATd .2Id �Kd /

T .2Id �Kd /:
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